

Presented by

Pasha Ahmad Istanbul Regional Seminar October 27, 2011

Agenda

- Summary of PI System Infrastructure
- General Benefits of PI System in Manufacturing
- Cement Industry Process and PI System
- Examples of PI System in Cement Industry
- Economic Benefits Reported in Cement Industry by Customers

PI System Infrastructure + Applications Transforms Information into Asset

BUSINESS Manage **Analyze** Connect Present Collect data from Gather and archive Access real-time or View data, identify hundreds of large volumes of historical roleproblems, and take corrective action data. Scale to meet based data for the sources. erAinalyticsse at Interfaces with **Visuals**easyyo**Serwers Facilities**

The Real Value is Manufacturing Intelligence

"Manufacturing Intelligence (MI), also known as Enterprise Manufacturing Intelligence (EMI), software delivers realtime information about manufacturing processes to help businesses optimize the performance of these processes as well as manufacturing yields. MI software gathers and analyzes production data, provides role-based visualization, and helps manufacturers reduce waste. The software also enables the improvement of manufacturing processes, identification of best practices, and the ability to respond to exceptions and events."

Manufacturing Intelligence:

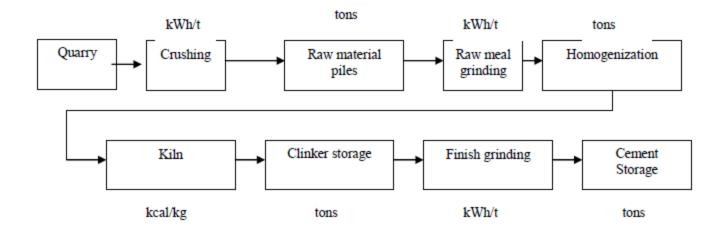
- Delivers real-time information about manufacturing processes
- Gathers and analyzes production data

Delivered Value:

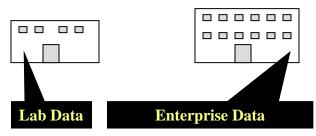
- Optimize process performance and manufacturing yields
- Reduce waste
- Improve manufacturing processes
- Identification of best practices
- Respond to exceptions and events

Existing PI System Cement Customers

- CEMEX (EA)
- Votorantim
- Italcementi (Essroc)
- Cal Portland
- Lafarge (Blue Circle)
- Heidelberg (Lehigh)
- Ultratech



HEIDELBERGCEMENT



Process Overview of Cement Operations

A single data format for all plant data management, analysis and archival

PI will give you value by real-time improvements in

- Energy savings
- · Emissions monitoring
- Process data
- Product quality data
- Maintenance scheduling
- KPI measurements

PI can connect all your islands of information

- Process controls systems
- Lab analysis devices
- Motor control centers
- Vibration analysis devices
- Gas analysis systems
- Infrared camera systems

Monitoring and Transforming into Intelligence

- Quarry Operations
- Crushing Operations
- Blending and Raw Material Grinding
- Preheat,
- Kilns
- Clinker Storage and Finish Grinding

Key Performance Indicators

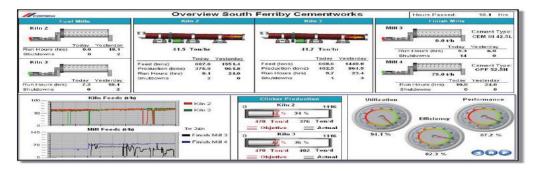
- Inventory Utilization
- 2. Energy Consumption
- 3. Capacity
- 4. Quality Indicators
- 5. Fuel Consumption
- 6. Asset Utilization

Maximize Asset Performance

Prolong Asset Life and Increase MTBF

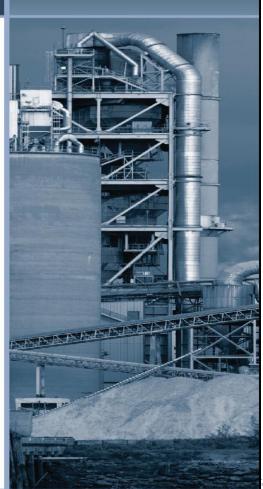
Optimize Production

Increase Efficiency


Dynamic Visibility and Business Intelligence

Flexible End-User Access

PI SYSTEM


Create Immediate Value

- Energy Savings
- Emissions Monitoring
- Process Data
- Product Quality Data
- Maintenance Scheduling
- KPI Measurements

