

osisoft. FEDERALS WORKSHOP The Power of Data

DECISION READY IN REAL-TIME

Upcoming Federal Workshop: October 29 - Washington, DC JW Marriott, Pennsylvania Avenue, NW

OSIsoft. FEDERAL WORKSHOP

Making it Visible Success Stories from Microsoft, Carnegie Mellon, and UC Davis

Presented by David Doll Strategic Alliance Principal

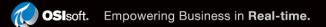
OSIsoft. FEDERAL WORKSHOP

Background: Making it Visible

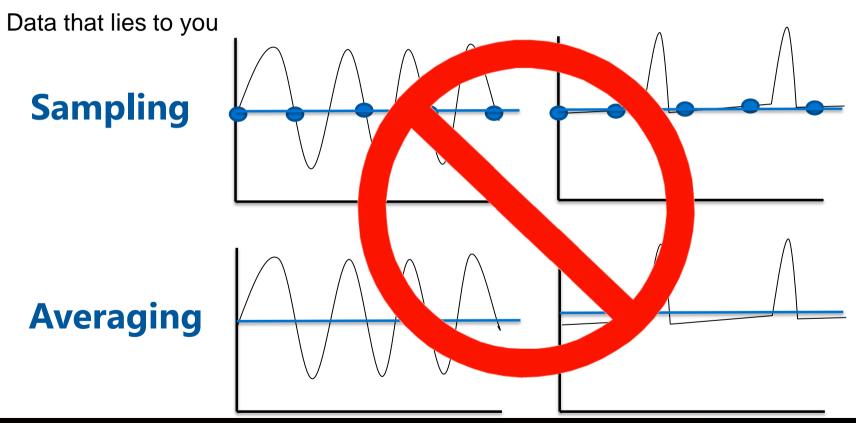
Evolution of "Visibility"

- Analysis after the fact
 - Why was that electric bill so high?
- Real-time analysis of data
 - Fault detection, smarter maintenance
- Predictive Analytics
 - Predictive Decision Making, Intelligent Maintenance

Making it Visible


Islands of data

Solution 1


Solution B

Solution #\$%&

© Copyright 2013 OSIsoft, LLC.

