

 iii

PI Interface for HTML

Version 2.3.0.x

OSIsoft, LLC

777 Davis St., Suite 250
San Leandro, CA 94577 USA

Tel: (01) 510-297-5800
Fax: (01) 510-357-8136
Web: http://www.osisoft.com

OSIsoft Australia • Perth, Australia

OSIsoft Europe GmbH • Frankfurt, Germany

OSIsoft Asia Pte Ltd. • Singapore

OSIsoft Canada ULC • Montreal & Calgary, Canada

OSIsoft, LLC Representative Office • Shanghai, People’s Republic of China

OSIsoft Japan KK • Tokyo, Japan

OSIsoft Mexico S. De R.L. De C.V. • Mexico City, Mexico

OSIsoft do Brasil Sistemas Ltda. • Sao Paulo, Brazil

OSIsoft France EURL • Paris, France

PI Interface for HTML

Copyright: © 2001-2014 OSIsoft, LLC. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
mechanical, photocopying, recording, or otherwise, without the prior written permission of OSIsoft, LLC.

OSIsoft, the OSIsoft logo and logotype, PI Analytics, PI ProcessBook, PI DataLink, ProcessPoint, PI Asset Framework (PI AF), IT
Monitor, MCN Health Monitor, PI System, PI ActiveView, PI ACE, PI AlarmView, PI BatchView, PI Coresight, PI Data Services, PI
Event Frames, PI Manual Logger, PI ProfileView, PI WebParts, ProTRAQ, RLINK, RtAnalytics, RtBaseline, RtPortal, RtPM,
RtReports and RtWebParts are all trademarks of OSIsoft, LLC. All other trademarks or trade names used herein are the property of
their respective owners.

U.S. GOVERNMENT RIGHTS

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the OSIsoft, LLC license agreement and
as provided in DFARS 227.7202, DFARS 252.227-7013, FAR 12.212, FAR 52.227, as applicable. OSIsoft, LLC.

Published: 04/2014

http://www.osisoft.com/

PI Interface for HTML iii

Table of Contents

Chapter 1. Introduction .. 7

Reference Manuals ... 8
Supported Operating Systems .. 8
Supported Features... 8
Diagram of Hardware Connection ... 11

Chapter 2. Principles of Operation .. 12

CURL ... 12
MSHTML ... 12
Configuration ... 12
Interface Operation .. 13
Pattern Matching ... 14
Plug-ins ... 14

Chapter 3. Installation Checklist .. 16

Data Collection Steps .. 16
Interface Diagnostics ... 18

Chapter 4. Interface Installation ... 19

Naming Conventions and Requirements .. 19
Additional Required Software .. 19

Microsoft Internet Explorer .. 19
Microsoft XML Parser ... 20
Microsoft .NET Framework 4.0 ... 20

Interface Directories .. 20
PIHOME Directory Tree .. 20
Interface Installation Directory .. 20

Interface Installation Procedure .. 21
PI Trust for Interface Authentication .. 21
Installing Interface as a Windows Service... 21
Installing Interface Service with PI Interface Configuration Utility 22

Service Configuration ... 22
Installing Interface Service Manually... 25

Chapter 5. Digital States ... 26

Chapter 6. PointSource .. 27

Chapter 7. PI Point Configuration .. 28

Point Attributes .. 28
Tag .. 28
PointSource .. 29
PointType .. 29

Table of Contents

iv

Location1 .. 29
Location2 .. 29
Location3 .. 29
Location4 .. 29
Location5 .. 29
InstrumentTag ... 30
ExDesc .. 30
Scan .. 32
Shutdown .. 32
DataSecurity ... 33
PointSecurity ... 33

Output Points ... 33

Chapter 8. Startup Command File ... 34

Configuring the Interface with PI ICU .. 34
html Interface Page ... 36

Configuring the Interface Without the PI ICU .. 45
Command-line Parameters ... 45
Sample PIHTML.bat File ... 50
Converting Older Configuration Files .. 50

Chapter 9. UniInt Failover Configuration .. 52

Introduction .. 52
Quick Overview ... 53

Synchronization through a Shared File (Phase 2) .. 54
Configuring Synchronization through a Shared File (Phase 2) 55
Configuring UniInt Failover through a Shared File (Phase 2) 58

Start-Up Parameters ... 58
Failover Control Points ... 60
PI Tags .. 61

Detailed Explanation of Synchronization through a Shared File (Phase 2) 65
Steady State Operation .. 66

Failover Configuration Using PI ICU ... 68
Create the Interface Instance with PI ICU ... 68
Configuring the UniInt Failover Startup Parameters with PI ICU 69
Creating the Failover State Digital State Set .. 69

Using the PI ICU Utility to create Digital State Set 70
Using the PI SMT 3 Utility to create Digital State Set 70

Creating the UniInt Failover Control and Failover State Tags (Phase 2) 73

Chapter 10. Interface Node Clock .. 74

Chapter 11. Security ... 75

Authentication .. 75
Authorization ... 76

Chapter 12. Starting / Stopping the Interface ... 77

Starting Interface as a Service .. 77
Stopping Interface Running as a Service .. 77

Chapter 13. Buffering ... 78

PI Interface for HTML v

Which Buffering Application to Use ... 78
How Buffering Works... 78
Buffering and PI Data Archive Security ... 79
Enabling Buffering on an Interface Node with the ICU 80

Choose Buffer Type .. 80
Buffering Settings.. 81
Buffered Servers ... 83
Installing Buffering as a Service ... 86

Chapter 14. Interface Diagnostics Configuration ... 89

Scan Class Performance Points ... 89
Performance Counters Points ... 92

Performance Counters .. 93
Performance Counters for both (_Total) and (Scan Class x) 93
Performance Counters for (_Total) only ... 95
Performance Counters for (Scan Class x) only 97

Interface Health Monitoring Points .. 99
I/O Rate Point .. 104
Interface Status Point .. 107

Appendix A. Error and Informational Messages ... 109

Troubleshooting Differences Between the ICU Setup and the Interface 109
Check the Proxy and HTTP Authentication Settings 109
Connecting to an FTP ... 109
View the HTML Source Externally .. 110
Look For JavaScript Include Directives ... 110
Message Logs ... 110
Messages .. 111
System Errors and PI Errors ... 112

Appendix B. PI SDK Options .. 113

Appendix C. Plug-in Architecture .. 114

Dynamic URL Generation ... 114
Timestamp and Value Generation .. 114
HTML Modification .. 115
Receiving Pre-Transformed Information from the Interface 115
The COM Interfaces .. 115

SetDocument, ReleaseDocument .. 116
GetURL ... 116
ProcessTimestamp ... 117
ProcessData ... 117
ProcessDownloadedHTML ... 117

Plug-in Registration and Categorization.. 117
Quick Registration and Categorization ... 118

Creating a Visual Basic Plug-in ... 119

Appendix D. Terminology .. 121

Appendix E. Technical Support and Resources ... 124

Table of Contents

vi

Appendix F. Revision History .. 125

PI Interface for HTML 7

Chapter 1. Introduction

The PI Interface for HTML (HyperText Markup Language) allows a user to collect data that

is available in HTML-formatted text. This HTML text can be retrieved by the interface via

HTTP (HyperText Transfer Protocol), HTTPS (HyperText Transfer Protocol Secure), FTP

(File Transfer Protocol), Gopher, or from the interface node’s local file system.

The PI Interface for HTML has the capability of storing a script describing how to get to a

particular web page. This is useful for pages that require a login, or for pages that are created

by filling out a form.

The interface can either provide its own timestamps for data, or it can parse timestamps from

the HTML. Timestamps should be in a format that can be understood by the Visual Basic

function CDate.

Starting with version 1.1.0, the HTML interface supports user-developed plug-ins for

dynamically generating URLs, and for post-processing timestamps and values. Starting with

version 1.2.0.4, the HTML interface supports one more plug-in routine for modifying the

downloaded HTML before parsing it.

The software requirements for the PI Interface for HTML are Microsoft Internet Explorer 5.5

or later, the PI Interface Configuration Utility (PI ICU), the PI SDK (which installs the PI

API library), Visual C++ 10.0 runtime libraries, and the .NET Framework 4.0.

Note: The value of [PIHOME] variable for the 32-bit interface will depend on whether the

interface is being installed on a 32-bit operating system (C:\Program Files\PIPC) or

a 64-bit operating system (C:\Program Files (x86)\PIPC).

The value of [PIHOME64] variable for a 64-bit interface will be C:\Program Files\PIPC on
the 64-bit operating system.

In this documentation [PIHOME] will be used to represent the value for either [PIHOME]
or [PIHOME64]. The value of [PIHOME] is the directory which is the common location for
PI client applications.

Note: Throughout this manual there are references to where messages are written
by the interface which is the PIPC.log. This interface has been built against a UniInt
version (4.5.0.59 and later) which now writes all its messages to the local PI
Message log.

Please note that any place in this manual where it references PIPC.log should now
refer to the local PI message log. Please see the document UniInt Interface

Message Logging.docx in the %PIHOME%\Interfaces\UniInt directory for more

details on how to access these messages.

Introduction

8

Reference Manuals

OSIsoft

 PI Data Archive manuals

 PI API Installation Instructions manual

 UniInt Interface User Manual

 Regular Expressions Tutorial

 PI Interface Configuration Utility User Manual

Supported Operating Systems

Platforms 32-bit application 64-bit application

Windows 2003 Server
32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

Windows Vista
32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

Windows 2008 32-bit OS Yes No

Windows 2008 R2 64-bit OS Yes (Emulation Mode) No

Windows 7
32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

Windows 8 32-bit OS Yes No

64-bit OS Yes (Emulation Mode) No

Windows 2012 Server 64-bit OS Yes (Emulation Mode) No

The interface is designed to run on the above mentioned Microsoft Windows operating

systems and their associated service packs.

Please contact OSIsoft Technical Support for more information.

Security Note: We recommend installing all available updates from Windows
Update service. We recommend the newest versions of Windows for latest security
features.

Supported Features

Feature Support

Interface Part Number PI-IN-OS-HTML-NTI

Auto Creates PI Points No

Point Builder Utility No

ICU Control Yes

PI Point Types float16 / float32 / float64 / int16 / int32 / string /
digital

PI Interface for HTML 9

Feature Support

Sub-second Timestamps No

Sub-second Scan Classes No

Automatically Incorporates PI Point
Attribute Changes

Yes

Exception Reporting Yes

Outputs from PI No

Inputs to PI: Scan-based / Event Tags

Supports Questionable Bit No

Supports Multi-character PointSource Yes

Maximum Point Count Unlimited

* Uses PI SDK No

PINet String Support No

* Source of Timestamps HTML Page / Current Interface Node Time

History Recovery No

* UniInt-based

 * Disconnected Startup

 * SetDeviceStatus

Yes

No

Yes

* Failover UniInt Failover (Phase 2) cold

* Vendor Software Required on
Interface Node / PINet Node

Yes

Vendor Software Required on Foreign
Device

No

Vendor Hardware Required No

Additional PI Software Included with
interface

Yes

Device Point Types String

Serial-Based interface No

* See paragraphs below for further explanation.

Uses PI SDK

The PI SDK and the PI API are bundled together and must be installed on each interface

node. This interface does not specifically make PI SDK calls.

Source of Timestamps

Many web sites will provide timestamps with any data they have published. Some will not.