Own Your Information

- Process Controls
- Lab Analysis
- Motor Control
- Vibration Analysis
- Gas Analysis

Data Access

ERP

CMMS

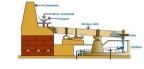
Business Intelligence

Web Servers

PI OPC Servers PI System Access

PI SDK's

PI Analytics



Asset Framework

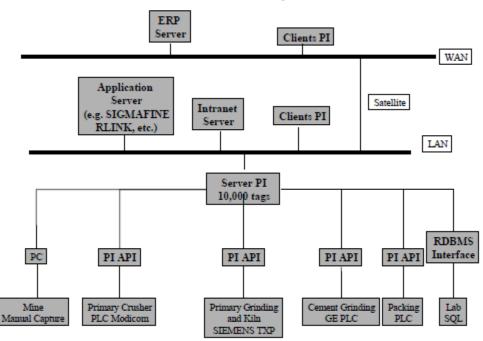
Single data source for cement applications

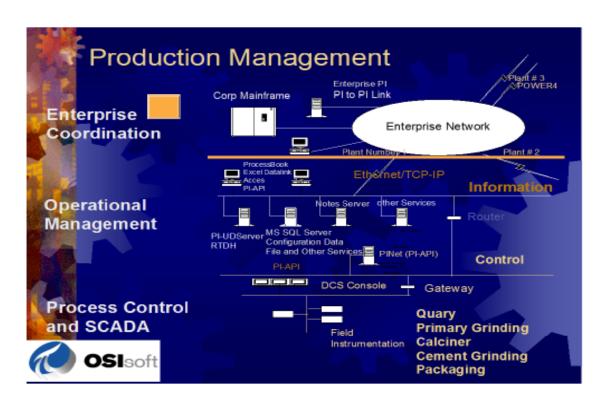
PI OPC Servers PI System Access

PI SDK's

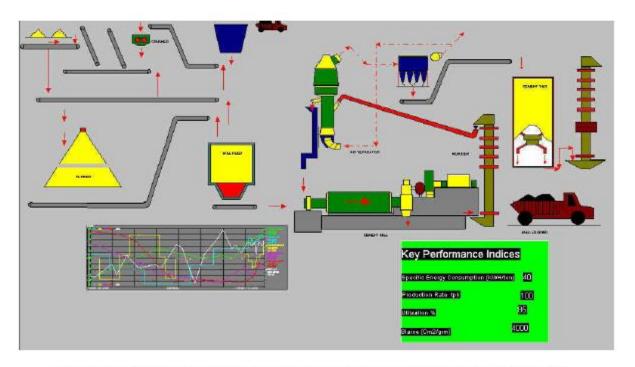
PI Analytics

Asset Framework





PI System Infrastructure Diagram in a Cement Plant


Cement Plant Information System Infrastructure

Functional Layers for Production Management in Cement Plants

Dashboard of KPI's for Each Plant Area

Intranet and web real time reporting of key performance indicators by plant or specific area.

CEMENT

Operational Data Protected

"Cement producers need to develop their KPI share it with key support groups, this provided the PI System, it would have taken them seve

Customer Business Challenge

- Providing key process indicators for increased quality and production
- Closer monitoring of electrical and fuel usage
- Developing long term historical data for improved maintenance

Solution

- Implemented PI system to provide connections to plant wide systems
- Provided focused view and data analysis of MTC's and emission controls.
- Provides monitoring and analysis of all equipment history

Customer Results / Benefits

- Strong positive real-time composite audit for all major plant areas
- Reduced energy costs and real-time indicators for energy management
- Focused maintenance data to aid in seeing problem areas before failures occur