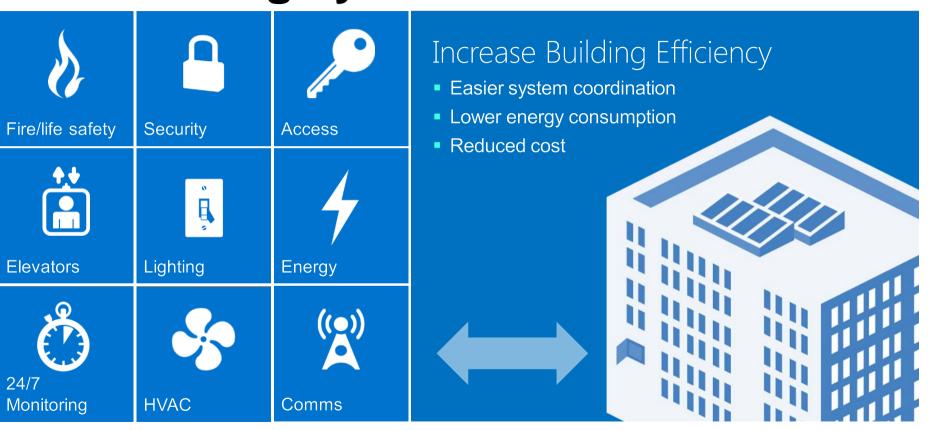
Making It Visible

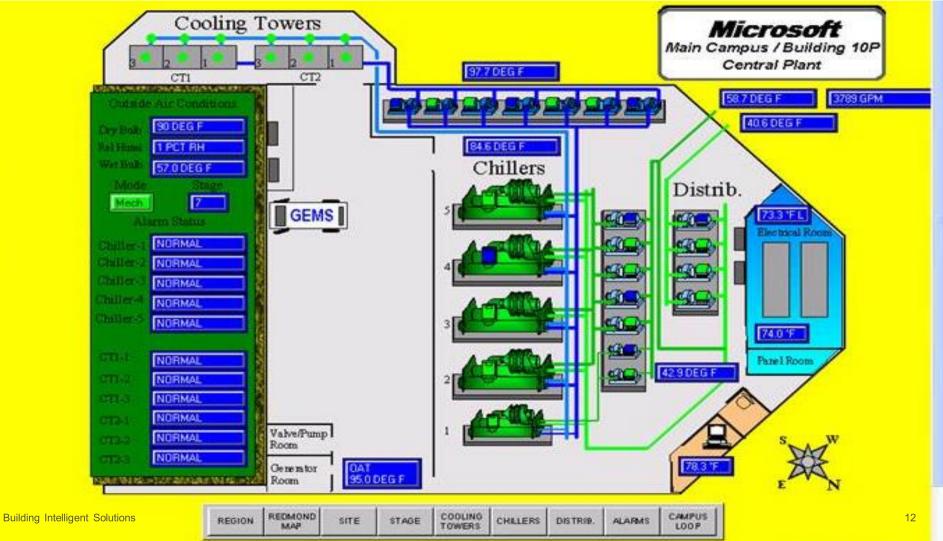
Hiding In Plain Sight

Т	able	es a	are	dea	ad									IN SUPPORT OF GENERATE AND SUSTAIN INTEGRATED FORCES (\$ Tho usands)	CURRENT Estimated Cost	CUMULATIVE Spending to March 31, 2008	PLANNED Spending 2008-2009	Forecast Spending 2009–2010	Forecast Spending 2010–2011	Future Years Requirements
														(Con. V)	60,627	1,635	7,500	14,500	3,921	33,071
Sample # Depth m		MK2 15	MK3 21	MK4 22	MK5 23	МК6 24	MK7 31	MK8 32	M	•	MK11 41	MK12 42	Mean (n=12)*	British Co Esquimalt - Flo Breton (PI)	262,210	120,070	38,000	44,000	45,000	15,140
SiO ₂ TiO ₂ Al ₂ O ₃	11.5 0.04 1.06	11.1 0.04 0.91	12.4 0.05 1.08	10.5 0.08 1.86	14.4 0.03 0.81	10.3 0.03 0.76	9.24 0.02 0.69	10.1 0.03 0.77		0.05 1.74		9.18 0.05 47	14±11 0.04±0.02 1.08±0.42	Esquimalt - Pat Bay 443 MH Squadron (OA)	152,940	0	2,800	1,200	16,000	132,940
Fe ₂ O ₃	0.42	0.29	0.40	0.93	0.27	0.20	0.11 0.30	0.1	28 .68	0.48	0. 0.15		0.04±0.22 0.60±0.41	New Brunswick						ē
MgO CaO Na ₂ O	0.46 44.1 0.04	45.2 0.04	43.3 0.04	41.2 0.04	41.1	46.1 0.04	46.4 0.04	45	8.7 0.04	41.0	0.15 15.6 0.03		11.5±8.4 ±0.002	Gagetown - Utilities Upgrade (PD/PI)	30,680	19,781	4,400	12,910	16,198	27,391
K ₂ O	0.20	0.18	0.20	0.20	0.20	0.20	0.20	o	0.30	0.40	0.03	0.0	0.002	Newfoundland		1	QL			di .
	108	85	80	77	88	84	99	77	3	101	96	125		St John's - Pleasantville Consolidation (PD)	10,500	2,300	12,700	23,500	30,000	32,000
Sr	350	329	211	220	170	188	180	210		130	112	148	200±	Ontario						
Ba Rb		300 180	300 2.0	1500 4.0	1400 3.0	1100 4.0	127 1.0	249 2.0	2	257 2.0	5700 4.0	557 3.0	1170±152 18±50	ingston - RMC itories (PI)	69,826	44,204	1,130	9,618	14,874	-
δıŝO	-7.61	-7.61	-6.87	-6.74	-6.69	-6.42	-6.15	-6.13		-6.04	-6.16	-6.16	-6.6±0.5	Joint tation Ce	64,076	1,886	20,000	20,000	22,190	-
5 ¹³ C ⁸⁶ Sr/ ⁸⁷ Sr	1.75 0.70684	1.82	1.81	1.89	1.92	1.96	1.76	1.85 0.70696		1.64	1.48	1.34	1.8±0.2	(P) Trento.	381,132	4,365	24,748	17,004	65,200	269,815
Mn/Sr Sr/Ca	0.31	0.26	0.38	0.35	0.52	0.45	0.55	0.37	0.48		0.86	0.84	0.5±0.2 0.0007±0.0002	Relocatio. Kingst	144,965	4,419	4,576	28,893	22,077	85,000
Mg/Ca Fe/Sr	0.009 8.39	0.008 6.16	0.01 13.3	0.02 29.6	0.007 11.1	0.006 7.44	0.005 4.27	0.009 5.00	0.013 9.60	0.05 25.8	-		0.012+0.007	SE aumodation Phase 1 (PD)	70,121	841	12,400	15,870	32,950	8,060

