CBM+ In The Context of Asset Life-cycle Management and Industry Standardization Activities

OSIsoft Federal Workshop
Huntsville, AL
April 16, 2015

Alan Johnston
MIMOSA President
ISO TC 184/WG 6 Convener
Standards Leadership Council Co-chair
Focus on Physical Asset Life-Cycle Management
- Conceptualization through End of Life
- Digital Asset, Physical Asset, **Condition**, Maintenance and Reliability Management
- Develops and publishes industry-driven standards in alignment with ISO and IEC
- Officially organized as a 501 c(6) non-profit industry association in 1997
- International Membership
 - Owner/Operators – Oil and Gas, Chemical, Aerospace and Defense Sectors
 - Suppliers/integrators
 - Academia/Researchers
 - Industrial Media
- Very Large number of non-member users and project participants
- Founding Member and IP Manager for OpenO&M™ Initiative
- Founding Member Standards Leadership Council
Key Asset Management Problems in Industry, US Army and Joint Military Services

- Require improved sustainment & availability, with improved risk management & lower costs
 - Increasing complexity of systems and systems of systems
 - Increasing regulatory pressure (particularly Safety, Health and Environmental)
 - Challenges with Asset Information Management
 - Diversity of often proprietary systems and methods – (Aviation, Ground and Sea)
 - Inconsistent practices with Identifier Management (Functional Locations, Assets, Components)
 - Handover (Platform Builder to O/O) is often chaotic and inefficient
 - Contracts with Platform Builders are not specific enough with respect to providing all information required for handover to O&M in consistent, machine interpretable formats
 - Digital Asset is never aligned with the Physical Asset
- Condition & Operations Data volume is growing quicker than management methods
- **Custom Application Development and Traditional Systems integration** is too expensive and too fragile with high recurring costs
Critical Intersection for a Supplier Neutral Ecosystem
Enabling Multi-domain Systems Interoperability

Enterprise Business Systems
Big Data and Analytics
Supplier Neutral Open Specifications

LIFE CYCLE ENGINEERING Systems
CBM Automation & Control Systems Platform Integrators
System of Systems

- **A System of Systems** (SoS) is a collection of task-oriented or dedicated systems that pool their resources and capabilities together to create a new, more complex system which offers more functionality and performance than simply the sum of the constituent systems. – Wikipedia

- SoS has been developed and is **widely used in the aerospace and defense community**, but it is **now being adopted by many other industry groups**

- SoS terminology is linked to the systems engineering community and the International Council on Systems Engineering (INCOSE).

- **Interoperability** is considered to be an intrinsic part of SoS
 - Proprietary approaches have generally not been sustainable
 - Standards provide the rational alternative
IEEE Interoperability Definition

- IEEE: The capability...
 - of two or more systems or elements to exchange information and to use the information that has been exchanged.
 - for units of equipment to work together to do useful functions.
 - that enables heterogeneous equipment, generally built by various vendors, to work together in a network environment.
 - of two or more systems or components to exchange information in a heterogeneous network and use that information.
The Role of Standards in Sustainable Enterprise Solutions

- Standards help rationalize chaos into widely accepted good practices
- NGO Standards Organizations such as ISO and IEC
- Industry Standards Organizations – API, ISA, ASME, SAE, MIMOSA…
- Asset Management Practice Standards
 - Such as PAS 55 and ISO 55000
 - Define good asset management practices to be followed
- IT Oriented Standards
 - Such as MIMOSA, ISO 15926, OPC and ISO 18101
 - Enable SoS to properly support PAS 55 and ISO 55000 series good practices
Background on Solutions Activities Where MIMOSA has Played A Key Role

A Historical Perspective in Development of Pragmatic Solutions using Standards-based Interoperability

Aerospace and Defense Sector – SoS - Model, Monitor and Manage
The need for Open Operations and Maintenance Specifications (OpenO&M)
OSA-CBM Dual Use Technology Program - Office of Naval Research

MIMOSA Information Network (MIN)

June 21, 2000
MIN-Viewer
OSA-CBM Presentation
Alan T. Johnston
MIN Project Director

The OSA-CBM MIN Demonstration Concept

Carrier
Remote Maintenance Coordination Center
Remote Diagnostics Provider A
Remote Diagnostics Provider B

MIN-Viewer Segment Navigation 1

User Interface Modeled On The Microsoft Windows Explorer

MIN-Viewer
OSA-CBM Presentation
Alan T. Johnston
MIN Project Director
ISO 13374 Standard

Machine condition assessment data processing & information flow blocks.