Sharing Information World Wide

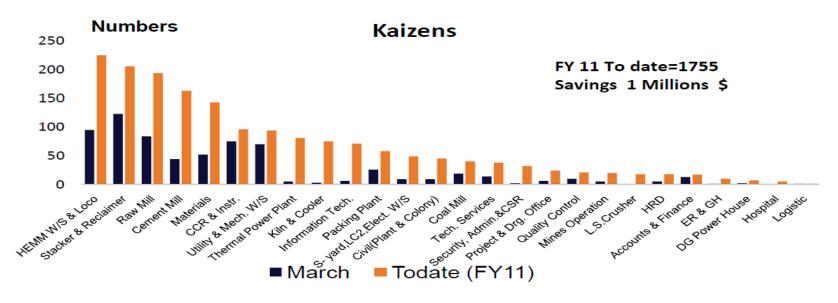
"Cement Production companies need to I around the world. Consolidating and sur management. Web Parts is a tool that in

Customer Business Challenge

- Collect accurate process information from all facilities located globally.
- Provide a single source for viewing many locations and processes to employees in non centralized locations.

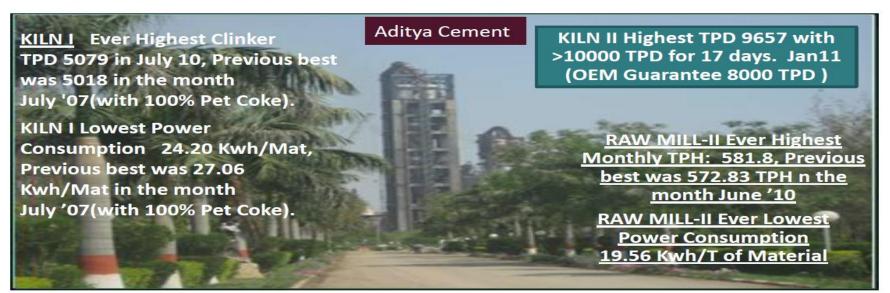
Solution

- Implemented a single PI server with interfaces to manufacturing facilities world wide.
- Implemented MS SharePoint with PI web parts to expose process information.
- Implemented notifications tied to


Customer Results / Benefits

- Dashboards and process analysis are driving continuous improvement; lowering product costs improving performance.
- Integration of information from multiple data sources.
- Timely, reliable, communication for

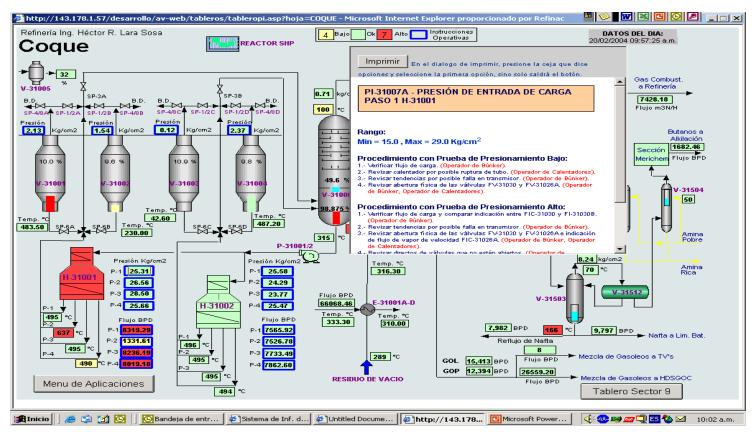
ROI CASE #1 ACTUAL CEMEX LAB CONSOLIDATION SAVINGS Tangible Benefits


- Reduce TCO per plant of previous in-house system by USD \$ 800 k/year approx.
- Calculated ROI is 6 months
- No extra cost for OSIsoft licenses, all are included in the Enterprise Agreement
- Elimination of multiple vendor licenses