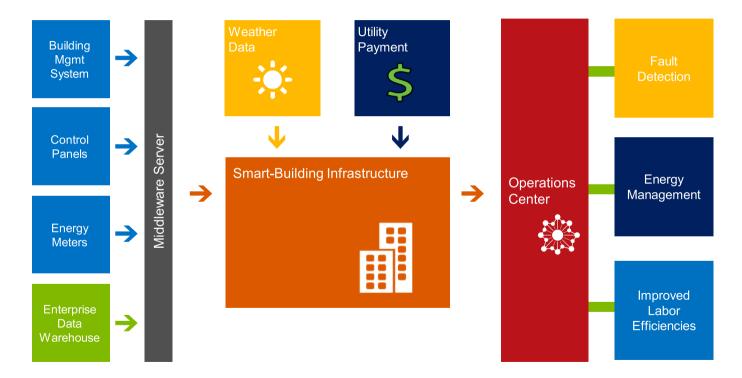
The Goal:

Turn Invisible Into Visible


Microsoft's Energy-Smart Buildings


Darrell D. Smith Director of Energy and Building Technology Real Estate and Facilities

Puget Sound Campus



Connecting systems

Architecture

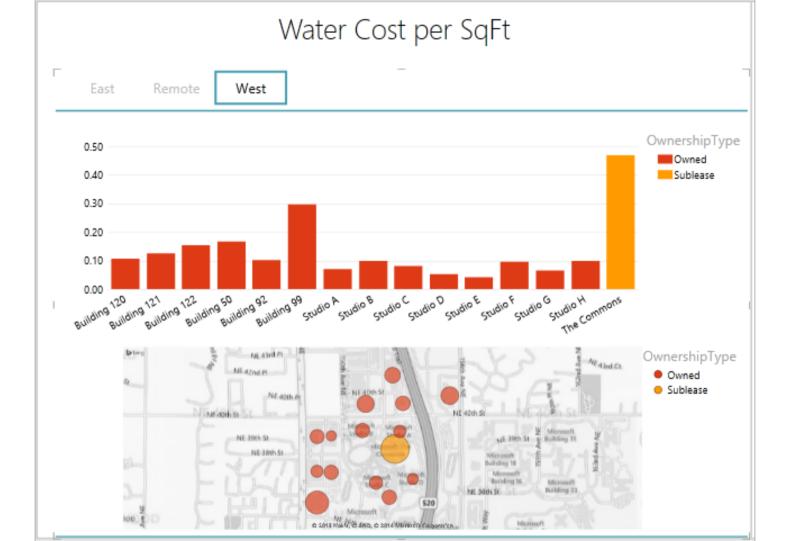
Redmond - Main

ain Redmond - Main - 006

Redmond Campus - Main - Building 6 - L2.02

Redmond

Microsoft ____

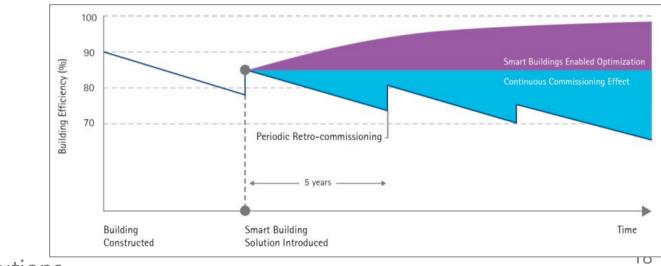

	I I	9				
FCU	nd Floor - System 2			KR 006 FCL/L2 02 10/610 06 VAV.L2 02		
				09.208		
Ad-hoc Analytics 0/ 11/5/2013 10:35:54	AM	🔍 🔍 18.54 days 🔍 🚬 😋	11/21/20	113 11:28:32 PM		
R.008.VSVAV.L2.01 69.7423	R.008.VSVAV.L2.15 77	R.008.VSVAV.L2.31 67.7	R.006.VSVAV.L2.45 66.4	Hydrogen Levels - L2.02		
R.006.VSVAV.L2.02 65.9841	R.006.VSVAV.L2.16 79.3	R.008.VSVAV.L2.32 67.3	R.006.VSVAV.L2.46 88	109 - A Marin		
R.006.VSVAV.L2.03 65.2248	R.008.VSVAV.L2.17 65.8	R.006.VSVAV.L2.33 69.6	R.006.VSVAV.L2.47 65.8			
R.006.VSVAV.L2.04 82.5354	R.006.VSVAV.L2.19 66.2	R.006.VSVAV.L2.34 65.3	R.006.VSVAV.L2.48 69	20		
