
© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016

Presented by

The Tao of Qi

OSIsoft’s New Martial Art

Rhys Kirk, The Genius Group

Laurent Garrigues, OSIsoft

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016

The OSIsoft Qi Grading Syllabus

3

7th Kyu: What is OSIsoft Qi?

6th Kyu: REST and the ways of the Qi Client.

5th Kyu: Hello World.

4th Kyu: Time series data.

3rd Kyu: Complex Data Types.

2nd Kyu: Depth Indexed Data.

1st Kyu: Advanced OSIsoft Qi.

1st Dan: Becoming an OSIsoft Qi expert.

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016

My current OSIsoft Qi grade

4

7th Kyu: What is OSIsoft Qi?

6th Kyu: REST and the ways of the Qi Client.

5th Kyu: Hello World.

4th Kyu: Time series data.

3rd Kyu: Complex Data Types.

2nd Kyu: Depth Indexed Data.

1st Kyu: Advanced OSIsoft Qi.

1st Dan: Becoming an OSIsoft Qi expert.

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016

Why am I not a black belt?

5

1st Kyu: Advanced OSIsoft Qi.

1st Dan: Becoming an OSIsoft Qi expert.

• Evolving platform.

• Currently a beta product.

• Takes time and experience.

• More ideas to test.

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 6

Qi is a cloud-based highly flexible

sequential data historian
that can be used to store, retrieve and

analyze data.

https://qi.osisoft.com/

7th Kyu: What is OSIsoft Qi?

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 7

7th Kyu: What is OSIsoft Qi?

Highly Distributed

Operated & Maintained by OSIsoft!

Platform interaction

Scalable

Hosted in Microsoft Azure public cloud.

Platform as a Service

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 8

7th Kyu: What is OSIsoft Qi?

Highly Distributed Scalable

Tenant

Access Key Access Key Access Key

Tenant Tenant

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 9

7th Kyu: What is OSIsoft Qi?

Lossless Compression Scalable

QiType QiType QiType

Q
iS

tre
a
m

Q
iS

tre
a
m

Q
iS

tre
a
m

A QiType is what Qi uses to store

definable data types.

A QiType consists of one or more

properties that are either simple atomic

types (e.g. integer) or previously-defined

QiTypes.

A QiStream is the fundamental

unit of storage in Qi. Each

stream represents an ordered

series of events or observations

for a particular item of interest.

Multiple Indexes

(Not just time!)

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 10

7th Kyu: What is OSIsoft Qi?

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 11

6th Kyu: REST and the way of the Qi client

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 12

6th Kyu: REST and the way of the Qi client

OSIsoft Qi

Web API RESTful

Request Response

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 13

6th Kyu: REST and the way of the Qi client

OSIsoft Qi

Web API RESTful

Request
"https://qi-data.osisoft.com:3380"

“/Qi/Streams/{streamid}/"

“/Data/GetWindowValues?startIndex={0}&endIndex={1}”

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 14

6th Kyu: REST and the way of the Qi client

OSIsoft Qi

Web API RESTful

Response

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 15

6th Kyu: REST and the way of the Qi client

OSIsoft Qi

Web API RESTful

Qi Client

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 16

5th Kyu: Hello World

OSIsoft Qi

• Create a VERY basic “Hello World” object.

• Build a QiType from that object.

• Summon a QiStream for our “Hello Worlds” to sail down.

• Set sail to the OSIsoft Qi storage.

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 17

5th Kyu: Hello World

OSIsoft Qi

HelloWorld

Int: instance

String: message

QiType

{Hello World JSON}

QiTypeBuilder

class HelloWorld
 {
 [Key]
 public int instance;
 public string message;
}

 // Employ Bob
 QiTypeBuilder bob = new QiTypeBuilder();
 // Create the QiType
 QiType hwType = bob.Create<HelloWorld>();

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 18

5th Kyu: Hello World

OSIsoft Qi

QiType

{Hello World JSON}

 // Employ Bob
 QiTypeBuilder bob = new QiTypeBuilder();