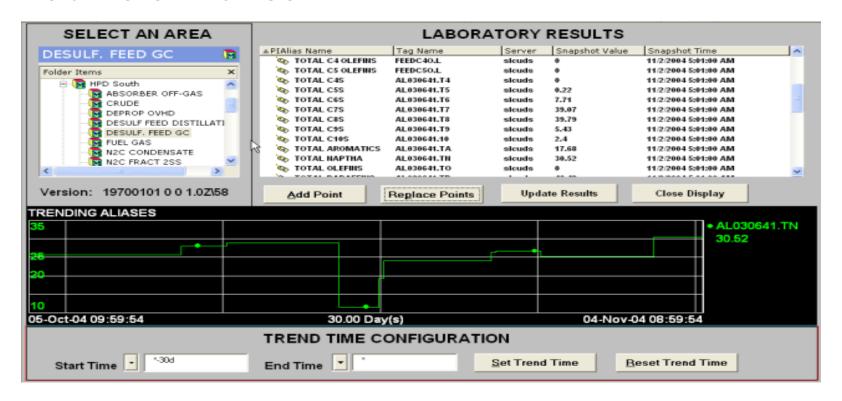
ROI CASE #2 ACTUAL ONE YEAR SAVINGS AFTER INSTALLING PI Improvement Cases at Aditya Cement

ROI CASE #2 Improved

Results and Performance Data Via the PI System



Petrochemical Examples


- Process Monitoring and Investigation
- KPI and Performance Calculations
- Plan Execution \ Performance to Targets
- Environmental Compliance
- Equipment Health and Maintenance
- Control System Effectiveness
- Data Reconciliation
- Analyzer Validation
- Model Integration for Decision Making

Process Monitoring – Pemex

Alerting and Operating Instructions

Lab Data Browser

Unit Performance Report – Material Balance

Date: 9/16/1998 10:35

FCC GAS PLANT - RAW MASS BALANCE USING CORRECTED FLOW RATES

	UNIT	TAG	VOI	UMETRIC FL	ow	API		MW or SG	MA	SS FLOW (lb/hr)
REACTOR FEED Light Feed to Lower Nozzles Heavy Feed to Upper Nozzles Slurry Recycle Coker Gasoline Coker Naphtha	BPH BPH BPH BPH BPH	OFC-19 / 20 OFC-17 / 18 OFC-131 OFC-702 (PFC-105)		2557 1404 83 0		23.1 25.6 1.5 64.9 64.9	:	0.915 0.901 1.064 0.720 0.720		820149 443117 31046 0 0
GAS PLANT FEEDS 293 Off Gas Coker Suction Off Gas Coker Discharge Off Gas Coker Compressor Discharge Liquid 292 Overhead Drum Liquid	MSCFH MSCFH MSCFH BPH BPH	CFI-97 PFI-343 PFI-102 PFI-144 EFC-70		97 0 474 6 0		 0.0 49.0	:	0.8 1.0 1.0 0.6 0.784		5696 14 35744 1233 0
PRODUCTS Sour Fuel Gas DePentaniser Overheads Light Gasoline - From Merox Units Heavy Gasoline - From Treater LCGO - To GU-293 Hydrotreater LCGO - To Crude Unit Flash Drier LCGO - To Off Site Tankage CBFS (Carbon Black Feed Stock)	MSCFH BPH BPH BPH BPH BPH BPH BPH	OFI-205 OFC-234 OFC-247 OFI-272 OFC-144 AFI-610 OFC-145 OFC-306		1552 1049 1383 1061 714 0 0		75.1 40.1 18.1 18.1 18.1 1.5		0.8 0.513 0.685 0.825 0.946 0.946 0.946 1.064		92981 188745 331999 306591 236867 0 0 59657
Coke Make	LB/HR	CALC								72926