R.006.VSVAV.L2.05 82.8	R.006.VSVAV.L2.20 62.9	R.006.VSVAV.L2.35 64.5	R.008.VSVAV.L2.50 70.3	10/1/2013 12:00:00 AM 10:00 days10/11/2013 12:00:00 AM		
R.006.VSVAV.L2.08 67.4	R.006.VSVAV.L2.22 65	R.008.VSVAV.L2.38 67.1	R.008.VSVAV.L2.51 65.4	R.008.VSVAV.L2.81 70		
R.006.VSVAV.L2.07 68.2	R.006.VSVAV.L2.23 61	R.006.VSVAV.L2.37 75.8	R.006.VSVAV.L2.52 69	R.006.VSVAV.L2.62 68.3		
R.006.VSVAV.L2.08 77.4	R.006.VSVAV.L2.24 63.5	R.006.VSVAV.L2.38 65	R.008.VSVAV.L2.53 70.3	R.008.VSVAV.L2.63 65.5		
R.006.VSVAV.L2.09 81.3	R.006.VSVAV.L2.25 67.7	R.006.VSVAV.L2.39 64.3	R.006.VSVAV.L2.54 65.5	R.006.VSVAV.L2.64 65.7		
R.006.VSVAV.L2.10 238.5	R.006.VSVAV.L2.28 69.6	R.008.VSVAV.L2.40 67.7	R.006.VSVAV.L2.55 69.6	R.006.VSVAV.L2.65 68.1		
R.006.VSVAV.L2.11 73.4	R.006.VSVAV.L2.27 70.1	R.008.VSVAV.L2.41 64.7	R.008.VSVAV.L2.58 69.4	R.006.VSVAV.L2.66 68.3		
R.006.VSVAV.L2.12 93.1	R.006.VSVAV.L2.28 64.4	R.006.VSVAV.L2.42 66.4	R.006.VSVAV.L2.58 68.3	R.008.VSVAV.L2.67 71.3		
R.006.VSVAV.L2.13 61.7	R.006.VSVAV.L2.29 67.9	R.008.VSVAV.L2.43 64.5	R.006.VSVAV.L2.59 67	R.006.VSVAV.L2.68 68.1		
R.008.VSVAV.L2.14 68.3	R.008.VSVAV.L2.30 67.5	R.008.VSVAV.L2.44 69.2	R.008.VSVAV.L2.60 67.9	R.008.VSVAV.L2.69 64.1		