 // Create the QiType
 QiType hwType = bob.Create<HelloWorld>();
 hwType.Id = "TGG.TYPES." + typeof(HelloWorld).Name;
 hwType = qiclient.GetOrCreateType(hwType);

IQiServer

REST

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 19

5th Kyu: Hello World

OSIsoft Qi

QiStream

{Stream JSON}

IQiServer

REST

// Create the QiStream
QiStream hwStream = new QiStream() { Id = "TGG.STREAMS." + typeof(HelloWorld).Name,
TypeId = hwType.Id };
hwStream = qiclient.GetOrCreateStream(hwStream);

QiType

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 20

5th Kyu: Hello World

OSIsoft Qi

1 2 3 4 5 6 7 8 9 Hello World

// Say Hello LOTS of times
List<HelloWorld> hellos = new List<HelloWorld>();

for (int i=0; i< 1000; i++)
 hellos.Add(new HelloWorld() { instance = i, message = "Hello...is there an
echo in here?" });

qiclient.UpdateValues(hwStream.Id, hellos);

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 21

5th Kyu: Hello World

OSIsoft Qi

REST

1 2 3 4 5 6 7 8 9 Hello World

var helloWorlds =
qiclient.GetWindowValues<HelloWorld>(hwStream.Id, “1", "1000");

foreach(HelloWorld helloWorld in helloWorlds)
 Console.WriteLine(helloWorld.ToString());

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 22

5th Kyu: Hello World

OSIsoft Qi

1 2 3 4 5 6 7 8 9 Hello World

helloWorlds = qiclient.GetWindowValues<HelloWorld>(hwStream.Id, “1", "1000",
QiBoundaryType.Inside, "instance mod 2 eq 0");

foreach (HelloWorld helloWorld in helloWorlds)

Console.WriteLine(helloWorld.ToString());

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 23

5th Kyu: Hello World

OSIsoft Qi

1 2 3 4 5 6 7 8 9 Hello World

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 24

4th Kyu: Time Series Data

• Store some Time Series data in the same way as Hello

World.

• Store future data too.

• Look at some variations of Time Series data.

• Build a utility to scrape BMRS (UK Power Data) data

from the web.

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 25

4th Kyu: Time Series Data

1 2 3 4 5 6 7 8 9 Hello World

Time Series

0
1

:0
0

0
2

:0
0

0
3

:0
0

0
4

:0
0

0
5

:0
0

0
6

:0
0

0
7

:0
0

0
8

:0
0

0
9

:0
0

01-Apr-16

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 26

4th Kyu: Time Series Data

OSIsoft Qi

0
1
:0

0

0
2
:0

0

0
3
:0

0

0
4
:0

0

0
5
:0

0

0
6
:0

0

0
7
:0

0

0
8
:0

0

0
9
:0

0

01-Apr-16

class HelloWorldByTime
 {
 [Key]
 public DateTime received { get; set; }
 public string message { get; set; }
}

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 27

4th Kyu: Time Series Data

OSIsoft Qi

0
1
:0

0

0
2
:0

0

0
3
:0

0

0
4
:0

0

0
5
:0

0

0
6
:0

0

0
7
:0

0

0
8
:0

0

0
9
:0

0

01-Apr-16

List<HelloWorldByTime> hellos = new List<HelloWorldByTime>();

for (int i = 0; i < 1000; i++)
 hellos.Add(new HelloWorldByTime()
{ received = DateTime.Now.AddHours(i), message = "Hello, what time is it?" });

qiclient.UpdateValues(hwStream.Id, hellos);

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 28

4th Kyu: Time Series Data

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 29

4th Kyu: Time Series Data

OSIsoft Qi

0
1
:0

0

0
2
:0

0

0
3
:0

0

0
4
:0

0

0
5
:0

0

0
6
:0

0

0
7
:0

0

0
8
:0

0

0
9
:0

0

01-Apr-16

helloWorlds = qiclient.GetWindowValues<HelloWorldByTime>(hwStream.Id,
"01-Apr-2016", "08-Apr-2016");

helloWorlds = qiclient.GetWindowValues<HelloWorld>(hwStream.Id,
"0", "1000");