The user can configure whether to read a timestamp from the web page or whether to just use

the time the HTML page was read by the interface.

UniInt-based

UniInt stands for Universal Interface. UniInt is not a separate product or file; it is an

OSIsoft-developed template used by developers and is integrated into many interfaces,

including this interface. The purpose of UniInt is to keep a consistent feature set and behavior

across as many of OSIsoft’s interfaces as possible. It also allows for the very rapid

development of new interfaces. In any UniInt-based interface, the interface uses some of the

Introduction

10

UniInt-supplied configuration parameters and some interface-specific parameters. UniInt is

constantly being upgraded with new options and features.

The UniInt Interface User Manual is a supplement to this manual.

SetDeviceStatus

For a Health Tag with an Extended Descriptor attribute that contains [UI_DEVSTAT], the

interface writes the following values:

 "1 | Could not read web page.” – If the interface cannot connect to the web site, this

message is written to the Health tag.

Refer to the UniInt Interface User Manual.pdf file for more information about how

to configure Health Tags.

Failover

 UniInt Failover Support (Phase 2 Cold failover)

UniInt Phase 2 Failover provides support for cold, warm, or hot failover

configurations. The Phase 2 hot failover results in a no data loss solution for bi-

directional data transfer between the PI Data Archive and the Data Source given a

single point of failure in the system architecture similar to Phase 1. However, in

warm and cold failover configurations, you can expect a small period of data loss

during a single point of failure transition. This failover solution requires that two

copies of the interface be installed on different interface nodes collecting data

simultaneously from a single data source. Phase 2 Failover requires each interface

have access to a shared data file. Failover operation is automatic and operates with no

user interaction. Each interface participating in failover has the ability to monitor and

determine liveliness and failover status. To assist in administering system operations,

the ability to manually trigger failover to a desired interface is also supported by the

failover scheme.

The failover scheme is described in detail in the UniInt Interface User Manual,

which is a supplement to this manual. Details for configuring this interface to use

failover are described in the UniInt Failover Configuration section of this manual.

Vendor Software Required

The PI Interface for HTML takes advantage of technology used in Microsoft Internet

Explorer. Version 5.5 or later of Internet Explorer is required for the interface to function

properly. It is available from Microsoft’s web site at http://www.microsoft.com.

Security Note: To take advantage of the latest security features, we recommend
using the latest version of Microsoft Internet Explorer.

Also required by the PI Interface for HTML is Microsoft’s XML Parser, version 6.0 or later.

The interface uses an XML file to store much of the interface configuration information. This

is available at Microsoft’s web site, and is installed by the interface install kit as well as the

PI SDK version 1.3.1 or later.

Since version 2.3.0.0, the PI Interface for HTML requires the .NET Framework 4.0 or later.

The .NET Framework 4.5 is included with newer versions of Windows. For older versions of

http://www.microsoft.com/

PI Interface for HTML 11

Windows, .NET Framework 4.0 is available for download either from Microsoft’s web site or

by using Windows Update.

In most cases, this interface will be used to retrieve data from a web site. In that case, a

remote web server is required to serve the data that will be used by the interface.

Additional PI Software

The PI Interface Configuration Utility is recommended to configure the PI Interface for

HTML. It is included with the interface, and it can be used to configure some other interfaces.

As of this time, the PI ICU requires a PI Data Archive of version 3.3 or later. For PI Data

Archives earlier than version 3.3, there is another simpler configuration utility also supplied

with the interface.

Device Point Types

Although there are many point types that can be read from a web page, in their native form as

text on the page, they are text strings. The PI Interface for HTML parses data into the

appropriate data types before sending them to the PI Data Archive.

Diagram of Hardware Connection

PI Data Archive

PI Interface Node

Principles of Operation

12

Chapter 2. Principles of Operation

CURL

Curl is a freely available library for retrieving HTML pages from the internet. Version 2.0 of

the PI Interface for HTML uses Curl as its downloading engine. The Curl library is built into

the PI Interface for HTML, and therefore does not require a DLL.

Curl can access pages that require HTTP authentication. This is a new feature in version 2.0.

Curl can also go through proxy servers for networks that require going through a proxy to get

to the internet. This is also a new feature in version 2.0.

MSHTML

The PI Interface for HTML incorporates Microsoft’s Internet Explorer (MSIE) components.

MSIE is not a monolithic application. It is composed of several components. The component

of interest is the MSHTML component. This is responsible for making the network calls to

retrieve an HTML page and for parsing the page. The page is parsed into a hierarchy of

objects that are then used by MSHTML to efficiently draw the page in the browser window.

Microsoft makes these components available for reuse by developers who are developing

web-browsing applications. The PI Interface for HTML uses the hierarchical object model of

the HTML page provided by MSHTML to get the data out of the page. Previous to version

2.0, the PI Interface for HTML also used MSHTML to download the pages from the internet.

This function is now handled by the Curl library.

Configuration

The PI Interface Configuration Utility (PI ICU) is used to configure the PI Interface for

HTML. The configuration for this interface is done graphically. The user browses to the

target web page in a custom browser window, selects (using the mouse) where the data is on

that page, and saves that information into a configuration file. That configuration file is read

by the interface to figure out where specific data is located on the page.

The configuration file is an XML file stored locally. The configuration file can be generated

or edited manually, but it should follow the schema provided with the install kit.

Starting with version 2.3.0.0 the interface is using encryption for Proxy and HTTP Security

passwords. If you are using an XML configuration file from previous versions (2.0 or 2.2)

and it contains Proxy or/and HTTP Security passwords, you need to recreate the HTML

Locator Script configuration item and reenter the passwords before you can use PI Interface

for HTML. See HTML Locator Script section for technical details about Locator Script

configuration item.

Security Note: The communications between the interface and a source web
site are visible to a malicious eavesdropper, which can include the user IDs and
passwords used to connect to the web sites. If the target website requires a
password, https or VPN should be used to protect the password on the wire. Also

PI Interface for HTML 13

restrict access using permissions and enable security auditing for all access to the
configuration file.

The PI ICU is a separate product, but it is included with the distribution package of the PI

Interface for HTML. The PI ICU can be used to configure most other PI interfaces. Since

many of our interfaces are UniInt-based, the PI ICU has a constant set of configuration

parameters it can configure. However, since each of those interfaces also has its own

interface-specific parameters, there are plug-ins available for the interfaces that are

compatible with the PI ICU that allow configuration of those interface-specific parameters.

Refer to the section in this document titled Configuring the Interface with PI ICU, and refer

to the PI Interface Configuration Utility User Manual for more information about the PI ICU.

If the target PI Data Archive is not version 3.3 or later, the PI ICU will not work with that PI

Data Archive. This is because the PI ICU makes extensive use of the PI Module Database,

which was added in PI Data Archive 3.3. In this case, there is also a simpler configuration

tool provided specifically for configuring the HTML interface.

Interface Operation

The PI Interface for HTML uses the configuration settings created by the PI ICU to find data

on the specified HTML page. There is a series of steps to dig through the HTML to get to the

correct location on the page where the data is.

First, the interface downloads the correct page. In the process of configuring the interface

using the PI ICU (or with the simpler configuration tool), the ICU will have recorded a series

of steps the user took to find the right target HTML page. The PI Interface for HTML follows

those steps that were recorded to get to the same page.

Next, the interface uses the MSHTML component to parse the HTML page into an object

model. The important thing about this step is that the HTML text is converted into a

hierarchical object model. This hierarchical view of the web page may be queried for a

particular node. During the configuration process, the PI ICU records the exact node that the

user selected. Then, after the MSHTML component has parsed the page and presented the

interface with this hierarchical model, the interface navigates to the same node in the object

model and extracts whatever data is there.

Timestamps as well as data can be extracted from a web page. It is possible to associate

timestamps with data from a web page to form a complete timestamp-value pair.

For those systems that do not support the PI ICU, a simpler configuration tool is available.

Principles of Operation

14

Pattern Matching

The PI Interface for HTML uses regular expression (regexp) pattern matching in order to

allow you to do some more advanced searching in the HTML page for data. In some cases, to

select exactly the correct data, regexp is required. Take the following snippet of HTML code:

<TABLE>

 <TR VALIGN=”BOTTOM”>

 <TD COLSPAN=3>Weather data for December 12, 2001 12:32pm</TD>

 </TR>

 <TR>

 <TH>Temperature</TH>

 <TH>Humidity</TH>

 <TH>Barometric pressure</TH>

 </TR>

 <TR>

 <TD>51 ºF</TD>

 <TD>72 %</TD>

 <TD>29.97 inHg</TD>

</TR>

</TABLE>

The data of interest is the timestamp, and the three values. The way data is retrieved from

MSHTML, the timestamp would actually be returned to the interface as “Weather data for

December 12, 2001 12:32 pm”. This is because MSHTML uses the HTML tags as delimiters

for the text. In this case, there are no HTML tags separating the “Weather data for” and the

actual date part. When the interface tries to parse that into a date, as error will occur, because

of the leading text. Pattern matching and substitution can be used to search through this text

and select only the data you are interested in.

The values would be read fine without having to use pattern matching, because the numbers

themselves are stored inside the bold () tags. So even though there is text right next to the

numbers when viewed in the web browser, in the HTML code, the digits are delimited from

the units of measure by HTML tags.

This topic is described in more detail in the Regular Expressions Tutorial. There are

techniques and examples for many common situations where pattern matching may be

required to have the interface correctly gather the data you want to gather.

Plug-ins

Starting with version 1.1.0, the PI Interface for HTML supports user-created plug-ins. See

Appendix C Plug-In Architecture for technical details about how to create these plug-ins

using COM. There are two uses for plug-ins.

The first use for plug-ins is to dynamically generate URLs during interface operation. Many

times, the target web page will not have a constant URL. For example, a page that includes

the date will have a different URL every day. One day, the desired web page is

http://www.yoururl.com/pricing_data_04202002.html. The next day’s data,

however, might be found at

http://www.yoururl.com/pricing_data_04212002.html. The PI Interface for

HTML will check with the plug-in to determine the correct URL.

PI Interface for HTML 15

The second use for plug-ins is to post-process timestamps and values. There are some

timestamps that just cannot be parsed by the interface. Other times, the timestamp may need

to be tweaked just a little. Other times, there may be some kind of convention used by a

page, where the reader can easily tell what time the page is talking about, but a machine

cannot. For example, there may be a page that gives data at 5-minute intervals, and the

interval is reported on the page (1-12) instead of the actual timestamp. For values, there may

be data that needs to be massaged before it is sent to the PI Data Archive. The interface will

report the timestamps and values read from the page to the plug-in, and the plug-in will

perform some operation on the data, and return the timestamp and value back to the interface.

Installation Checklist

16

Chapter 3. Installation Checklist

If you are familiar with running PI data collection interface programs, this checklist helps you

get the interface running. If you are not familiar with PI interfaces, return to this section after

reading the rest of the manual in detail.

This checklist summarizes the steps for installing this interface. You need not perform a

given task if you have already done so as part of the installation of another interface. For

example, you only have to configure one instance of Buffering for every interface node

regardless of how many interfaces run on that node.

The Data Collection Steps below are required. Interface Diagnostics and Advanced Interface

Features are optional.

Data Collection Steps

1. Verify that the .NET Framework 4.0 has been installed.

2. Confirm that you can use PI SMT to configure the PI Data Archive. You need not run

PI SMT on the same computer on which you run this interface.