	(SIPAHIQMONITOL - PLSystem	Explorer				
<u>File Edit View Go]</u>	[ools <u>H</u> elp () 🕼 () Back () 🖳 Check In 🍤 🗸 👔 Refresh 🛅 New Element 🗸			Search Root Elements 🔎 🔻		
				Search Root Elements		
Elements	AM.English					
Elements	General Child Elements Attributes Ports Analyses Version	_				
AM.English		Name:	Red State			
····· 🗇 AM.French	🛛 🖬 🔟 Name Backfilling	Description:				
····· 🗇 AM.Portuguese ····· 🎒 AM.Spanish	S 🖬 f 🕅 Queue State	Categories:				
AsiaPac Escal	🖉 🖻 🛏 Red State 🥥		· · · · · · · · · · · · · · · · · · ·			
····· 🗇 Bahrain Escalation ····· 🎒 EMEA Escalation	🔮 🗉 fté Wait Times 🥥	Analysis Type:		ollup		
🗇 Escalation 🗇 French Queue						
····· 🗇 NA Escalation	Event Frame Template: Red Call Queue Status	Functions				
····· 🗇 PI AF ····· 🎒 PI Analytics			Et Evaluate	Insert functions into the expression		
🗇 PI Batch		All Y				
🎒 PI Data Access 🎯 PI Interfaces	Name Expression		Value	Abs		
PI Interfaces	StartTrigger 'State' = "Red"			Acos		
🧃 PI Manual Logger	EndTrigger		And			
🗇 PI ProcessBook		Ascii				
PI Web Clients	Add a new expression			Asin		
🗇 Portuguese Queue				Atn		
🗇 Spanish Queue				Atn2		
	StartTrigger true for: 0 Minutes V			Avg		
武 Element Searches				RadVal V		
	Generate child root cause event frame before parent event frame starts			Abs(number x) Return the absolute value of an integer or real number.		
	Duration: 5 Minutes V			Example: Abs(1)		
🗇 Elements	Name: Root Cause					
Hevent Frames	Category:			Attributes		
🎬 Library						
🚥 Unit of Measure	Scheduling: Event-Triggered Periodic					
🗱 Analyses	Trigger on Any Input			 Connected to the PI Analysis Service. 		

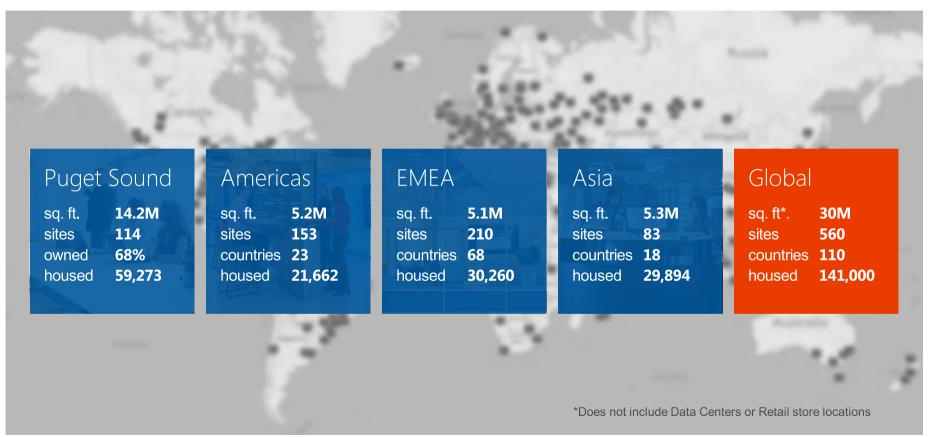
FDD with PI System Analytics

		Name: Prim
a Name	÷	Description:
	Air Damper Stuck Closed pied Fan Operation	Catego
	pied Setpoint	Analys
		If you can use Excel,
amole Fleme	nt: San Leandro Office\Floor 1\East 1st Floor\V	you can create alarms
vent Frame T	emplate: TU_Primary_Air_Damper_Stuck_Closed	fault detection, and
		custom analytics
Unere	Europeian	inter a second analytics
Name	Expression	Value
DMPR CO	MD'>90 and 'AHU SSP' > 0.25 and	Value
DMPR CO	and the second	Value
DMPR CO	MD'>90 and 'AHU SSP' > 0.25 and	Value