Unit Performance Report – Economics

FCC LP vs ACTUAL DAT	TΑ		16-Sep-98				
	Tag	LP Planned MBPD	Actual MBPD	Delta	Tag	Feed/Product value \$/MBBL	Feed/Product value
FCC FEED RATES							
Total FCC Feed	FFRTCF .LP	95.0	97.0	2.0	FFSVTCF.LP	-16.69	-1619.60
Coker Gas	FFRDC2 .LP	1.0	2.1	1.1	FFSVDC2 .LP	-12.08	-25.89
Coker Propylene	FFRDU3 .LP	0.2	0.0	-0.2	FF8VDU3 .LP	-8.92	0.00
Coker Propane	FFRDC3 .LP	0.4	0.4	-0.1	FFSVDC3.LP	-8.37	-3.12
Coker Isobutane	FFRDI4 .LP	0.1	0.1	0.0	FFSVDI4 .LP	-13.85	-1.22
Coker Butylene	FFRDU4 .LP	0.2	0.0	-0.2	FFSVDU4 .LP	-13.63	0.00
Coker Normal Butane	FFRDN4 .LP	0.3	0.3	0.0	FFSVDN4 .LP	-12.19	-3.81
Coker C5's	FFRDC5 .LP	0.7	0.0	-0.6	FFSVDC5 .LP	-15.96	-0.69
FCC PRODUCT RATES							
Refinery Fuel	FPRGAS .LP	7.2	5	-1.9	FPSVGAS .LP	12.08	63.00
FCC Propylene	FPRUC3 .LP	7.8	7.5	-0.3	FPSVUC3 .LP	9.09	67.76
FCC Propane	FPRFC3 .LP	3.0	3.1	0.2	FPSVFC3.LP	8.43	26.54
FCC Isobutane	FPRFI4 .LP	6.3	0.2	-6.1	FPSVFI4 .LP	14.44	2.91
FCC Butylene	FPRUC4 .LP	7.3	3.0	-4.2	FPSVUC4 .LP	13.72	41.46
FCC Normal Butane	FPRFN4 .LP	1.7	0.1	-1.6	FPSVFN4 .LP	12.19	0.61
FCC Mixed Amylene	FPRAMX .LP	0.1	0.0E+00	-0.1	FPSVAMX.LP	15.96	0.00
Light FCC Gasoline	FPRLCD .LP	36.5	33.2	-3.3	FPSVLCD .LP	16.42	545.00
Heavy FCC Gasoline	FPRHCD .LP	19.0	25.5	6.5	FPSVHCD .LP	17.38	442.47
Light Cycle Oil	FPRFLC .LP	15.8	17.1	1.3	FPSVFLC .LP	17.57	301.28
CBFS	FPRDEC .LP	4.9	3.8	-1.0	FPSVDEC .LP	10.25	39.35
Coke on Catalyst	FPRCCK .LP	5.7	5.0	-0.7	FPSVCCK.LP	6.04	29.95
Product Value		2168.84					1560.33
Feed Cost		(1869.82)					-1654.34
Gross Margin		299.02					-94.01
Gross Margin per Barre	I FPRGMB .LP	2.82					-0.97