Time Series

By Integer Sequence

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 30

4th Kyu: Time Series Data

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 31

4th Kyu: Time Series Data

OSIsoft Qi

0
1
:0

0

0
2
:0

0

0
3
:0

0

0
4
:0

0

0
5
:0

0

0
6
:0

0

0
7
:0

0

0
8
:0

0

0
9
:0

0

01-Apr-16

Time Series

By Integer Sequence

helloWorlds = qiclient.GetWindowValues<HelloWorldByTime>(hwStream.Id,
"01-Apr-2016", “08-Apr-2016", QiBoundaryType.Inside,
"hour(received) mod 2 eq 0");

helloWorlds = qiclient.GetWindowValues<HelloWorld>(hwStream.Id, “1",
"1000", QiBoundaryType.Inside, "instance mod 2 eq 0");

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 32

4th Kyu: Time Series Data

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 33

4th Kyu: Time Series Data

Time Series

0
1
:0

0

0
2
:0

0

0
3
:0

0

0
4
:0

0

0
5
:0

0

0
6
:0

0

0
7
:0

0

0
8
:0

0

0
9
:0

0

Time Series

1

2

3

4

5

6

7

8

9

01-Apr-16 Settlement Day

Settlement Period

UK Power Network

 Each day is divided up into

48 half hour settlement

period.

01-Apr-16

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 34

4th Kyu: Time Series Data

Time Series

1

2

3

4

5

6

7

8

9

01-Apr-16 Settlement Day

Settlement Period

Balance Mechanism

Reporting Services
SOAP

XML Document

(Day Ahead Demand &

Generation)
Convert

Class

DayAheadMarginData
Send

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 35

4th Kyu: Time Series Data
 public class DayAheadMarginData
 {
 [Key]
 public DateTime SD { get; set; }
 [Key]
 public int SP { get; set; }
 public int TSDF { get; set; }
 public int INDGEN { get; set; }
}

[XmlRootAttribute("DAY_AHEAD_MARGIN_SET")]
 public class DayAheadMarginDataCollection
 {
 [XmlElement("DAY_AHEAD_MARGIN_DATA")]
 public DayAheadMarginData[] AllDayAheadMarginData { get; set; }
 }

XmlTextReader reader; XmlSerializer serializer;
reader = new XmlTextReader("http://www.bmreports.com/bsp/additional/soapfunctions.php?element=ddam&submit=Invoke");
serializer = new XmlSerializer(typeof(DayAheadMarginDataCollection));
var damdCollection = ((DayAheadMarginDataCollection)serializer.Deserialize(reader)).AllDayAheadMarginData;

evtType = typeBuilder.Create<DayAheadMarginData>();
evtType.Id = "TieQi.Type." + typeof(DayAheadMarginData).Name;
evtType = QiClient.GetOrCreateType(evtType);

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 36

4th Kyu: Time Series Data

 streamName = "TieQi.Stream." + typeof(DayAheadMarginData).Name;
 evtStream = new QiStream();
 evtStream.Id = streamName;
 evtStream.Name = streamName;
 evtStream.TypeId = evtType.Id;
 evtStream = QiClient.GetOrCreateStream(evtStream);

 if (damdCollection != null)
 {
 if (damdCollection.Count() > 0)
 {
 try
 { QiClient.UpdateValues(streamName, damdCollection); }
 catch (QiQueryException QiError)
 { string err = QiError.Message; }
 catch (Exception e)
 { string err = e.Message; }
 }
 }

Send

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 37

3rd Kyu: Complex Data Types

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 38

3rd Kyu: Complex Data Types

- Define a class with a compound index.

- Build some code to scrape an Event Log.

- Put all those Event Log Entries into Qi.

- Have a look through those Events via Qi.

- Find some interesting Events via Qi.