OSIsoft. FEDERAL WORKSHOP



Results


-Replaces 5-year manual retro-commissioning cycle

- -Payback in less than 2 years
- -Shift from Analysts to Engineers

->80% of issues resolved without sending a truck

Worldwide Real Estate Fleet

RE&F Summary

- Puget Sound Campus = vast set of buildings, equipment, and systems
- Using software as the common infrastructure
- Configurable FDD and Analytics
- Evolution from Reactive to Proactive maintenance
- Expanding to other systems and other campuses
- Goal to move toward user engagement

Carnegie Mellon University Smart Campus, Smart City

Bertrand Lasternas

Researcher Center for Building Performance and Diagnostic, School Of Architecture

Background: Carnegie Mellon University

Founded in 1900 by Andrew Carnegie

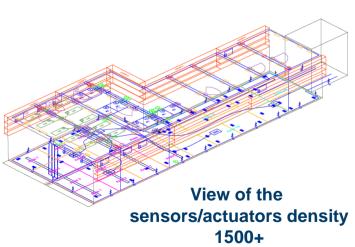
12,991 Students (6223 undergrad)

5000 faculty / staff

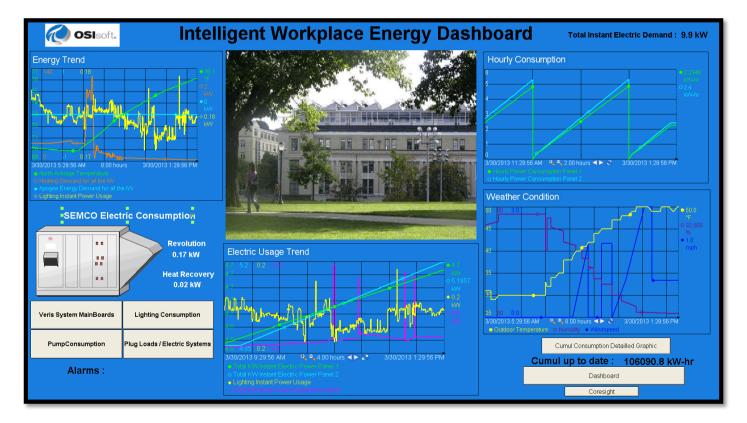
CMU annual energy budget over \$20M

That's over \$1,600 per year per student! Improve by 30%

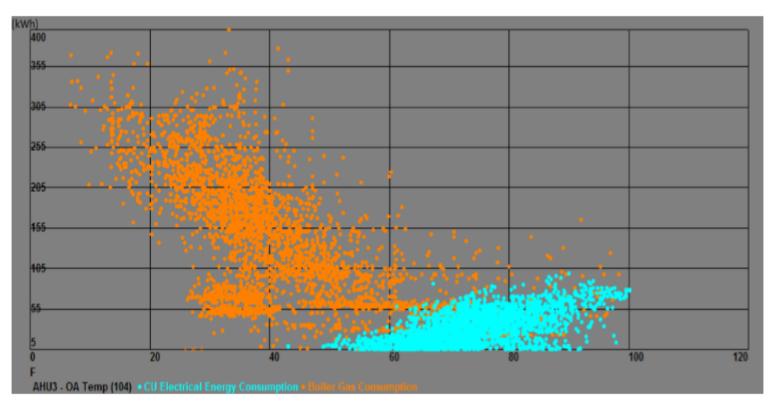
Goal:


The Intelligent Workplace

The Robert L. Preger Intelligent Workplace, built in 1997, is a 7000 square foot living laboratory of office environments and innovations located on the campus of Carnegie Mellon University.


Test and Integration of several systems:

- Heating
- Cooling
- Ventilation (mechanical and natural)
- Lighting, and daylighting
- Electrical / Plug load



Facility Manager Interfaces

(ID-F) Data Analytics

Real Time Measured data for meaningful diagnostics

Public Interface

Real-time Dashboard on Touchscreen Displays

What we learned?