3. If you are running the interface on an interface node, edit the PI Data Archive’s Trust

Table to allow the interface to read attributes and point data. If a buffering

application is not running on the interface node, the PI Trust must allow the interface

to write data.

4. Run the installation kit for the PI Interface Configuration Utility (ICU) on the

interface node if the ICU will be used to configure the interface. This kit runs the PI

SDK installation kit, which installs both the PI API and the PI SDK.

5. Install Microsoft Internet Explorer version 5.5 or higher

(http://www.microsoft.com/windows/ie/).

6. Run the installation kit for this interface. This kit also runs the PI SDK installation kit

which installs both the PI API and the PI SDK if necessary.

7. If you are running the interface on an interface node, check the computer’s time zone

properties. An improper time zone configuration can cause the PI Data Archive to

reject the data that this interface writes.

8. Run the ICU or the simpler HTML Interface Configuration Utility to setup timestamp

and data markers and configure a new instance of this interface. Essential startup

parameters for this interface are

Point Source (/PS=x)

Interface ID (/ID=#)

PI Data Archive (/Host=host:port)

Scan Class (/F=##:##:##,offset)

HTML Config File (/htmlconfigfile=<UNC Path>)

9. Test the connection between the interface node and the target web page by opening it

in Internet Explorer.

10. If you will use digital points, define the appropriate digital state sets.

http://www.microsoft.com/windows/ie/

PI Interface for HTML 17

11. Build input tags for this interface. Important point attributes and their purposes are:

Location1 specifies the interface instance ID.

Location2 specifies digital states.

Location3 is not used.

Location4 specifies the scan class.

Location5 is not used.

ExDesc is not used.

InstrumentTag is the data marker (or markers) associated with the PI point. Delimit

data markers with a semicolon (;).

PtSecurity must permit read access for the PI identity, group, or user configured in

the PI Trust that is used by the interface.

DataSecurity must permit read access (buffering enabled) or read/write access

(unbuffered) for the PI identity, group, or user configured in the PI Trust that is used

by the interface.

Security Note: When buffering is configured, the DataSecurity attribute must
permit write access for the buffering applications’ PI Trust or mapping.
DataSecurity write permission for the interface’s PI Trust is required only when
buffering is not configured.

12. Start the interface interactively and confirm its successful connection to the PI Data

Archive without buffering. (The DataSecurity attribute for interface points must

permit write access for the interface’s PI Trust.)

13. Confirm that the interface collects data successfully.

14. Stop the interface and configure a buffering application (either Bufserv or PIBufss).

When configuring buffering use the ICU menu item Tools  Buffering… 

Buffering Settings to make a change to the default value (32678) for the Primary and

Secondary Memory Buffer Size (Bytes) to 2000000. This will optimize the throughput

for buffering and is recommended by OSIsoft.

15. Start the buffering application and the interface. Confirm that the interface works

together with the buffering application by physically removing the connection

between the interface node and the PI Data Archive Node. (The DataSecurity

attribute for interface points must permit write access for the buffering application’s

PI Trust or mapping. The interface’s PI Trust does not require DataSecurity write

permission.)

16. Configure the interface to run as a Service. Confirm that the interface runs properly

as a Service.

17. Restart the interface node and confirm that the interface and the buffering application

restart.

Installation Checklist

18

Interface Diagnostics

1. Configure Scan Class Performance points.

2. Install the PI Performance Monitor Interface (Full Version only) on the interface

node.

3. Configure Performance Counter points.

4. Configure UniInt Health Monitoring points

5. Configure the I/O Rate point.

6. Install and configure the Interface Status Utility on the PI Data Archive Node.

7. Configure the Interface Status point.

PI Interface for HTML 19

Chapter 4. Interface Installation

OSIsoft recommends that interfaces be installed on interface nodes instead of directly on the

PI Data Archive node. An interface node is any node other than the PI Data Archive node

where the PI Application Programming Interface (PI API) is installed (see the PI

API manual). With this approach, the PI Data Archive need not compete with interfaces for

the machine’s resources. The primary function of the PI Data Archive is to archive data and

to service clients that request data.

After the interface has been installed and tested, Buffering should be enabled on the interface

node. Buffering refers to either PI API Buffer Server (Bufserv) or the PI Buffer Subsystem

(PIBufss). For more information about Buffering see the Buffering chapter of this manual.

In most cases, interfaces on interface nodes should be installed as automatic services.

Services keep running after the user logs off. Automatic services automatically restart when

the computer is restarted, which is useful in the event of a power failure.

The guidelines are different if an interface is installed on the PI Data Archive node. In this

case, the typical procedure is to install the PI Data Archive as an automatic service and install

the interface as an automatic service that depends on the PI Update Manager and PI Network

Manager services. This typical scenario assumes that Buffering is not enabled on the PI Data

Archive node. Bufserv or PIBufss can be enabled on the PI Data Archive node so that

interfaces on the PI Data Archive node do not need to be started and stopped in conjunction

with the PI Data Archive, but it is not standard practice to enable buffering on the PI Data

Archive node. The PI Buffer Subsystem can also be installed on the PI Data Archive. See the

UniInt Interface User Manual for special procedural information.

Naming Conventions and Requirements

In the installation procedure below, it is assumed that the name of the interface executable is

PIHTML.exe and that the startup command file is called PIHTML.bat.

When Configuring the Interface Manually

It is customary for the user to rename the executable and the startup command file when

multiple copies of the interface are run. For example, PIHTML1.exe and PIHTML1.bat

would typically be used for instance 1, PIHTML2.exe and PIHTML2.bat for instance 2, and

so on. When an interface is run as a service, the executable and the command file must have

the same root name because the service looks for its command-line parameters in a file that

has the same root name.

Additional Required Software

Microsoft Internet Explorer

Microsoft Internet Explorer version 5.5 or later is required for the PI Interface for HTML. Its

browsing and parsing functionality is used by the interface. This should be installed before

Interface Installation

20

the interface is configured or started. The software is available on Microsoft’s web site at

http://www.microsoft.com/windows/ie/default.htm.

Microsoft XML Parser

The Microsoft XML Parser (MSXML) version 6.0 or later is also required for the PI Interface

for HTML. The configuration file used to store the location of the target web page, as well as

the spots on the page where the data is stored, is an XML document. MSXML 6.0 is available

from Microsoft’s web site and is installed by the OSIsoft Prerequisite kits.

Microsoft .NET Framework 4.0

The Microsoft .NET Framework version 4.0 is required for the PI Interface for HTML to run.

The interface is now a managed application, and uses the .NET Framework. The .NET

Framework 4.5 is included with newer versions of Windows. For older versions of Windows,

.NET Framework 4.0 is available for download either from Microsoft’s web site or by using

Windows Update.

Interface Directories

PIHOME Directory Tree

The [PIHOME] directory tree is defined by the PIHOME entry in the pipc.ini configuration

file. This pipc.ini file is an ASCII text file, which is located in the %windir% directory.

For 32-bit operating systems, a typical pipc.ini file contains the following lines:

[PIPC]

PIHOME=C:\Program Files\PIPC

For 64-bit operating systems, a typical pipc.ini file contains the following lines:

[PIPC]

PIHOME=C:\Program Files (X86)\PIPC

The above lines define the root of the PIHOME directory on the C: drive. The PIHOME

directory does not need to be on the C: drive. OSIsoft recommends using the paths shown

above as the root PIHOME directory name.

Security Note: Restrict the Windows accounts that can create or write files in
the interface and configuration folder.

Interface Installation Directory

The interface install kit will automatically install the interface to:

PIHOME\Interfaces\HTML\

PIHOME is defined in the pipc.ini file.

http://www.microsoft.com/windows/ie/default.htm

PI Interface for HTML 21

Interface Installation Procedure

The PI Interface for HTML setup program uses the services of the Microsoft Windows

Installer. Windows Installer is a standard part of Windows 2000 and later operating systems.

To install, run the appropriate installation kit.

HTML_#.#.#.#_.exe

PI Trust for Interface Authentication

A PI Interface usually runs on an interface node as a Windows service, which is a non-

interactive environment. In order for an interface to authenticate itself to a PI Data Archive

and obtain the access permissions for proper operation, the PI Data Archive must have a

PI Trust that matches the connection credentials of the interface. Determine if a suitable

PI Trust for the interface exists on the PI Data Archive. If a suitable PI Trust does not exist,

see the Security chapter for instructions on creating a new PI Trust.

Installing Interface as a Windows Service

The PI Interface for HTML service can be created, preferably, with the

PI Interface Configuration Utility, or can be created manually.

Security Note: We recommend running this interface service under a non-
administrative account, such as the Windows built-in NetworkService account or a
non-administrative account that you create.

The advantage of running the interface service under an account with least privileges is

improved security.

The disadvantage of running the interface service with least privileges is that, depending on

the account, the interface service may not be able to create performance counters and extra

administrative actions are needed to create and maintain the performance counters. Since

performance counters are associated with each scan class, performance counters for the

interface instance must be updated after additions or deletions of scan classes by running the

interface instance, at least for a short time, from an account that has sufficient privileges to

create or delete performance counters.

Log On as Security and DCOM Settings When Running as a Service

Previous versions of the PI Interface for HTML required special security settings to be

configured prior to running the interface as a service. Starting with version 2.0, the PI

Interface for HTML can run as a service logged on as Local System (the default setting when

creating a service), and DCOM does not need to be configured past the default settings.

Interface Installation

22

Installing Interface Service with PI Interface Configuration Utility

The PI Interface Configuration Utility provides a user interface for creating, editing, and

deleting the interface service:

Service Configuration

Service name

The Service name box shows the name of the current interface service. This service name is

obtained from the interface executable.

ID

This is the service ID used to distinguish multiple instances of the same interface using the

same executable.

Display name

The Display name text box shows the current Display Name of the interface service. If there

is currently no service for the selected interface, the default Display Name is the service name

with a “PI-” prefix. Users may specify a different Display Name. OSIsoft suggests that the

prefix “PI-” be appended to the beginning of the interface name to indicate that the service is

part of the OSIsoft suite of products.

PI Interface for HTML 23

Log on as

The Log on as text box shows the current “Log on as” Windows User Account of the

interface service. If the service is configured to use the Local System account, the Log on as

text box will show “LocalSystem.” Users may specify a different Windows User account for

the service to use.

Security Note: For best security, we recommend running this interface service
under an account with minimum privileges, such as the Windows built-in
NetworkService account or a non-administrative account that you create.

The consequence of increasing security by following this recommendation is that extra

administrative actions are needed to create and maintain the performance counters for the

interface service. Since performance counters are associated with each scan class,

performance counters for the interface instance must be updated after additions or deletions

of scan classes by running the interface instance, at least for a short time, from an account

that has sufficient privileges to create or delete performance counters.

Unfortunately, the current version of the ICU cannot create a service that runs under the

Windows built-in NetworkService account. After ICU creates the interface service, you can

change the account with a Windows administrative tool, such as Services on the Control

Panel or the sc command-line utility.

Password

If a Windows User account is entered in the Log on as text box, then a password must be

provided in the Password text box, unless the account requires no password.

Confirm password

If a password is entered in the Password text box, then it must be confirmed in the Confirm

password text box.

Dependencies

The Installed services list is a list of the services currently installed on this machine. Services

upon which this interface is dependent should be moved into the Dependencies list using the

 button. For example, if API Buffering is running, then “bufserv” should be selected

from the list at the right and added to the list on the left. To remove a service from the list of

dependencies, use the button, and the service name will be removed from the

Dependencies list.