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 39

3rd Kyu: Complex Data Types

PI System

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 40

3rd Kyu: Complex Data Types

PI System

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 41

3rd Kyu: Complex Data Types

 class ScrapedEventLogEntry
 {
 public string Category { get; set; }
 public short CategoryNumber { get; set; }
 public byte[] Data { get; set; }
 public EventLogEntryType EntryType { get; set; }
 [Key]
 public int Index { get; set; }
 public long InstanceId { get; set; }
 public string MachineName { get; set; }
 public string Message { get; set; }
 public string[] ReplacementStrings { get; set; }
 public string Source { get; set; }
 [Key]
 public DateTime TimeGenerated { get; set; }
 public DateTime TimeWritten { get; set; }
 public string UserName { get; set; }
 public Guid ClientId { get; set; }

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 42

3rd Kyu: Complex Data Types

class EventLogScraper
 {
 public static List<ScrapedEventLogEntry> ScrapeApplicationLog()
 {
 List<ScrapedEventLogEntry> entries = new List<ScrapedEventLogEntry>();

 Guid clientId = Guid.Parse("C40B9E52-81DA-44C3-91B3-DB478FA6D2C9");
 EventLog appLog = new EventLog("Application");
 foreach(EventLogEntry appEntry in appLog.Entries)
 entries.Add(new ScrapedEventLogEntry(appEntry, clientId));

 return entries;
 }

 }

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 43

3rd Kyu: Complex Data Types

- Event Log Entry class inherits from Component. Helper properties

will cause a circular reference.

- EventLogEntry class is a sealed class (no public constructor),

which will cause issues during deserialization.

- I needed some extra properties, such as ClientId, to store in my

QiType.

Why couldn’t “Bob the QiType Builder” use the EventLogEntry class…

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 44

3rd Kyu: Complex Data Types

OSIsoft Qi

// Employ Bob
QiTypeBuilder bob = new QiTypeBuilder();

// Create the QiType
QiType logType = bob.Create<ScrapedEventLogEntry>();
logType.Id = "TGG.TYPES." + typeof(ScrapedEventLogEntry).Name;
logType.Name = logType.Id;
logType = qiclient.GetOrCreateType(logType);

// Create the QiStream
QiStream logStream = new QiStream() { Id = "TGG.STREAMS." +
typeof(ScrapedEventLogEntry).Name, TypeId = logType.Id };
logStream = qiclient.GetOrCreateStream(logStream);

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 45

3rd Kyu: Complex Data Types

OSIsoft Qi

List<ScrapedEventLogEntry> entries = EventLogScraper.ScrapeApplicationLog();

Console.WriteLine("Just received " + entries.Count + " Event Log Entries from
the Application Log.");
Console.WriteLine("Now I am going to give them to Qi...");

qiclient.UpdateValues(logStream.Id, cutentries);

Console.WriteLine("...done.");

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 46

3rd Kyu: Complex Data Types

OSIsoft Qi

Did I write my code any different to my simple index example, or my

time series data example?

No.

QiType => QiStream => UpdateValues()

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 47

3rd Kyu: Complex Data Types

OSIsoft Qi

var startIndex = new Tuple<int, DateTime>(0, DateTime.Now.AddDays(-1));
var endIndex = new Tuple<int, DateTime>(50000, DateTime.Now);

var logEntries = qiclient.GetWindowValues<ScrapedEventLogEntry, int,
DateTime>(logStream.Id, startIndex, endIndex);

[Key]
public int Index { get; set; }
[Key]
public DateTime TimeGenerated { get; set; }

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 48

3rd Kyu: Complex Data Types

OSIsoft Qi

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 49

3rd Kyu: Complex Data Types

OSIsoft Qi

var logLastValue = qiclient.GetLastValue<ScrapedEventLogEntry>(logStream.Id);

Console.WriteLine("Last scraped event log entry = " + logLastValue.ToString());

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 50

3rd Kyu: Complex Data Types

OSIsoft Qi

var logLastValue = qiclient.GetLastValue<ScrapedEventLogEntry>(logStream.Id);

Console.WriteLine("Last scraped event log entry = " + logLastValue.ToString());