Integrate ALL information

Continuously monitor and diagnose building performance Information needs to be accessible to the consumers (public, faculty, students)

Building occupants need control in order to change behaviors

Reduced Energy Consumption by 30%

CNET > Software > Microsoft sees new Azure tool as a proactive trouble-shooter

Microsoft sees new Azure tool as a proactive trouble-shooter

Microsoft envisions a future where systems can predict malfunctions in devices and buildings before they occur. First

step: a cloud-bas beta in July.

by Charles Cooper 🔰 @coo

Carnegie Mellon has been experimenting with the technology to collect sensor data from different buildings to measure water and energy use. "Within a couple of hours, they were able to connect streaming data that previously would have taken days and weeks, and now they could do it within hours for fault detection and diagnosis," said Prabal Acharyya of OSIsoft, an application developer who worked on this project with Microsoft. "It's a leapfrog development."

Summary

- CMU needed to reduce energy cost
- To do that, they needed visibility
- Lessons learned:
 - Integrate ALL information: Data and Context
 - Continuously monitor
 - Make it accessible and visible
 - Empower people with the ability to influence outcome

For More Information

- Case Study on Microsoft.com
 - <u>http://www.microsoft.com/casestudies/Case_Study_Detail.</u> <u>aspx?CaseStudyID=71000003921</u>
- OSIsoft User Conference Presentation
 - <u>http://www.osisoft.com/templates/item-abstract.aspx?id=11029</u>
- Azure Machine Learning
 - <u>http://www.cnet.com/news/microsoft-azure-predictive-machine-learning-beta-proactive-troubleshooter/</u>

A Robust Data Management System for Integrating Campus Sustainability Goals

Presented by Joshua Morejohn, PE David Trombly, PhD

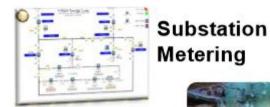
OSIsoft. USERS CONFERENCE 2014

€ @OSIsoftUC | #UC2014

Copyright 2014 OSIsoft, LLC.

UC Davis PI System

Building Utility Metering



HVAC Operations & Smart Thermostats

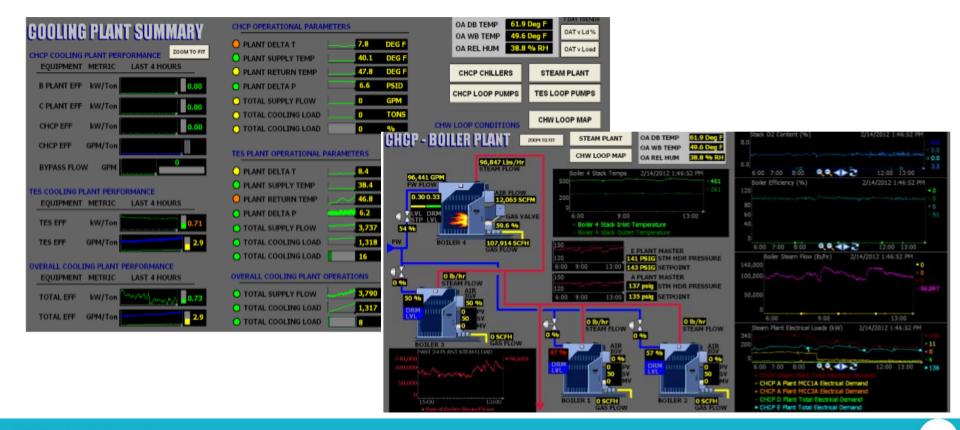
Interior Lighting

& Occupancy

Heating & Cooling Plant Operations

Water & Wastewater Operations

Exterior Lighting Controls


Building Level

Campus Level

OSIsoft. USERS CONFERENCE 2014

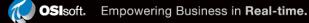
€ @OSIsoftUC | #UC2014

Early Phases: Asset Efficiency and Operations

OSIsoft. FEDERAL WORKSHOP

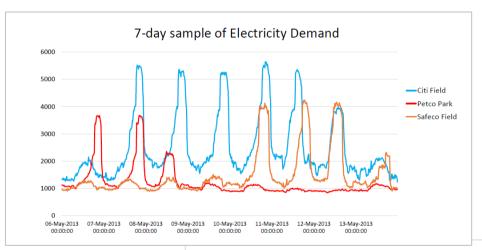
🖉 CEFS

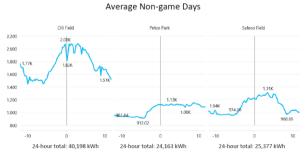
This graph is a comparison of your current energy demand and your daily goal. If your energy demand is below your goal and the area on the graph is green, you're doing great!