When the interface is started (as a service), the services listed in the dependency list will be

verified as running (or an attempt will be made to start them). If the dependent service(s)

cannot be started for any reason, then the interface service will not run.

Note: Please see the PI Log and Windows Event Logger for messages that may
indicate the cause for any service not running as expected.

Interface Installation

24

 - Add Button

To add a dependency from the list of Installed services, select the dependency name, and

click the Add button.

 - Remove Button

To remove a selected dependency, select the service name in the Dependencies list, and click

the Remove button.

The full name of the service selected in the Installed services list is displayed below the

Installed services list box.

Startup Type

The Startup Type indicates whether the interface service will start automatically or needs to

be started manually on reboot.

 If the Auto option is selected, the service will be installed to start automatically when

the machine reboots.

 If the Manual option is selected, the interface service will not start on reboot, but will

require someone to manually start the service.

 If the Disabled option is selected, the service will not start at all.

Generally, interface services are set to start automatically.

Create

The Create button adds the displayed service with the specified Dependencies and with the

specified Startup Type.

Remove

The Remove button removes the displayed service. If the service is not currently installed, or

if the service is currently running, this button will be grayed out.

Start or Stop Service

The toolbar contains a Start button and a Stop button . If this interface service is not

currently installed, these buttons will remain grayed out until the service is added. If this

interface service is running, the Stop button is available. If this service is not running, the

Start button is available.

The status of the interface service is indicated in the lower portion of the PI ICU dialog.

Status of

the ICU

Service

installed or

uninstalled

Status of the

Interface

Service

PI Interface for HTML 25

Installing Interface Service Manually

Help for installing the interface as a service is available at any time with the command:

PIHTML.exe /help

Open a Windows command prompt window and change to the directory where the

PIHTML.exe executable is located. Then, consult the following table to determine the

appropriate service installation command.

Note: In the following Windows service installtation commands you may use either a
slash (/) or dash (-) as the delimiter.

Windows Service Installation Commands on an Interface Node or a PI Data Archive Node
with Bufserv implemented

Manual service PIHTML.exe /install /depend "tcpip bufserv"

Automatic service PIHTML.exe /install /auto /depend "tcpip bufserv"

*Automatic service with
service ID

PIHTML.exe /serviceid X /install /auto /depend "tcpip bufserv"

Windows Service Installation Commands on an Interface Node or a PI Data Archive Node
without Bufserv implemented

Manual service PIHTML.exe /install /depend tcpip

Automatic service PIHTML.exe /install /auto /depend tcpip

*Automatic service with
service ID

PIHTML.exe /serviceid X /install /auto /depend tcpip

*When specifying service ID, the user must include an ID number. It is suggested that this

number correspond to the interface ID (/id) parameter found in the interface .bat file.

Check the Microsoft Windows Services control panel to verify that the service was added

successfully. The services control panel can be used at any time to change the interface from

an automatic service to a manual service or vice versa.

The service installation commands in this section always create an interface service that runs

under the built-in LocalSystem account. The LocalSystem account is highly privileged and

the interface does not need most of the LocalSystem privileges to operate correctly.

Security Note: For best security, we recommend running this interface service
under an account with minimum privileges, such as the Windows built-in
NetworkService account or a non-administrative account that you create.

The consequence of increasing security by following this recommendation is that extra

administrative actions are needed to create and maintain the performance counters for the

interface service. Since performance counters are associated with each scan class,

performance counters for the interface instance must be updated after additions or deletions

of scan classes by running the interface instance, at least for a short time, from an account

that has sufficient privileges to create or delete performance counters.

The services control panel can change the account that the interface service runs under.

Changing the account while the interface service is running does not take effect until the

interface service is restarted.

Digital States

26

Chapter 5. Digital States

For more information regarding Digital States, refer to the PI Data Archive documentation.

Digital State Sets

PI digital states are discrete values represented by strings. These strings are organized in the

PI Data Archive as digital state sets. Each digital state set is a user-defined list of strings,

enumerated from 0 to n to represent different values of discrete data. For more information

about PI digital tags and editing digital state sets, see the PI Data Archive manuals.

An interface point that contains discrete data can be stored in the PI Data Archive as a digital

point. A digital point associates discrete data with a digital state set, as specified by the user.

System Digital State Set

Similar to digital state sets is the system digital state set. This set is used for all points,

regardless of type, to indicate the state of a point at a particular time. For example, if the

interface receives bad data from the data source, it writes the system digital state Bad Input

to the PI point instead of a value. The system digital state set has many unused states that can

be used by the interface and other PI clients. Digital States 193-320 are reserved for OSIsoft

applications.

PI Interface for HTML 27

Chapter 6. PointSource

The PointSource is a unique, single or multi-character string that is used to identify the PI

point as a point that belongs to a particular interface. For example, the string Boiler1 may be

used to identify points that belong to the MyInt interface. To implement this, the PointSource

attribute would be set to Boiler1 for every PI point that is configured for the MyInt

interface. Then, if /ps=Boiler1 is used on the startup command-line of the MyInt interface,

the interface will search the PI Point Database upon startup for every PI point that is

configured with a PointSource of Boiler1. Before an interface loads a point, the interface

usually performs further checks by examining additional PI point attributes to determine

whether a particular point is valid for the interface. For additional information, see the /ps

parameter. If the PI API version being used is earlier than 1.6.x or the PI Data Archive

version is earlier than 3.4.370.x, the PointSource is limited to a single character unless the

SDK is being used.

Case-sensitivity for PointSource Attribute

The PointSource character that is supplied with the /ps command-line parameter is not case

sensitive. That is, /ps=P and /ps=p are equivalent.

Reserved Point Sources

Several subsystems and applications that ship with the PI System are associated with default

PointSource characters. The Totalizer Subsystem uses the PointSource character T, the Alarm

Subsystem uses @ for Alarm Tags, G for Group Alarms and Q for SQC Alarm Tags, Random

uses R, RampSoak uses 9, and the Performance Equations Subsystem uses C. Do not use

these PointSource characters or change the default point source characters for these

applications. Also, if a PointSource character is not explicitly defined when creating a

PI point; the point is assigned a default PointSource character of Lab (PI 3). Therefore, it

would be confusing to use Lab as the PointSource character for an interface.

Note: Do not use a point source character that is already associated with another
interface program. However it is acceptable to use the same point source for multiple
instances of an interface.

PI Point Configuration

28

Chapter 7. PI Point Configuration

The PI point is the basic building block for controlling data flow to and from the PI Data

Archive. A single point is configured for each measurement value that needs to be archived.

Point Attributes

Use the point attributes below to define the PI point configuration for the interface, including

specifically what data to transfer.

This document does not discuss the attributes that configure UniInt or PI Data Archive

processing for a PI point. Specifically, UniInt provides exception reporting and the PI Data

Archive provides data compression. Exception reporting and compression are very important

aspects of data collection and archiving, which are not discussed in this document.

Note: See the UniInt Interface User Manual and PI Data Archive documentation for
information on other attributes that are significant to PI point data collection and
archiving.

Tag

The Tag attribute (or tag name) is the name for a point. There is a one-to-one correspondence

between the name of a point and the point itself. Because of this relationship, PI

documentation uses the terms “tag” and “point” interchangeably.

Follow these rules for naming PI points:

 The name must be unique on the PI Data Archive.

 The first character must be alphanumeric, the underscore (_), or the percent sign (%).

 Control characters such as linefeeds or tabs are illegal.

 The following characters also are illegal: * ’ ? ; { } [] | \ ` ' "

Length

Depending on the version of the PI API and the PI Data Archive, this interface supports tags

whose length is at most 255 or 1023 characters. The following table indicates the maximum

length of this attribute for all the different combinations of PI API and PI Data Archive

versions.

PI API PI Data Archive Maximum Length

1.6.0.2 or later 3.4.370.x or later 1023

1.6.0.2 or later Earlier than 3.4.370.x 255

Earlier than 1.6.0.2 3.4.370.x or later 255

Earlier than 1.6.0.2 Earlier than 3.4.370.x 255

If the PI Data Archive version is earlier than 3.4.370.x or the PI API version is earlier than

1.6.0.2, and you want to use a maximum tag length of 1023, you need to enable the PI SDK.

See Appendix B for information.

PI Interface for HTML 29

PointSource

The PointSource attribute contains a unique, single or multi-character string that is used to

identify the PI point as a point that belongs to a particular interface. For additional

information, see the /ps command-line parameter and the PointSource chapter.

PointType

Typically, device point types do not need to correspond to PI point types. For example,

integer values from a device can be sent to floating-point or digital PI tags. Similarly, a

floating-point value from the device can be sent to integer or digital PI tags, although the

values will be truncated.

Float16, float32, int16, int32, digital, and string point types are supported. For more

information on the individual point types, see PI Data Archive Manuals.

Location1

Location1 indicates to which copy of the interface the point belongs. The value of this

attribute must match the /id command-line parameter.

Location2

Location2 is used by digital points. Set Location2 = 0 when the text on the page corresponds

to the string representation of a digital state. Set Location2 = 1 when the text on the page

corresponds to the zero-based integer offset of a digital state in the point’s digital state set.

Location3

Location3 is not used by this interface.

Location4

Scan-based Inputs

For interfaces that support scan-based collection of data, Location4 defines the scan class for

the PI point. The scan class determines the frequency at which input points are scanned for

new values. For more information, see the description of the /f parameter in the Startup

Command File chapter.

To use event-based scanning, set Location4 to 0 and see the section describing the extended

descriptor (ExDesc), below.

Trigger-based Inputs, Unsolicited Inputs, and Output Points

Location4 should be set to zero for these points.

Location5

Location5 is not used by this interface.

PI Point Configuration

30

InstrumentTag

This field should contain the data marker from which this point will be reading data. This

field is not case-sensitive.

If this PI point will be receiving data from multiple data markers, list them all here, delimited

by semicolons (;). This is useful when a single point needs to receive multiple values from a

page. For example, hourly weather information could be listed as 24 different

timestamp/value pairs on the same page, but all values need to go to the same point.

Note: When using multiple markers for a single point, digital state errors are
suppressed for that point.

Length

Depending on the version of the PI API and the PI Data Archive, this interface supports an

InstrumentTag attribute whose length is at most 32 or 1023 characters. The following table

indicates the maximum length of this attribute for all the different combinations of PI API

and PI Data Archive versions.

PI API PI Data Archive Maximum Length

1.6.0.2 or later 3.4.370.x or later 1023

1.6.0.2 or later Earlier than
3.4.370.x

32

Earlier than 1.6.0.2 3.4.370.x or later 32

Earlier than 1.6.0.2 Earlier than
3.4.370.x

32

If the PI Data Archive version is earlier than 3.4.370.x or the PI API version is earlier than

1.6.0.2, and you want to use a maximum InstrumentTag length of 1023, you need to enable

the PI SDK. See Appendix B for information.

ExDesc

ExDesc is not used by the PI Interface for HTML for any interface-specific features, but it

does enable some functionality present in UniInt interfaces.

Length

Depending on the version of the PI API and the PI Data Archive, this interface supports an

ExDesc attribute whose length is at most 80 or 1023 characters. The following table indicates

the maximum length of this attribute for all the different combinations of PI API and PI Data

Archive versions.