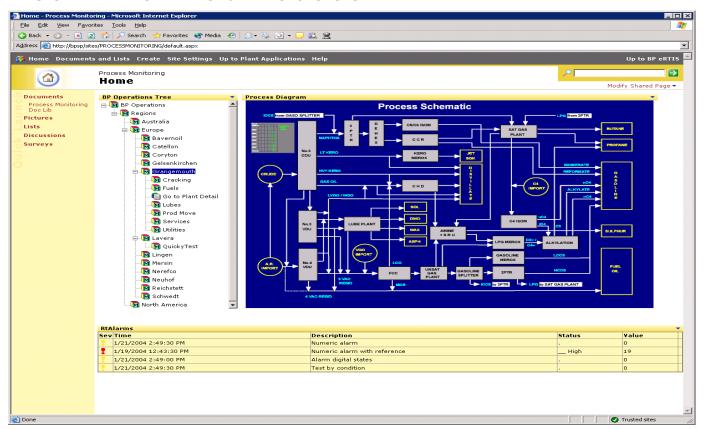
Unit Performance Report – Energy Use

U	nit	Tar	a	ets

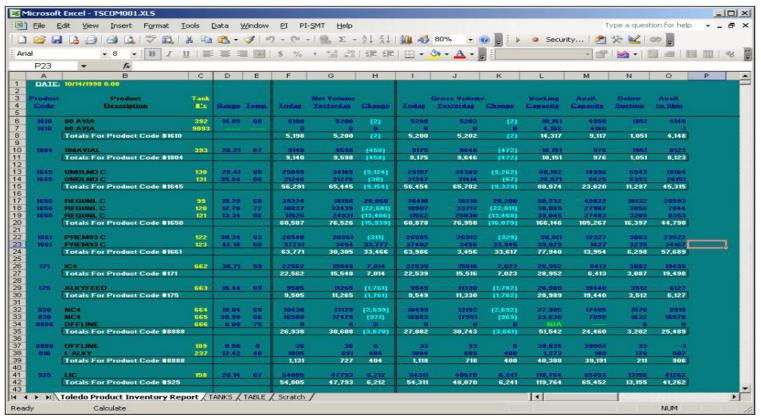
CONVERSION

FEED QUALITY	<u>Units</u>	Current Value
LT FEED CONCARB	wt%	0.34
LT FEED BASIC N2	ppm	240
LT FEED NICKEL		0.70
		0.30
HVY FEED CONCARB	wt%	0.52
HVY FEED BASIC N2	ppm	451
HVY FEED NICKEL		1.70
HVY FEED VANADIUM		0.30

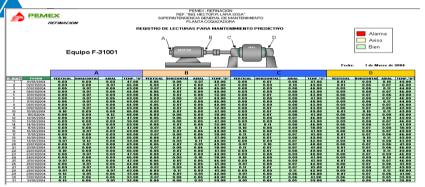
PRODUCT QUALITY	<u>Units</u>	<u>Actual</u>	<u>Target</u>
DEPENT, OH LIQUID C:	5=	0.00	5 % MAX
FCC LT GAS MON		80.9	
FCC LT GAS RON		93.1	
FCC LT GAS ROAD		87.0	86.5 MIN
FCC LT GAS MSULFUR	PPM	1.6	
FCC LT GAS RVP	PSIA	13.9	9.0-9.4 PSIA
FCC HVY GAS D86/90	F	397	
FCC HVY GAS D86/EP	F	430	430-440 F
FCC HVY GAS MON		80.4	
FCC HVY GAS RON		92.8	
FCC HVY GAS ROAD		86.6	86.5 MIN
LCGO D86/90	F	669	
LCGO D86/EP	F	692	705 MAX
LCGO COLOR		2	2.5 MAX
CBFS API		1.5	5 Max.
ASHD	%	0.10	0.1
CBFS FLASH	F	186	160 min