OSIsoft. USERS CONFERENCE 2014

€ @OSIsoftUC | #UC2014


14


Other Case Studies

MLB: Self Service Intelligence

Insight into the simple things; like how much does it cost to open the roof?

"My PI System data feeds right into the Major League Baseball centralized data collection system that's tracking my water, gas, and electric and it's automated. **That's going to enable 29 other teams to adopt the kind of behavior that's helped us return more than \$1.5 million to our bottom line in just 4 years.**"

- Scott Jenkins, VP Operations Seattle Mariners

PI System: A base for our Sustainability Goals

Part of our Sustainibility program "Brewing a Better Future" is to reduce water and operate consumption in our

Seville Brewery

and wat

deviatio

Anticipa

Cost sa

CO2 en

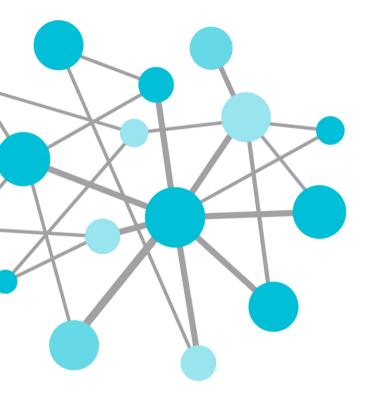
	Results								
•	Seville Brewery	2010	2011	2012	LE'13	2014	2015	Reducing	
	Volume produced kHL	4.113	4.091	3.888	3.778	4.000	4.100	85%	
	Water Consumption (HI / HI)	4,08	3,84	3,74	3,60	3,58	3,55	00/0	
	Efficiency Savings (kHL)	1.399	982	389	529	80	123		
	Electricity Consumption (kWh/HI)	7,67	7,62	7,49	7,30	7,28	7,25	and Benefits	
	Efficiency Savings (MWh)	329	205	505	718	80	123	and Benents	
•	Continued progress water	1					Quick a	•	

- Continued progress water and energy efficiency of our brewery
- Achieve World Class Excellence
- Become the Benchmark

- Implemented The PI
 System as Energy&Water
 Monitoring and Reporting
 System
- Energy & Water Management

Reducing 89%

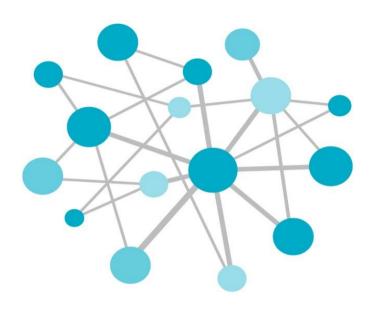
What did we cover?


- Evolving from Invisible to Visible
 - Moving from Reactive to Proactive
 - Being able to see the past and the present in order to influence the future
- Avoid Islands of Data with a Data Infrastructure approach
 - Collect ALL of your data
 - Store ALL of your data
 - Use data in ways that are meaningful to you
 - Get creative in ways they resonate with each unique audience
- Analytics and Visualization are perpetually getting easier
 - With a data infrastructure, you can enable future ideas

Contact Info

David Doll

ddoll@osisoft.com


Strategic Alliance Principal OSIsoft, LLC

THANK YOU

OSIsoft. FEDERAL WORKSHOP

osisoft. FEDERALS WORKSHOP The Power of Data

DECISION READY IN REAL-TIME

Upcoming Federal Workshop: October 29 - Washington, DC JW Marriott, Pennsylvania Avenue, NW