PI API PI Data Archive Maximum Length

1.6.0.2 or later 3.4.370.x or later 1023

1.6.0.2 or later Earlier than 3.4.370.x 80

Earlier than 1.6.0.2 3.4.370.x or later 80

Earlier than 1.6.0.2 Earlier than 3.4.370.x 80

If the PI Data Archive version is earlier than 3.4.370.x or the PI API version is earlier than

1.6.0.2, and you want to use a maximum ExDesc length of 1023, you need to enable the PI

SDK. See Appendix B for information.

PI Interface for HTML 31

Performance Points

For UniInt-based interfaces, the extended descriptor is checked for the string

“PERFORMANCE_POINT”. If this character string is found, UniInt treats this point as a

performance point. See the section called Scan Class Performance Points.

Trigger-based Inputs

For trigger-based input points, a separate trigger point must be configured. An input point is

associated with a trigger point by entering a case-insensitive string in the extended descriptor

(ExDesc) PI point attribute of the input point of the form:

keyword=trigger_tag_name

where keyword is replaced by “event” or “trig” and trigger_tag_name is replaced by the

name of the trigger point. There should be no spaces in the string. UniInt automatically

assumes that an input point is trigger-based instead of scan-based when the

keyword=trigger_tag_name string is found in the extended descriptor attribute.

An input is triggered when a new value is sent to the Snapshot of the trigger point. The new

value does not need to be different than the previous Snapshot value to trigger an input, but

the timestamp of the new value must be greater than (more recent than) or equal to the

timestamp of the previous value. This is different than the trigger mechanism for output

points. For output points, the timestamp of the trigger value must be greater than (not greater

than or equal to) the timestamp of the previous value.

Conditions can be placed on trigger events. Event conditions are specified in the extended

descriptor as follows:

Event='trigger_tag_name' event_condition

The trigger tag name must be in single quotes. For example,

Event='Sinusoid' Anychange

will trigger on any event to the PI Tag sinusoid as long as the next event is different than the

last event. The initial event is read from the snapshot.

The keywords in the following table can be used to specify trigger conditions.

Event
Condition

Description

Anychange Trigger on any change as long as the value of the current event is different than
the value of the previous event. System digital states also trigger events. For
example, an event will be triggered on a value change from 0 to “Bad Input,” and
an event will be triggered on a value change from “Bad Input” to 0.

Increment Trigger on any increase in value. System digital states do not trigger events.
For example, an event will be triggered on a value change from 0 to 1, but an
event will not be triggered on a value change from “Pt Created” to 0. Likewise,
an event will not be triggered on a value change from 0 to “Bad Input.”

Decrement Trigger on any decrease in value. System digital states do not trigger events.
For example, an event will be triggered on a value change from 1 to 0, but an
event will not be triggered on a value change from “Pt Created” to 0. Likewise,
an event will not be triggered on a value change from 0 to “Bad Input.”

Nonzero Trigger on any non-zero value. Events are not triggered when a system digital
state is written to the trigger tag. For example, an event is triggered on a value
change from “Pt Created” to 1, but an event is not triggered on a value change
from 1 to “Bad Input.”

PI Point Configuration

32

Scan

By default, the Scan attribute has a value of 1, which means that scanning is turned on for the

point. Setting the Scan attribute to 0 turns scanning off. If the Scan attribute is 0 when the

interface starts, a message is written to the pipc.log and the tag is not loaded by the

interface. There is one exception to the previous statement.

If any PI point is removed from the interface while the interface is running (including setting

the Scan attribute to 0), SCAN OFF will be written to the PI point regardless of the value of

the Scan attribute. Two examples of actions that would remove a PI point from an interface

are to change the point source or set the Scan attribute to 0. If an interface-specific attribute is

changed that causes the tag to be rejected by the interface, SCAN OFF will be written to the PI

point.

Shutdown

The Shutdown attribute is 1 (true) by default. The default behavior of the PI Shutdown

subsystem is to write the SHUTDOWN digital state to all PI points when PI is started. The

timestamp that is used for the SHUTDOWN events is retrieved from a file that is updated by the

Snapshot Subsystem. The timestamp is usually updated every 15 minutes, which means that

the timestamp for the SHUTDOWN events will be accurate to within 15 minutes in the event of

a power failure. For additional information on shutdown events, refer to PI Data Archive

manuals.

Note: The SHUTDOWN events that are written by the PI Shutdown subsystem are

independent of the SHUTDOWN events that are written by the interface when

the /stopstat=Shutdown command-line parameter is specified.

SHUTDOWN events can be disabled from being written to PI points when the PI Data Archive

is restarted by setting the Shutdown attribute to 0 for each point. Alternatively, the default

behavior of the PI Shutdown Subsystem can be changed to write SHUTDOWN events only for

PI points that have their Shutdown attribute set to 0. To change the default behavior, edit the

\PI\dat\Shutdown.dat file, as discussed in PI Data Archive manuals.

Bufserv and PIBufss

It is undesirable to write shutdown events when buffering is being used. Bufserv and PIBufss

are utility programs that provide the capability to store and forward events to a PI Data

Archive, allowing continuous data collection when the PI Data Archive is down for

maintenance, upgrades, backups, and unexpected failures. That is, when the PI Data Archive

is shutdown, Bufserv or PIBufss will continue to collect data for the interface, making it

undesirable to write SHUTDOWN events to the PI points for this interface. Disabling Shutdown

is recommended when sending data to a Highly Available PI Data Collective. Refer to the

Bufserv or PIBufss manuals for additional information.

PI Interface for HTML 33

DataSecurity

The PI identity in the PI Trust that authenticates the interface must be granted read access by

the DataSecurity attribute of every PI point that the interface services. If the interface is used

without a buffering application, write access also must be granted. (If the interface is used

with a buffering application, the buffering application requires write access but the interface

does not.)

PointSecurity

The PI identity in the PI Trust that authenticates the interface must be granted read access by

the PointSecurity attribute of every PI point that the interface services.

Output Points

The PI Interface for HTML does not support output points.

Startup Command File

34

Chapter 8. Startup Command File

Command-line parameters can begin with a / or with a -. For example, the /ps=M and

-ps=M command-line parameters are equivalent.

For Windows, command file names have a .bat extension. The Windows continuation

character (^) allows for the use of multiple lines for the startup command. The maximum

length of each line is 1024 characters (1 kilobyte). The number of parameters is unlimited,

and the maximum length of each parameter is 1024 characters.

The PI Interface Configuration Utility (PI ICU) provides a tool for configuring the interface

startup command file.

Configuring the Interface with PI ICU

Note: PI ICU requires PI 3.3 or later.

The PI Interface Configuration Utility provides a graphical user interface for configuring PI

interfaces. If the interface is configured by the PI ICU, the batch file of the interface

(PIHTML.bat) will be maintained by the PI ICU and all configuration changes will be kept

in that file and the PI Module Database. The procedure below describes the necessary steps

for using PI ICU to configure the PI Interface for HTML.

From the PI ICU menu, select Interface, then NewWindows Interface Instance from EXE...,

and then Browse to the PIHTML.exe executable file. Then, enter values for Host PI System,

Point Source, and Interface ID#. A window such as the following results:

Interface name as displayed in the ICU (optional) will have PI- pre-pended to this name and

it will be the display name in the services menu.

Click Add.

PI Interface for HTML 35

The following message should appear:

Note that in this example the Host PI Data Archive is mkellylaptop. To configure the

interface to communicate with a remote PI Data Archive, select Connections…from the PI

ICU Interface menu and select the default PI Data Archive. If the remote node is not present

in the list of PI Data Archives, it can be added.

Once the interface is added to PI ICU, near the top of the main PI ICU screen, the interface

Type should be html. If not, use the drop-down box to change the interface Type to be html.

Click on Apply to enable the PI ICU to manage this instance of the PI Interface for HTML.

The next step is to make selections in the interface-specific page (that is, “html”) that allows

you to enter values for the startup parameters that are particular to the PI Interface for HTML.

Startup Command File

36

Since the PI Interface for HTML is a UniInt-based interface, in some cases the user will need

to make appropriate selections in the UniInt page. This page allows the user to access UniInt

features through the PI ICU and to make changes to the behavior of the interface.

To set up the interface as a Windows Service, use the Service page. This page allows

configuration of the interface to run as a service as well as to starting and stopping of the

interface service. The interface can also be run interactively from the PI ICU. To do that,

select Start Interactive on the Interface menu.

For more detailed information on how to use the above-mentioned and other PI ICU pages

and selections, please refer to the PI Interface Configuration Utility user guide. The next

section describes the selections that are available from the html page. Once selections have

been made on the PI ICU window, press the Apply button in order for PI ICU to make these

changes to the interface’s startup file.

html Interface Page

Since the startup file of the PI Interface for HTML is maintained automatically by the PI ICU,

use the html page to configure the startup parameters and do not make changes in the file

manually. The following is the description of interface configuration parameters used in the

PI ICU Control and corresponding manual parameters.

PI Interface for HTML 37

html Interface Page

The PI Interface for HTML - ICU Control has one section. A yellow text box indicates that

an invalid value has been entered or that a required value has not been entered.

Current Configuration File

This file is an XML (eXtensible Markup Language)-formatted file that contains detailed

interface configuration information. This file should not be edited manually, unless you

REALLY know what you are doing. Otherwise, this file is automatically maintained by the

PI ICU.

HTML Locator Script

One item stored in the configuration file is the series of steps required to get to the HTML

page that the interface will be parsing. This is necessary because there are pages that are not

accessible by directly entering a URL. For example, many pages require a login before they

will allow a browser to access certain protected information. This functionality will allow a

user to graphically walk through what steps are necessary to navigate to a particular page.

Click Record New to open a dialog box that prompts you for an initial URL (and possibly

proxy information) and then a web browser appears. Navigate the web using the mini-

browser window that is provided, clicking on links or filling in forms, until the desired page

has been located.

Only one target HTML page can be specified for each instance of the PI Interface for HTML.

If data is desired from more than one HTML page, another instance of the interface must be

created. This can be done on the first tab of the PI ICU.

Startup Command File

38

Steps for Creating a New HTML Locator Script

1. Make sure the desired configuration file is selected in the text box under the Current

Configuration File field. This is the file in which the locator script will be held. The

ellipsis button will allow you to browse for a file. If a non-existing file is selected, a

dialog box will prompt you to create a new configuration file.

2. Click Record New. This opens a dialog box asking where the starting point for the

web browser is. If you are going through an HTTP proxy server, check the I am

using an http proxy check box. Enter your proxy server, username, and password. If

you need the request to be a POST type request, click the checkbox next to Post.

3. Enter the URL to the starting web page, where the navigation to find the target

HTML page will begin. Click OK.

Note: If you select a file on the local file system, the format of the URL must be

file:///C:/Path/To/My/File.html.

4. Use the web browser window that opens to navigate to the target page. Your actions

will be recorded in a list at the bottom of the page.

5. To modify the attributes of the pages navigated to (like the URL, whether the request

will be a GET request or a POST request, and the http authentication username and

password for getting to a particular page), click the URL of the entry you want to

modify in the list box in the upper-right corner of the navigation window and modify

those settings.

6. When you are finished, click Finished. To revert to the previous locator script, press

Cancel.

