Value NOW Webinar Series Presents: 🛝

PI System Phasor Data - Part III

Ann Moore - Business Development, OSIsoft

Chuck Wells - Center of Excellence, OSIsoft

November 17th, 2010

Webinar Agenda

- Recap
 - Part I (Oct. 15, 2009)
 - Part II (Dec. 9, 2009)
- Part III
 - Advanced Real-time Analytics
- Questions and Answers

Part I Recap (Oct. 15, 2009)

- Actionable Phasor Data, Not Just Sci-Fi Anymore -Introduction to the C37.118 Interface http://www.osisoft.com/resources/webinars/ Webinars_On_Demand.aspx
- Quick-Win and Value Now
 - Getting Phasor Data into the PI System via C37.118 Interface
 - PI Analytics and Notifications Tools
 - PI Visualization Tools
 - PI DataLink and Reporting Tools
 - Special Considerations
 - Examples
- What's Next? Real-time Analytics!

Part II Recap (Dec. 9, 2009)

- Real-time Analytics
 - http://www.osisoft.com/resources/webinars/
 Webinars_On_Demand.aspx
- Quick-Win and Value Now
 - Angle difference
 - FFT (Fast Fourier Transform)
 - SQC (Statistical Quality Control)
 - Phase portraits (X-Y charts)
 - Worm charts (X-Y charts)
 - Notifications
 - Event framing (Batch)
 - SISCO UAP (Unified Analytic Platform)
- What's Next? Advanced Real-time Analytics!

C37.118 Interface

- IEEE C37.118 standard
 - Not all PMUs manufacturers interpret the standards the same way
 - OSIsoft C37.118 interface released 2005
- Released enhancements to C37.118
 - Hot and cold failover of the interface (released)
- On going work
 - Server failover
 - Latency instrumentation
 - Auto tag configuration

Recommended Architecture

- Separate server for PMU data, with IEEE 1588 Clock
 - One PMU 50 measurements, at 30 Hz = 1500 events per second
 - Assume disk write limit is 125,000 events per second
 - Max number of PMUs per server = 83
 - Plan for 40, headroom and client access response
- Compression and exception setting per manual
 - Do not compress angle measurements
 - The discontinuity must be instantaneous for angle unwrapping to give the correct result

SGIG's related to Phasors

- DOE SGIG's total over US\$400 million
 - Over 1,000 new PMUs will be operating by 2013
 - Many will be installed with wide area protection as a near term application
 - Most are looking at Oscillation Detection
 - Some will have redundant PMUs
 - Cyber and physical security is critical
- What is needed?
 - High availability
 - High accuracy (meet IEEE 37.118 TVE specifications)
 - Low latency
 - Fast analytics

Advanced Analytics

- Reliable measurements
 - Cyber secure synchrophasor platform
 - -FFT for oscillation detection
 - Early detection of grid weakness
 - Damping
 - Display of FFT data using PI Profileview
 - Very low latency angle differences

CSSP (Customer Example)

Cyber Secure Synchrophasor Platform

CSSP Software Architecture

Wide Area Architecture

Detailed Architecture

FFT Displays

- Running at a utility site using the PI System
 - 256 wide windows (12.8 seconds)
 - 50 mS sampling interval
 - 200 mS computation rate
 - 12 FFTs running in real time on Analytics Machine
 - Results stored to Analytics Server
 - Examples
 - Worm
 - FFT

PI ProfileView

PI ProfileView

Ambient System Response

FFTs for Grid Weakness

Separation Event

Differences

Frequency difference, Station A - Station B

Station A Response

Station B Response

Difference Response

Bode Plots, prior to separation

Ambient Response

Damping

Time, minutes before separation

Akaiki Information Criterion

Akaiki Information Criterion

Very low latency calculations

- Capture and align data before it reaches snapshot
- Align data as needed
- Compute functions as required

Summary

- Secure, reliable and highly available PMU measurement data using COTS software
- Out-of-the-box real time analytics tools to compute
 - Angle differences, FFTs, damping, etc.
- Flexible system architectures (i.e. without PDC's)
- Proven analytics
- Very low latency computation is available
- Proven track record

http://extranet.osisoft.com/sites/SIG/TD/Shared
%20Documents/Forms/AllItems.aspx

Contact information and Q&A

Ann Moore amoore@osisoft.com
Chuck Wells cwells@osisoft.com

Thank you

© Copyright 2010 OSIsoft, LLC 777 Davis St., San Leandro, CA 94577