- Sensor / Transducer / Manual Entry
- External Systems, Data Archiving, & Block Configuration
- Technical Displays & Information Presentation

1. DATA ACQUISITION (DA)
2. DATA MANIPULATION (DM)
3. STATE DETECTION (SD)
4. HEALTH ASSESSMENT (HA)
5. PROGNOSTICS ASSESSMENT (PA)
6. ADVISORY GENERATION (AG)
Data Warehousing Architecture

Where we are Today
- Vetted MIMOSA OSA EAI CRIS
 - Recommend as the Persistence Layer at LOGSA
- Implemented LOGSA Taxonomy in MIMOSA type tables
- Participating in LIA PoE
 - Providing - “Enterprise Common CBM DW”
- Began Integration of AMCOM CBM DW into the LOGSA Enterprise Common CBM DW 12/31/2007
- Integrated COBRA data with LOGSA Enterprise Common CBM DW 07/08/2008

Action Plan 09
- Exercise the LOGSA Enterprise Common CBM DW
 - **Analytical Analysis**
 - Enterprise Data Mining
 - Oracle BI
 - Develop the following tools
 - Platform Integration Management Module
 - Taxonomy Management Tool
 - Enterprise My CBM+ tool
CBM+ IT Bridging Infrastructure

25 Sep 2012
Acquisition Manager’s Guide to CLOE/CBM+ (AMG2CC) And Dashboard

AMG2CC Conference

25 February 2015
The OpenO&M™ Initiative
Enabling Open Standards-based O&M Interoperability

Enterprise Business Systems
Enterprise Resource Planning (ERP)

OpenO&M™

Operations

Maintenance

Physical Asset Control
Real-time Systems

Formed 2006
Key Objective

Transforming
From: Systems Integration To: System of Systems Interoperability

Custom Systems Integration
- Custom development
- Application Specific data adapters
- Owner/operator responsible for sustainment
- Too Expensive and Too Fragile

Open Industrial Interoperability Ecosystem (OIIE™)
- Commercial off the Shelf (COTS) Applications
- Standardized OIIE Adapters (Plug and Play)
- Cloud Friendly Solutions Architecture
- Configuration rather than customization & integration
- Defined by, published supplier neutral open standards

OGI Pilot™
Building an OIIE Instance
OGI Pilot Business Use Cases Roadmap - Part 2

OGI Use Case 2: Recurring Engineering Updates to O&M
OGI Use Case 3: Field Changes to Plant/Facility Engineering
OGI Use Case 4: Enterprise Product Data Library Management
OGI Use Case 5: Asset Installation/Removal Updates
OGI Use Case 6: Preventive Maintenance Triggering
OGI Use Case 7: Condition-Based Maintenance Triggering
OGI Use Case 8: Early Warning Notifications
OGI Use Case 9: Incident Management/Accountability
OGI Use Case 10: Provisioning of O&M systems
OGI Use Case 11: Enterprise Reference Data Library (RDL) Management

Enterprise Capital Project Data Management Standards

Plan / Program / Contract
Engineer / Design
Procure
Fabricate / Construct
Complete / Commission / Startup
Operate / Maintain
Decommission / Dispose

Continuous Handover of Structured Digital Assets

Sustained Lifecycle Digital Asset Management
Sustaining the Interoperable O&M Environment
The BP interoperability PoC
As Presented at Fiatech Conference 04/15/2015

- Testing has demonstrated capability to deliver interoperability through shared reference data and standard connectors

- Fully integrated testing of PoC scope is ongoing as vendors complete development of standard product adaptors

- We have proved the concept, but collaboration required to deliver benefits at industrial scale

- A pure instance of the OIIE
- No custom systems integration required
- Functional locations, assets, relationships
- CCOM 4.0 exchange payload optimization
ISO TC184 Manufacturing Asset Management Integration Task Force
Total Asset Life-Cycle Summary

March 2009

Product/Asset/Plant/Facility/Vehicle Life-Cycles

- Product Design
- Asset MFG
- Construction
- Operations & Maintenance (O&M)
- End of Life

Services Oriented Architecture Using Standards-based Federated Data Model

- Product/Asset/Plant/Facility/Vehicle Life-Cycles
- IEC TC 65 Standards
- SC5, SC5-IEC/JWG5, SC4-SC5/JWG8
- OpenO&M & Other Standards
- Other Standards

- Continuous Improvement Feedback Loops
- ISO/IEC UID

- Other Standards

- DB 1
- DB 2
- DB 3
- DB 4
- DB N
- DB N+1
- DB N+2
- DB N+4
Lessons Learned

- Physical Asset Life-cycle Management (ALM) is increasingly critical for all asset intensive organizations
- CBM and Asset Performance Management (APM) need to be performed in the context of ALM for maximum benefit
- Traditional systems integration techniques are proving inadequate for ever more complex systems of systems

- **Commercial off The Shelf (COTS) solutions are preferable when:**
 - A high percentage of user requirements are met without customization
 - COTS suppliers support appropriate standards to enable systems interoperability rather than systems integration

- **A Standards-based Interoperability Ecosystem is the way forward**
OIIE and OGI Pilot To Be Featured At Future Events

- Fiatech Technology Showcase – April 13-16, Boca Raton Resort, FL
- Solutions 2.0 – August 3-7, 2015, Westin Galleria, Houston, TX

Hundreds of Senior Experts from Asset Intensive Industries (including aerospace, integrated energy and critical manufacturing) are Auditing and/or Participating in the OIIE and OGI Pilot.

All OIIE and OGI Pilot Working Documents are available at www.mimosa.org

Alan T. Johnston
MIMOSA
atjohn@mimosa.org