PI Interface for HTML 39

Markers Created on the Target HTML Page

Once an HTML page has been retrieved, the next step is to determine where on that page the

data is located. The idea is that you highlight certain places on the rendered HTML page, and

the locations of those selections are remembered by the configuration utility and saved in the

configuration file. These locations on the page are called markers. By clicking Edit Markers,

the PI ICU displays the HTML page in a separate window. Select where one piece of data

(timestamp data or value data) on that page is located. After selecting a piece of text, click

Create New Timestamp Marker for timestamp data, or Create New Data Marker for

value data. Enter a name for that location, which is now a marker. The ICU will save where

the highlighted text is located on the page into a marker, and the marker will be stored in the

configuration file. The user will associate a PI tag with a data marker in the tag configuration,

which is described in section PI Point Configuration. These steps are described in further

detail below.

There are two different types of markers: data and timestamp markers. Data markers are

created to be the value that is stored for a PI point. Data markers can be cast into any of the

supported PI data types (assuming the cast is legal; for example, casting “4kl23” to an integer

is of course not legal). This includes int16, int32, float16, float32, float64, string, and digital.

Timestamp markers are markers created to be the timestamps for the data markers. Each data

marker requires a timestamp source. This can either be a defined timestamp marker, or the

data marker can use the current clock time as its timestamp, if no timestamp is available on

the actual HTML page. Timestamp markers may be in many different date/time formats.

By selecting the markers in the Data Markers field in the ICU window, you can see with

which timestamp markers those data markers are associated. This association cannot be

changed from this screen; it can only be viewed.

Creating New Markers

1. Make sure the desired configuration file is selected in the Current Configuration

File field. This is the file in which the locator script will be held. The ellipsis button

will allow you to browse for a file. If a non-existing file is selected, a dialog box

appears prompting you to create a new configuration file.

2. Click Edit Markers to open a web browser screen that shows all the data and

timestamp marker information. The following is what the upper-right corner of the

Edit Markers page looks like:

Startup Command File

40

3. To create a new marker, highlight the location of the data on the web browser

window that appears, and click Create New Data Marker or Create New

Timestamp Marker to make a new marker of the respective type (hovering your

mouse over the buttons shown above will reveal their function).

Editing Markers

When a new marker is created, or when you click Edit Selected Timestamp (or Data)

Marker after selecting a marker in one of the two lists, the properties window will appear for

the new (in the case of a new marker) or selected (in the case of an already-existing marker)

marker.

The name field at the top of the page lets you specify an identifier to give this marker. This

name should be unique. For data markers, this name is the name that will be specified in the

InstrumentTag PI point attribute to associate the PI point with the data marker. For timestamp

markers, this name is the name that will be selected in the edit window of a data marker, for

associating a timestamp marker with a data marker.

1. Select a new name for the marker. Make sure it is unique (per XML configuration

file). Type that into the Name field.

PI Interface for HTML 41

2. If this is a timestamp marker, the Edit Marker Properties window will look like

this:

o Default Day is telling the interface how it should handle situations where

there is a time without a date. Click on the arrow button next to the text field

to make a selection. Today will add the current local date to the time that

was read on the HTML page. Yesterday will take today’s date, subtract a

day, and add that to the time. Today with extra logic will use the current

date, but in the case that the combination of date plus time results in a

timestamp that is more than 10 minutes into the future, it will subtract a day.

This is useful in cases where, for example, the interface reads a page at 12:01

am, but the time on the page says 11:59 pm. If the current day’s date were to

be used, the timestamp would be today at 11:59 pm, when in reality, the

desired date would be yesterday’s date. Hardcoded will allow you to specify

a hard-coded date, in PI date format (dd-mmm-yy or dd-mmm-yyyy). This is

not very useful for normal operation of the interface, but can be useful if you

need to read old pages that did not have dates on them, only times.

o Default Time instructs the interface how it should handle situations where

there is a date without a time. This time will be applied to the date.

o Timezone Offset is a floating point number that instructs the interface how

many hours to add to the timestamp (or subtract if it is a negative number).

For example, for an interface running on US Pacific Time (GMT-8), but

reading data from US Eastern time (GMT-5), this number should be -3.

Startup Command File

42

3. If this is a data marker, the Edit Marker Properties window will look like this.

o Timestamp Marker is a dropdown box that lists all the timestamp markers

that have been created so far. Also listed is [Use Current Timestamp]. That

option will set this data marker to use the current interface time as opposed to

reading a timestamp off the HTML page.

4. The HTML Hierarchy tab lets you select which node in the HTML hierarchy will

be read for data. This tree view is a representation of how Internet Explorer exposes

the HTML page to the interface. This box shows how you tell the interface where

your data is. Normally, you do not have to edit this tree view box, because the correct

node was selected when you initially created the marker. So edit this box if you really

know what you are doing.

PI Interface for HTML 43

5. Clicking RegExp Search tab displays the following:

The text inside the node selected in the HTML Hierarchy tab may not be exactly the text

you want to store into a PI point. See section Pattern Matching for an example. The regexp

search and replace functionality lets you find the exact text you’re looking for. Refer to the

Regular Expressions Tutorial for detailed information and many examples on how to use

regexp to get the correct data out of your HTML page. A quick summary follows.

Click the Preview tab to see what text would be selected if the regexp fields were not

changed. There is a good chance that the data you were looking for has already been found

without using the regexp fields. In the example HTML in section Pattern Matching, the data

values for temperature, humidity, and barometric pressure should be found correctly, because

the numbers are alone inside the HTML tags. However, the timestamp marker will not be

read correctly, because there is additional data inside the HTML tags besides the timestamp.

If you were configuring the timestamp marker for that page, you would find “Weather data

for December 12, 2001 12:32 pm” shown in the preview frame. The goal is to narrow this

text down to a date.

First, delete the old pattern (“.*”). Then specify patterns for the data you want, and the data

you do not want. You want to remove the “Data for” part, but keep the following date part.

One pattern you could use is .*for\s.*, (period-asterisk-f-o-r-backslash-s-period-asterisk.)

The first period-asterisk is a wildcard search of any number of characters. The f-o-r matches

the “for” in “Data for.” The backslash-s matches the space after “for”. The final period-

asterisk matches the actual date part. What we want to keep in this example is the date part,

which is represented in the pattern by the last period-asterisk. So place that part in

parentheses, like this: .*for\s(.*)

Startup Command File

44

Use parentheses to create a group in the pattern. In the Regular Expressions Tutorial, groups

are discussed in more detail. As discussed in the tutorial, there can be several groups defined

in a pattern. In our case, there is only one group defined. We want to select that first (and

only) group as our final data, so select (found 1) from the menu that appears when you click

on the arrow button next to the Replace With field. Then, when you click the Preview tab,

only the date appears.

Pattern matching and substitution can be complicated, but typically the HTML page you want

to read will not be formatted in a way that would require you to use anything other than the

default. Otherwise, read the Regular Expressions Tutorial.

6. The Preview tab shows you what the results of your selection (along with any

changes you made in the RegExp Search tab you made) are. This tab is how the

marker will be interpreted by the interface.

Validate Markers

Since version 2.0, the HTML interface uses a third-party library called Curl to perform the

download of all web pages. However, in order to facilitate easier configuration of the

interface, the ICU (and HTMLConfigUtil) uses Internet Explorer as its method of getting the

web pages off the internet. Sometimes this causes differences in what the user has configured

and what the HTML interface sees as its target web page.

Click Validate Markers to display a screen that shows what the interface would see when it

attempts to navigate to the target page and search for the markers on that page. This is a good

way to test to make sure your markers will be properly read by the HTML interface after the

configuration is finished.

If the markers do not appear correctly, there are a few techniques for troubleshooting.

PI Interface for HTML 45

Misc

Click this button to open a dialog box with other options, mostly used to modify how the

interface runs. These options correspond to command line parameters discussed above in

section Command-line Parameters.

Additional Parameters

This section is provided for backwards compatibility. If, for some reason, there are additional

parameters required for a newer version of the interface to operate, and the html.dll file

that is available on the current computer is not up to date, the ICU will not be able to

correctly configure the newly added parameters. Use the Additional Parameters field to

enter options that are not available in the graphical part of the ICU. This text box is normally

left blank unless the versions of html.ocx and the PI Interface for HTML executable file are

out of sync.

Note: The UniInt Interface User Manual includes details about other command-line
parameters, which may be useful.

Configuring the Interface Without the PI ICU

For communicating with PI Data Archives earlier than version 3.3, the PI ICU cannot be

used. A small tool (HTMLConfigUtil.exe) has been supplied for those without the PI ICU.

The GUI is almost exactly the same as if you were using the PI ICU, but much of the

functionality of the PI ICU is not available. For example, this utility cannot edit a startup

.bat file, so you will be responsible for maintaining that. The options for configuring the

startup file are in section Startup Command File.

An XML configuration file can be edited in just the same way from this tool as from the PI

ICU.

Command-line Parameters

Any options discussed below marked with an asterisk before the name of the parameter are

not normally used, and thus are not configurable by using the PI ICU except by manually

typing the parameter in the Additional Parameters field of the html tab in the PI ICU. If

you use more than one in the Additional Parameters field, separate each command-line

parameter with a space.

Startup Command File

46

Parameter Description

/db=#

Optional

Use to print out debug messages. The value of this flag is
determined by adding the number that accompanies the
debugging messages you want to see that are listed below:

1 – Reading the XML configuration file.

2 – Adding points to the interface’s internal list and finding
their corresponding data markers in the configuration file.

4 – Connecting to the HTML page server (if there is one) and
downloading the HTML pages.

8 – Parsing the HTML into a tree-like hierarchy.

16 – Writing data to PI points.

32 – Taking the text from a marker and converting it to the
appropriate type (timestamp for timestamp markers, or
numeric for data markers)

64 – Generate curldebug.log file for debug messages

printed by libCurl.

/dltimeout=#

Optional

Use to indicate how long (in seconds) the interface should
wait for your page or pages to download before timing out.
The default is 60 seconds.

/ec=#

Optional

The first instance of the /ec parameter on the command-line

is used to specify a counter number, #, for an I/O Rate point.

If the # is not specified, then the default event counter is 1.

Also, if the /ec parameter is not specified at all, there is still

a default event counter of 1 associated with the interface. If
there is an I/O Rate point that is associated with an event
counter of 1, every interface that is running without /ec=#

explicitly defined will write to the same I/O Rate point. Either
explicitly define an event counter other than 1 for each
instance of the interface or do not associate any I/O Rate
points with event counter 1. Configuration of I/O Rate points
is discussed in the section called I/O Rate Point.

For interfaces that run on Windows nodes, subsequent
instances of the /ec parameter may be used by specific

interfaces to keep track of various input or output operations.
Subsequent instances of the /ec parameter can be of the

form /ec*, where * is any ASCII character sequence. For

example, /ecinput=10, /ecoutput=11, and /ec=12

are legitimate choices for the second, third, and fourth event
counter strings.

/f=SS.##

 or

/f=SS.##,ss.##

or

/f=HH:MM:SS.##

or

/f=HH:MM:SS.##,

hh:mm:ss.##

Required for reading scan-based
inputs

The /f parameter defines the time period between scans in

terms of hours (HH), minutes (MM), seconds (SS) and sub-

seconds (##). The scans can be scheduled to occur at

discrete moments in time with an optional time offset

specified in terms of hours (hh), minutes (mm), seconds (ss),

and sub-seconds (##). If HH and MM are omitted, then the

time period that is specified is assumed to be in seconds.