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 51

3rd Kyu: Complex Data Types

OSIsoft Qi

logEntries = qiclient.GetWindowValues<ScrapedEventLogEntry, int,
DateTime>(logStream.Id, startIndex, endIndex, QiBoundaryType.Inside,
"Source eq 'PI Analysis Service' AND EntryType eq 1");

Console.WriteLine("Issues with PI Analysis Service detected = " +
logEntries.Count());

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 52

3rd Kyu: Complex Data Types

OSIsoft Qi

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 53

2nd Kyu: Depth Indexed Data

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 54

2nd Kyu: Depth Indexed Data

PI System

WITS0

Time Cohesion

Depth Index

WITSML

Replication

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 55

2nd Kyu: Depth Indexed Data

- Build a Depth Log class.

- Store the depth data in Qi.

- Query the depth data in a numerous ways directly in Qi.

- Day dream about how Qi could be a WITSML data stream.

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 56

2nd Kyu: Depth Indexed Data

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 57

2nd Kyu: Depth Indexed Data

- Need to know the Well being drilled.

- The Well Bore.

- The depth at which measurements are

relevant.

- The time at which the depth was

received.

 class DepthLog
 {
 public string wellId { get; set; }
 public string wellBoreId { get; set; }
 [Key]
 public double measuredDepth { get; set; }
 [Key]
 public DateTime timeReceived { get; set; }
 public double trueVerticalDepth { get; set; }
 public double rateOfPenetration { get; set; }
 public double weightOnBit { get; set; }
 public double rpm { get; set; }
 public double bitRpm { get; set; }
 public double mudFlow { get; set; }
 public double mudTemp { get; set; }
 public double mudPressure { get; set; }
 }

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 58

2nd Kyu: Depth Indexed Data
 public static List<DepthLog> RandomDepthData(string wellId, string wellBoreId, double startingDepth)
 {
 List<DepthLog> depths = new List<DepthLog>();

 Random r = new Random();
 for (int i = 0; i<= 200; i++)
 {
 DepthLog d = new DepthLog()
 {
 wellId = wellId,
 wellBoreId = wellBoreId,
 measuredDepth = startingDepth + i + r.NextDouble(),
 trueVerticalDepth = startingDepth - 1 + r.NextDouble(),
 rateOfPenetration = r.NextDouble() * 10,
 weightOnBit = r.NextDouble() * 100,
 rpm = r.NextDouble() * 1000,
 bitRpm = r.NextDouble() * 50,
 mudFlow = r.NextDouble() * 5,
 mudTemp = r.NextDouble() * 50,
 mudPressure = r.NextDouble() * 7,
 timeReceived = DateTime.Now
 };
 depths.Add(d);
 }
 return depths;
 }

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 59

2nd Kyu: Depth Indexed Data

 // Employ Bob
QiTypeBuilder bob = new QiTypeBuilder();

// Create the QiType
QiType depthType = bob.Create<DepthLog>();
depthType.Id = "TGG.TYPES.WITSML13." + typeof(DepthLog).Name;
depthType.Name = depthType.Id;
depthType = qiclient.GetOrCreateType(depthType);

// Create the QiStream
QiStream depthStream = new QiStream() { Id = "TGG.STREAMS.WITSML13.CLIENTID." + typeof(DepthLog).Name, TypeId =
depthType.Id };
depthStream = qiclient.GetOrCreateStream(depthStream);

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 60

2nd Kyu: Depth Indexed Data

String wellName = "Well-001";
String[] wellBores = { "Wellbore-001", "Wellbore-002" };
List<DepthLog> depths001 = Drilling.RandomDepthData(wellName, wellBores[0], 500);

var startIndex = new Tuple<double, DateTime>(450, DateTime.MinValue);
var endIndex = new Tuple<double, DateTime>(1250, DateTime.MaxValue);

var depthEntries = qiclient.GetWindowValues<DepthLog, double,
DateTime>(depthStream.Id, startIndex, endIndex);