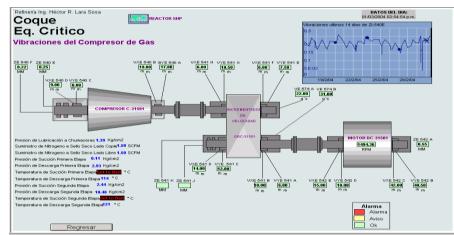

77.6

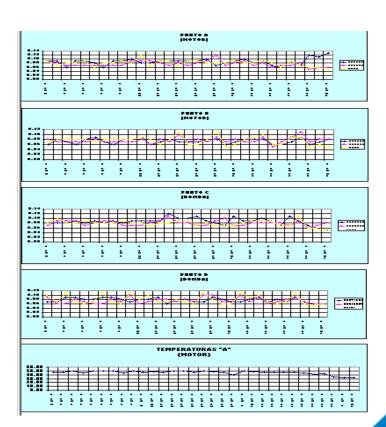
Energy Usage


			Current	30 day
STEAM			Value	A∨g.
50# Steam - 1291	OFI-725	KLBH	34.6	33.5
250# Steam - 1291	OFI-724	KLBH	45.2	43.3
600# Steam (1291-KN-1	OFI-57	KLBH	7.1	16.3
600# Steam (1291-KN-2	OFI-153	KLBH	139.6	151.4
250# Steam (From 1291	OFI-760	KLBH	202.0	180.6
FUEL GAS				
Fired Fuel (1291-H-2)	OFC-21	MCFH	41.9	37.8
H-2 Excess O2	OAC-910	%	0.9	3.6
Fired Fuel (1291-H-3)	OFC-22	MCFH	104.5	101.2
H-3 Excess O2	OAC-911	%	5.0	6.0
ELECTRICITY (1291 Usage)				
	YWI3B24		612.4	565.9
	YWI3B17		595.9	619.7
	YWI3B32		859.1	1332.8
	YWI3C18		367.9	367.4
	YWI3C15		485.4	597.1
	YWI3C13		900.4	980.9
	YWI3C24		523.7	565.0
	YWI3C34		1441.6	1269.2
	YWI3C38		668.8	663.6
Total electricity Usage			6455.1	6961.6

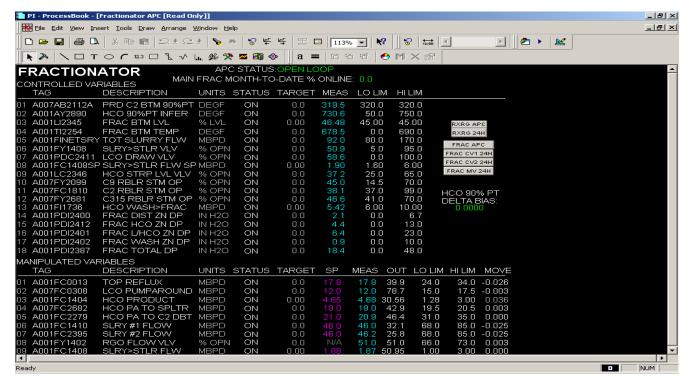
Current

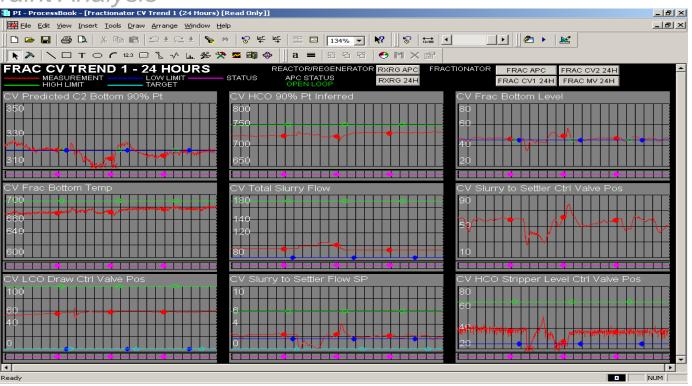

Real-time Web Access



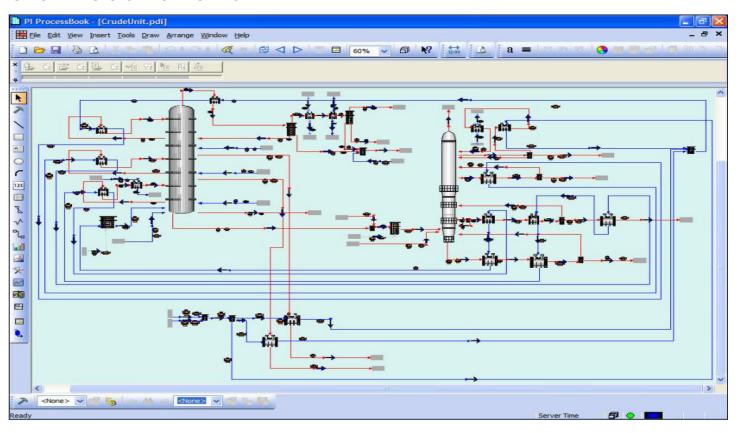

Plan Execution \ Inventory Report

Equipment Health and Maintenance - Pemex




Control System Effectiveness

Multivariable Control Collaboration



Control System Effectiveness

Constraint Analysis

Data Reconciliation

Any Questions?

Questions