Each instance of the /f parameter on the command-line

defines a scan class for the interface. There is no limit to the
number of scan classes that can be defined. The first
occurrence of the /f parameter on the command-line defines

the first scan class of the interface; the second occurrence
defines the second scan class, and so on. PI Points are
associated with a particular scan class via the Location4 PI
Point attribute. For example, all PI Points that have Location4
set to 1 will receive input values at the frequency defined by
the first scan class. Similarly, all points that have Location4
set to 2 will receive input values at the frequency specified by

PI Interface for HTML 47

Parameter Description

the second scan class, and so on.

Two scan classes are defined in the following example:

/f=00:01:00,00:00:05 /f=00:00:07

or, equivalently:

/f=60,5 /f=7

The first scan class has a scanning frequency of 1 minute
with an offset of 5 seconds, and the second scan class has a
scanning frequency of 7 seconds. When an offset is
specified, the scans occur at discrete moments in time
according to the formula:

scan times = (reference time) + n(frequency) + offset

where n is an integer and the reference time is midnight on
the day that the interface was started. In the above example,
frequency is 60 seconds and offset is 5 seconds for the first
scan class. This means that if the interface was started at
05:06:06, the first scan would be at 05:07:05, the second
scan would be at 05:08:05, and so on. Since no offset is

specified for the second scan class, the absolute scan times
are undefined.

The definition of a scan class does not guarantee that the
associated points will be scanned at the given frequency. If
the interface is under a large load, then some scans may
occur late or be skipped entirely. See the section
“Performance Summaries” in UniInt Interface User
Manual.doc for more information on skipped or missed scans.

Sub-second Scan Classes

Sub-second scan classes can be defined on the command-
line, such as

/f=0.5 /f=00:00:00.1

where the scanning frequency associated with the first scan
class is 0.5 seconds and the scanning frequency associated
with the second scan class is 0.1 of a second.

Similarly, sub-second scan classes with sub-second offsets
can be defined, such as

/f=0.5,0.2 /f=1,0

Wall Clock Scheduling

Scan classes that strictly adhere to wall clock scheduling are
now possible. This feature is available for interfaces that run
on Windows and/or UNIX. Previously, wall clock scheduling
was possible, but not across daylight saving time. For
example, /f=24:00:00,08:00:00 corresponds to 1

scan a day starting at 8 AM. However, after a Daylight Saving
Time change, the scan would occur either at 7 AM or 9 AM,
depending upon the direction of the time shift. To schedule a
scan once a day at 8 AM (even across daylight saving time),
use /f=24:00:00,00:08:00,L. The ,L at the end of

the scan class tells UniInt to use the new wall clock
scheduling algorithm.

/htmlconfigfile=<UNC

Path>

Required

Use to specify the XML file that contains the information
configured by the Interface-Specific Parameters tab on the PI
ICU. For example,

/htmlconfigfile=d:\pipc\Interfaces\HTML\

html1config.xml

This file is created by the PI ICU, or by the simple PI Interface
for HTML configuration tool.

Startup Command File

48

Parameter Description

/host=host:port

Required

The /host parameter is used to specify the PI Data

Archive node. Host is the IP address of the PI Data Archive
node or the domain name of the PI Data Archive node. Port
is the port number for TCP/IP communication. The port is

always 5450. It is recommended to explicitly define the host
and port on the command-line with the /host parameter.

Nevertheless, if either the host or port is not specified, the
interface will attempt to use defaults.

Examples:

The interface is running on an interface node, the domain
name of the PI Data Archive node is Marvin, and the IP
address of Marvin is 206.79.198.30. Valid /host

parameters would be:
/host=marvin

/host=marvin:5450

/host=206.79.198.30

/host=206.79.198.30:5450

/id=x

Highly Recommended

The /id parameter is used to specify the interface identifier.

The interface identifier is a string that is no longer than 9
characters in length. UniInt concatenates this string to the
header that is used to identify error messages as belonging
to a particular interface. See Appendix A Error and
Informational Messages for more information.

UniInt always uses the /id parameter in the fashion

described above. This interface also uses the /id

parameter to identify a particular interface instance number
that corresponds to an integer value that is assigned to one
of the Location code point attributes, most frequently
Location1. For this interface, use only numeric characters in
the identifier. For example,

/id=1

/outputhtml=(Y)es/(N)o

Optional

Used for debugging purposes. If set to yes (or y), the
interface will write out all final HTML pages it receives. This
does not include pages received in the process of getting to
the final HTML page.

The interface writes these pages to the directory of the
interface executable the form

HTML_retrieved_yyyymmddhhmmss.html.

/parsetimeout=#

Optional

Indicates how long (in seconds) the interface should wait for
your page or pages to be parsed by Internet Explorer before
timing out. The default is 60 seconds. This option is useful if

you see a lot of parse timeout messages in the pipc.log

file. Otherwise, leave the default value.

/plugin=<UNC path>

Optional

Specifies the progid of a plug-in that should be used for
dynamic URL generation and timestamp and value post-
processing. When a plug-in is selected, the plug-in will be
used to help navigation when configuring the HTML locator
script. It will also be used when showing a preview of the data
when configuring data and timestamp markers. If no plug-in is
selected, no plug-in will be used in the configuration or in the
execution of the interface. See section Appendix C on Plug-in
Registration and Categorization.

PI Interface for HTML 49

Parameter Description

/ps=x

Required

The /ps parameter specifies the point source for the

interface. X is not case sensitive and can be any

<single/multiple> character string. For example, /ps=P and

/ps=p are equivalent. The length of X is limited to 100

characters by UniInt. X can contain any character except ‘*’

and ‘?’.

The point source that is assigned with the /ps parameter

corresponds to the PointSource attribute of individual PI
Points. The interface will attempt to load only those PI points
with the appropriate point source.

If the PI API version being used is earlier than 1.6.x or the PI
Data Archive version is earlier than 3.4.370.x, the
PointSource is limited to a single character unless the SDK is
being used.

/replace=(Y)es/(N)

Optional

Instructs the interface to use archive replace calls instead of
put snapshot calls to send the data to PI points. This is useful
when the value for a given timestamp may change. The
default value is no.

/stopstat=digstate

or

/stopstat

/stopstat only is equivalent

to

/stopstat="Intf Shut"

Optional

Default = no digital state written
at shutdown.

If /stopstat=digstate is present on the command line,

then the digital state, digstate, will be written to each PI

point when the interface is stopped. For a PI3 Data Archive,

digstate must be in the system digital state table. UniInt

will use the first occurrence of digstate found in the table.

If the /stopstat parameter is present on the startup

command line, then the digital state Intf Shut will be

written to each PI point when the interface is stopped.

If neither /stopstat nor /stopstat=digstate is

specified on the command line, then no digital states will be
written when the interface is shut down.

Examples:

/stopstat=shutdown

/stopstat="Intf Shut"

The entire digstate value must be enclosed within double
quotes when there is a space in digstate.

/suppresserrors=

(Y)es/(N)o

Optional

Instructs the interface not to send digital state errors to PI
points. For example, in normal operation, if a marker for a tag
cannot be found on the target HTML page, that tag will
receive a CONFIGURE digital state. With this option set to
yes, a message will be written to the log file, but the digital
state will not be sent to the PI point. The default value is no.

/useragent=<string>

Optional

Allows the interface to identify itself to the remote web server
as a different web browser. Some web sites will return a
different page for different browsers. A common user-agent
string to use to mimic Internet Explorer 5.5 on Windows 2000
is "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)".

Startup Command File

50

Sample PIHTML.bat File

The following is an example file:

REM===

REM

REM PIHTML.bat

REM

REM Sample startup file for the PI Interface for HTML

REM

REM===

REM

REM OSIsoft strongly recommends using PI ICU to modify startup files.

REM

REM Sample command line

REM

 .\PIHTML.exe 1 ^

 /htmlconfigfile=.\PIHTMLExampleConfig.xml ^

 /db=0 ^

 /dltimeout=60 ^

 /parsetimeout=60 ^

 /suppresserrors=N ^

 /outputhtml=N ^

 /replace=N ^

 /PS=HTML ^

 /ID=1 ^

 /host=XXXXXX:5450 ^

 /f=00:30:00

REM

REM End of PIHTML.bat File

Converting Older Configuration Files

If you are using an XML configuration file from before version 1.2, you need to convert it to

the new format before you can use the PI Interface for HTML. Use the utility included in the

interface directory called InterfaceConfigDocConverter.exe. It transforms the XML

configuration document.

Note: Since the proxy server handling is different in the new version of the interface,

all proxy server information will be lost and will need to be recreated.

Use the converter by running it on a command line, passing the path to old file as the first

parameter, and the path to what you want your new file to be called as the second parameter:

InterfaceConfigDocConverter.exe

c:\PIPC\Interfaces\HTML\myoldconfig.xml

c:\PIPC\Interfaces\HTML\mynewconfig.xml

Starting with version 2.3.0.0, the interface encrypts Proxy and HTTP Security passwords. If

you are using an XML configuration file from earlier versions (2.0 or 2.2) and it contains

Proxy or/and HTTP Security passwords, you need to recreate the HTML Locator Script

configuration item and reenter the passwords before you can use PI Interface for HTML. See

HTML Locator Script section for technical details about Locator Script configuration item.

PI Interface for HTML 51

Security Note: For most protocols, the communications between the interface

and a source web site are visible to a malicious eavesdropper, which can include the

user IDs and passwords used to connect to the web sites. If the target website

requires a password, https or VPN should be used to protect the password on the

wire. Also, restrict access using permissions and enable security auditing for all

access to the configuration file.

UniInt Failover Configuration

52

Chapter 9. UniInt Failover Configuration

Introduction

To minimize data loss during a single point of failure within a system, UniInt provides two

failover schemes: (1) synchronization through the data source and (2) synchronization

through a shared file. Synchronization through the data source is Phase 1, and

synchronization through a shared file is Phase 2.

Phase 1 UniInt Failover uses the data source itself to synchronize failover operations and

provides a hot failover, no data loss solution when a single point of failure occurs. For this

option, the data source must be able to communicate with and provide data for two interfaces

simultaneously. Additionally, the failover configuration requires the interface to support

outputs.

Phase 2 UniInt Failover uses a shared file to synchronize failover operations and provides for

hot, warm, or cold failover. The Phase 2 hot failover configuration provides a no data loss

solution for a single point of failure similar to Phase 1. However, in warm and cold failover

configurations, you can expect a small period of data loss during a single point of failure

transition.

Note: This interface supports only Phase 2 cold failover.

You can also configure UniInt failover to send data to a High Availability (HA) PI Data

collective. The PI Data collective provides redundant PI Data Archives to allow for the

uninterrupted collection and presentation of PI time series data. In an HA configuration, PI

Data Archives can be taken down for maintenance or repair. The HA PI Data collective is

described in the High Availability Administrator Guide.

When configured for UniInt failover, the interface routes all PI point data through a state

machine. The state machine determines whether to queue data or send it directly to a PI point

depending on the current state of the interface. When the interface is in the active state, data

sent through the interface gets routed directly to a PI point. In the backup state, data from the

interface gets queued for a short period. Queued data in the backup interface ensures a no-

data loss failover under normal circumstances for Phase 1 and for the hot failover

configuration of Phase 2. The same algorithm of queuing events while in backup is used for

output data.