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 61

2nd Kyu: Depth Indexed Data

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 62

2nd Kyu: Depth Indexed Data

startIndex = new Tuple<double, DateTime>(500, DateTime.MinValue);
endIndex = new Tuple<double, DateTime>(540, DateTime.MaxValue);

depthEntries = qiclient.GetWindowValues<DepthLog, double,
DateTime>(depthStream.Id, startIndex, endIndex, QiBoundaryType.Inside,
"wellId eq '" + wellName + "' AND wellBoreId eq '" + wellBores[0] + "'");

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 63

2nd Kyu: Depth Indexed Data

startIndex = new Tuple<double, DateTime>(500, DateTime.MinValue);
endIndex = new Tuple<double, DateTime>(700, DateTime.MinValue);

var depthIntervals = qiclient.GetIntervals<DepthLog, double, DateTime>
(depthStream.Id, startIndex, endIndex, 40);

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 64

2nd Kyu: Depth Indexed Data

depthIntervals = qiclient.GetIntervals<DepthLog, double, DateTime>
(depthStream.Id, startIndex, endIndex, 40, "rpm gt 800");

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 65

2nd Kyu: Depth Indexed Data

- Using OSIsoft Qi for such depth indexed projects would have been a

breeze.

- Qi can store all the depth data and provide quick mechanisms for

extracting just the required data.

- Different facades can be built on top of Qi to serve up data in a variety of

protocols.

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 66

1st Kyu: Advanced OSIsoft Qi

QiStreamBehavior

The QiStreamBehavior object determines how data-read operations are

performed when an index to be read falls between, before, or after stream

data in the stream.

Interpolation

When read methods affected by QiStreamBehavior (as shown above) are

given an index that occurs between two values in a stream, the Mode object

determines which values are retrieved.

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 67

1st Kyu: Advanced OSIsoft Qi

QiStreamBehavior - Interpolation

Mode Operation PI Comparison

Default Continuous

Continuous
Interpolates the data using

previous and next index values

StepwiseContinuousLeading
Returns the data from the

previous index
PrevEvent(…)

StepwiseContinuousTrailing
Returns the data from the next

index
NextEvent(…)

Discrete Returns ‘null’ ExactTime(…)

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 68

1st Kyu: Advanced OSIsoft Qi

QiStreamBehavior - Extrapolation

In addition to interpolation settings, stream behavior is also used to define how the

stream extrapolates data. ExtrapolationMode acts as a master switch to determine

whether extrapolation occurs and at which end of the data. When defined,

ExtrapolationMode works with the Mode to determine how a stream responds to

requests for an index that precedes or follows all of the data in the stream.

ExtrapolationMode Enumeration value Index before data Index after data

All 0 Returns first data value Returns last data value

None 1 Return null Return null

Forward 2 Returns first data value Return null

Backward 3 Return null Returns last data value

ExtrapolationMode with *Mode*=StepwiseContinuousLeading

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 69

1st Kyu: Advanced OSIsoft Qi

- Overriding the behaviour mode of individual properties of a QiType.

- Streaming high volume data into Qi.

- Building connectors to visualization tools & data analysis tools.

- Building stores / facades on top of Qi to serve up data in other protocols (e.g.

WITSML).

- Studying even more to get closer to that elusive Qi Black Belt.

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016 70

https://qi.osisoft.com/ QiSupport@osisoft.com

https://qi.osisoft.com/

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016

Contact Information

Speaker’s Name

rhys@thegeniusgroup.co.uk

CEO and Founder

The Genius Group

71

Laurent Garrigues

lgarrigues@osisoft.com

SaaS Program Manager

OSIsoft, LLC

71

mailto:rhys@thegeniusgroup.co.uk
mailto:lgarrigues@osisoft.com

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016

Questions

Please wait for the

microphone before asking

your questions

Please remember to…

Complete the Online Survey

for this session

State your

name & company

72

http://ddut.ch/osisoft

search OSISOFT in the app store

http://ddut.ch/osisoft

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016

Thank You

© Copyright 2016 OSIsoft, LLC USERS CONFERENCE 2016

