



# Optimizing Natural Gas Compression, Storage, and Gas Quality with the PI System

Presented by Keary Rogers, Ionut Buse





## Agenda











Future Project Plans



## North American Foot Print

#### **Pipeline**

- More than 15,000 Miles
- Delivers Approximately 1.3 Tcf per Year

#### Compression

- 1.2 Million Horsepower
- 100+ Stations

#### Storage

- 4.7 Bc/d Deliverability
- 37 Storage Fields in Four States



## U.S. Electricity Generation By Fuel Type 2000-2040

(trillion kilowatt hour) History Projections 5 31% natural gas 27% 18% 3 renewables 13% 16% nuclear 19% 34% 39% coal 1% 1% petroleum and other liquids 2013 2030 2035 2040 2000 2005 2020 2025







## U.S. LNG Export 2000-2040



## **Business Challenges**

- ! Major Compression Asset Failures
- ! Reactive vs Proactive Use of Data
- ! Concerns Around Operational Data Integrity
- ! Lost and Unaccounted For (LAUF) Gas Issues
- ! Storage Deliverability

## **Enterprise Analytics Process**





Equip.
Analyst

Engineering





- Software



- Human

## Suite of Tools





- Notification Templates



- **Batch Queries**
- Data Access Layer



#### PI ACE

- Complex calculations



#### AF SDK

Custom Development



#### **Event Frames**

- Capture equipment up / down time



#### MS SQL

- Attribute data
- SSRS reports



### PI Coresight

- Visual Analysis
- Share meaningful information
- Mobile App



#### PI ProcessBook

Visualization & Analysis



#### PI WebParts

- Data visualization



#### SharePoint

- Hosts Dashboards



## Asset Framework Implementation



### Scalability

- Highly Scalable Solution
- Take advantage of Element Templates
- Inheritance



### Logical Asset Structure

- Model our equipment fleet using a logical structure that is familiar to our engineers and analysts
- Bring operational time-series data and relational asset data together to implement complex calculations



#### Test and Validate

Run the calculations back in time to test and validate our algorithms

## **Enterprise Analytics**



### What do we monitor?

- Abnormal data trends
  - Vibrations, Bearing Temperatures, etc.
  - Shorter lead time (usually)
  - SQC Rules
  - Account for correlation
- Key Performance Indicators
  - Heat Rate, BHP, Fuel Rate, Discharge Temperature, etc.
  - Degradation over longer time frame
  - Real-time measurement vs. nominal (expected)
  - Nominal calculated 'on-the-fly' given the current operating conditions

## Gas Quality and Advanced Analytics

- Measurement Station Overview
  - Equipment Data and Configuration Settings
  - Tariff Compliance KPIs
  - Meter Summaries
  - Communication Status
  - Measurement Health
  - Equipment Health (Heaters, Odorizers, RTU, Transmitters)



## Gas Quality and Advanced Analytics

- Gas Chromatograph
  - Internal diagnostics software alarms
  - Response factors indicate inaccurate analysis results
- Ultrasonic Meters
  - Chord values and KPIs
  - SOS comparisons



## **Storage Analytics**

- Well Pressures
- Tubing Pressures
- Casing Pressures
- Flow Control Valves
- Flow Rates Out
- Injection Rates In
- Reservoir Levels
- Pipeline Pressures



## **Storage Analytics**

#### Increased Deliverability

- Field Optimization
- Energy Management
- Streaming Data
- Next Day Forecast



## **Storage Analytics**

### Operational Intelligence

- Freeze Plugs
- Chemical Injection
- Downhole
- Bridging

### Operational Efficiency

- Well Performance
- Flow Rate & Pressure
   Abnormal Behavior



## Recent EA Findings

#### Operations Analyst received a 'Compressor Vibration' Email Notification

Trigger Time: 4:00:00 AM Eastern Daylight Time (GMT-04:00:00)

**Description:** The algorithm compares the compressor vibrations (vibration 1 and vibration 2) to the running averages. Notification gets triggered if any difference is greater than 50 percent for 2 hours.

#### Compressor KPI Status:

- Discharge Temperature: Within Tolerance
- Lubrication Oil Consumption: N/A
- Vibration: Outside Tolerance

#### Trending Links:

- PC: Coresight
- Mobile Device: Transpara

Note: You must be on the NiSource network to access the links.

#### Acknowledge this notification:

- Acknowledge
- Acknowledge With Comment



## Recent EA Findings (cont.)



- The Equipment Analyst was notified
- After further investigations, it was concluded that the impeller was damaged
- The compressor bundle was removed and shipped to the vendor facility for disassembly, inspection and repair
- The EA System allowed us to identify the issue under controlled conditions and repairs were performed in a planned and safe manner without affecting contract obligation

## Gas Quality and Advanced Analytics Findings

- Ultrasonic Meter Health Monitoring
  - reduced time to detect measurement errors
- Notifications of Tariff Violations High H2O, O2, and CO2
  - high H2O producers shut in until gas brought back to tariff quality levels
  - producers ordered to reduce rate
  - notified producers about failures of there own equipment

## Tangible Savings From Event Prevention



## Future Project Plans

PI Data Archive Future Data Gas Quality & Advanced Analytics



PI Integrator for Esri ArcGIS



Enterprise Analytics



Storage Analytics

**ESRI** 

## **Summary**

"The term Enterprise Analytics refers to a program aimed at leveraging leading technology tools to analyze data to enable the execution of proactive actions intended to avoid a negative event entirely or minimize the impact of such an event."





#### **BUSINESS CHALLENGES**

- Major Compression Asset Failures Affecting Reliability of System
- Reactive vs. Proactive Use of Data
- Concerns Around Operational Data Integrity
- Lost and Unaccounted For (LAUF)
   Gas Issues
- Storage Deliverability

#### SOLUTION

- Implement Real-time monitoring system
- Enter into Enterprise Agreement and expand use of OSIsoft PI System tools across company
- Design and build robust HA PI System Infrastructure

#### **RESULTS AND BENEFITS**

- Minimize risk of major failures at critical assets
- Deployment of the PI System Infrastructure and tools across system

### Contact Information

Keary Rogers

kdrogers@cpg.com

Project Developer

Columbia Pipeline Group

**Ionut Buse** 

ibuse@cpg.com

Reliability Tech Consultant

Columbia Pipeline Group

### Questions

Please wait for the microphone before asking your questions



## Please don't forget to...

Complete the Online Survey for this session



http://eventmobi.com/emeauc15



감사합니다

Merci

谢谢

Danke

Gracias

Thank You

ありがとう

Спасибо

Obrigado

Columbia Pipeline Group
Transforming Data into Action