PI Interface for HTML 53

Quick Overview

The Quick Overview below may be used to configure this interface for failover. The failover

configuration requires the two copies of the interface participating in failover be installed on

different nodes. Users should verify non-failover interface operation as discussed in the

Installation Checklist chapter of this manual prior to configuring the interface for failover

operations. If you are not familiar with UniInt failover configuration, return to this section

after reading the rest of the UniInt Failover Configuration chapter in detail. If a failure occurs

at any step below, correct the error and start again at the beginning of step 6 Test in the table

below. For the discussion below, the first copy of the interface configured and tested will be

considered the primary interface and the second copy of the interface configured will be the

backup interface.

Configuration

 One Data Source

 Two Interfaces

Prerequisites

 Interface 1 is the primary interface for collection of PI data from the data source.

 Interface 2 is the backup interface for collection of PI data from the data source.

 You must setup a shared file if using Phase 2 failover.

 Phase 2: The shared file must store data for five failover tags:

 (1) Active ID.

 (2) Heartbeat 1.

 (3) Heartbeat 2.

 (4) Device Status 1.

 (5) Device Status 2.

 Each interface must be configured with two required failover command line

parameters: (1) its FailoverID number (/UFO_ID); (2) the FailoverID number of its

backup interface (/UFO_OtherID). You must also specify the name of the PI Data

Archive host for exceptions and PI tag updates.

 All other configuration parameters for the two interfaces must be identical.

UniInt Failover Configuration

54

Synchronization through a Shared File (Phase 2)

Business Network

Process Network

IF-Node1

PI-Interface.exe

/host=PrimaryPI

/UFO_ID=1

/UFO_OTHERID=2

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

IF-Node2

PI-Interface.exe

/host=SecondaryPI

/UFO_ID=2

/UFO_OTHERID=1

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

DataSource

DCS/PLC/Data Server

Client

Process Book

DataLink

PrimaryPI

PI Server

Role = 1

SecondaryPI

PI Server

Role = 2

Data register 0

.

.

.

Data register n

FileSvr

.\UFO\Intf_PS_1.dat

Figure 1: Synchronization through a Shared File (Phase 2) Failover Architecture

The Phase 2 failover architecture is shown in Figure 1 which depicts a typical network setup

including the path to the synchronization file located on a File Server (FileSvr). Other

configurations may be supported and this figure is used only as an example for the following

discussion.

For a more detailed explanation of this synchronization method, see Detailed Explanation of

Synchronization through a Shared File (Phase 2)

PI Interface for HTML 55

Configuring Synchronization through a Shared File (Phase 2)

Step Description

1. Verify non-failover interface operation as described in the Installation Checklist section of
this manual

2. Configure the Shared File

Choose a location for the shared file. The file can reside on one of the interface nodes or
on a separate node from the interfaces; however OSIsoft strongly recommends that you
put the file on a Windows Server platform that has the “File Server” role configured. .

Setup a file share and make sure to assign the permissions so that both primary and
backup interfaces have read/write access to the file.

3. Configure the interface parameters

Use the Failover section of the interface Configuration Utility (ICU) to enable failover and
create two parameters for each interface: (1) a Failover ID number for the interface; and
(2) the Failover ID number for its backup interface.

The Failover ID for each interface must be unique and each interface must know the
Failover ID of its backup interface.

If the interface can perform using either Phase 1 or Phase 2 pick the Phase 2 radio button
in the ICU.

Select the synchronization File Path and File to use for Failover.

Select the type of failover required (Cold, Warm, Hot). The choice depends on what types
of failover the interface supports.

Ensure that the user name assigned in the “Log on as:” parameter in the Service section
of the ICU is a user that has read/write access to the folder where the shared file will
reside.

All other command line parameters for the primary and secondary interfaces must be
identical.

If you use a PI Data collective, you must point the primary and secondary interfaces to
different members of the PI Data collective by setting the SDK Member under the PI Host
Information section of the ICU.

[Option] Set the update rate for the heartbeat point if you need a value other than the
default of 5000 milliseconds.

4. Configure the PI tags

Configure five PI tags for the interface: the Active ID, Heartbeat 1, Heartbeat2, Device
Status 1 and Device Status 2. You can also configure two state tags for monitoring the
status of the interfaces.

Do not confuse the failover Device status tags with the UniInt Health Device Status tags.
The information in the two tags is similar, but the failover device status tags are integer
values and the health device status tags are string values.

Tag ExDesc digitalset

UniInt does not
examine the
remaining attributes,
but the PointSource
and Location1 must
match.

ActiveID [UFO2_ACTIVEID]

IF1_Heartbeat

(IF-Node1) [UFO2_HEARTBEAT:#]

IF2_Heartbeat

(IF-Node2) [UFO2_HEARTBEAT:#]

IF1_DeviceStatus

(IF-Node1) [UFO2_DEVICESTAT:#]

IF2_DeviceStatus

(IF-Node2) [UFO2_DEVICESTAT:#]

IF1_State

(IF-Node1) [UFO2_STATE:#] IF_State

IF2_State

(IF-Node2) [UFO2_STATE:#] IF_State

UniInt Failover Configuration

56

Step Description

5. Test the configuration.

After configuring the shared file and the interface and PI tags, the interface should be
ready to run.

See Troubleshooting UniInt Failover for help resolving Failover issues.

1. Start the primary interface interactively without buffering.

2. Verify a successful interface start by reviewing the pipc.log file. The log file will

contain messages that indicate the failover state of the interface. A successful start
with only a single interface copy running will be indicated by an informational

message stating “UniInt failover: Interface in the “Primary”

state and actively sending data to PI. Backup interface

not available.” If the interface has failed to start, an error message will appear

in the log file. For details relating to informational and error messages, refer to the
Messages section below.

3. Verify data on the PI Data Archive using available PI tools.

 The Active ID control tag on the PI Data Archive must be set to the
value of the running copy of the interface as defined by the /UFO_ID

startup command-line parameter.

 The Heartbeat control tag on the PI Data Archive must be changing
values at a rate specified by the /UFO_Interval startup command-

line parameter.

4. Stop the primary interface.

5. Start the backup interface interactively without buffering. Notice that this copy will
become the primary because the other copy is stopped.

6. Repeat steps 2, 3, and 4.

7. Stop the backup interface.

8. Start buffering.

9. Start the primary interface interactively.

10. Once the primary interface has successfully started and is collecting data, start the
backup interface interactively.

11. Verify that both copies of the interface are running in a failover configuration.

 Review the pipc.log file for the copy of the interface that was started

first. The log file will contain messages that indicate the failover state of
the interface. The state of this interface must have changed as

indicated with an informational message stating “UniInt failover:
Interface in the “Primary” state and actively sending

data to PI. Backup interface available.” If the interface

has not changed to this state, browse the log file for error messages.
For details relating to informational and error messages, refer to the
Messages section below.

 Review the pipc.log file for the copy of the interface that was started

last. The log file will contain messages that indicate the failover state of
the interface. A successful start of the interface will be indicated by an

informational message stating “UniInt failover: Interface in

the “Backup” state.” If the interface has failed to start, an error

message will appear in the log file. For details relating to informational
and error messages, refer to the Messages section below.

12. Verify data on the PI Data Archive using available PI tools.

 The Active ID control tag on the PI Data Archive must be set to the
value of the running copy of the interface that was started first as
defined by the /UFO_ID startup command-line parameter.

 The Heartbeat control tags for both copies of the interface on the PI

PI Interface for HTML 57

Step Description

Data Archive must be changing values at a rate specified by the
/UFO_Interval startup command-line parameter or the scan class

which the points have been built against.

13. Test Failover by stopping the primary interface.

14. Verify the backup interface has assumed the role of primary by searching the

pipc.log file for a message indicating the backup interface has changed to the

“UniInt failover: Interface in the “Primary” state and

actively sending data to PI. Backup interface not

available.” The backup interface is now considered primary and the previous

primary interface is now backup.

15. Verify no loss of data in the PI Data Archive. There may be an overlap of data due to
the queuing of data. For cold failover, there may be a short data loss.

16. Start the backup interface. Once the primary interface detects a backup interface, the

primary interface will now change state indicating “UniInt failover:

Interface in the “Primary” state and actively sending

data to PI. Backup interface available.” in the pipc.log file.

17. Verify the backup interface starts and assumes the role of backup. A successful start
of the backup interface will be indicated by an informational message stating

“UniInt failover: Interface in “Backup state.” Since this is the

initial state of the interface, the informational message will be near the beginning of

the start sequence of the pipc.log file.

18. Test failover with different failure scenarios (e.g. loss of PI Data Archive connection
for a single interface copy). UniInt hot failover guarantees no data loss with a single
point of failure; verify no data loss by checking the data in the PI Data Archive and on
the data source. For warm and cold failover, short data gaps are expected.

19. Stop both copies of the interface, start buffering, start each interface as a service.

20. Verify data as stated above.

21. To designate a specific interface as primary. Set the Active ID point on the Data

Source Server of the desired primary interface as defined by the /UFO_ID startup

command-line parameter.

UniInt Failover Configuration

58

Configuring UniInt Failover through a Shared File (Phase 2)

Start-Up Parameters

Note: The /stopstat parameter is disabled if the interface is running in a UniInt

failover configuration. Therefore, the digital state, digstate, will not be written to

each PI Point when the interface is stopped. This prevents the digital state being
written to PI Points while a redundant system is also writing data to the same PI
Points. The /stopstat parameter is disabled even if there is only one interface

active in the failover configuration.

The following table lists the start-up parameters used by UniInt Failover Phase 2. All of the

parameters are required except the /UFO_Interval startup parameter. See the table below

for further explanation.

Parameter Required/
Optional

Description Value/Default

/UFO_ID=# Required Failover ID for IF-Node1

This value must be different from
the failover ID of IF-Node2.

Any positive, non-
zero integer / 1

Required Failover ID for IF-Node2

This value must be different from
the failover ID of IF-Node1.

Any positive, non-
zero integer / 2

/UFO_OtherID=# Required Other Failover ID for IF-Node1

The value must be equal to the
Failover ID configured for the
interface on IF-Node2.

Same value as
Failover ID for
IF-Node2 / 2

Required Other Failover ID for IF-Node2

The value must be equal to the
Failover ID configured for the
interface on IF-Node1.

Same value as
Failover ID for
IF-Node1 / 1

/UFO_Sync=

path/[filename]

Required for
Phase 2
synchronization

The Failover File Synchronization
file path and optional filename

specify the path to the shared file
used for failover synchronization
and an optional filename used to
specify a user defined filename in
lieu of the default filename.

The path to the shared file
directory can be a fully qualified
machine name and directory, a
mapped drive letter, or a local path
if the shared file is on one of the
interface nodes. The path must be

terminated by a slash (/) or

backslash (\) character. If no

terminating slash is found in the
/UFO_Sync parameter, the

interface interprets the final
character string as an optional
filename.

The optional filename can be any
valid filename. If the file does not

Any valid pathname /
any valid filename

The default filename
is generated as
executablename_

pointsource_

interfaceID.dat

PI Interface for HTML 59

Parameter Required/
Optional

Description Value/Default

exist, the first interface to start
attempts to create the file.

Note: If using the optional
filename, do not supply a

terminating slash or backslash
character.

If there are any spaces in the path
or filename, the entire path and
filename must be enclosed in
quotes.

Note: If you use the backslash

and path separators and enclose
the path in double quotes, the final
backslash must be a double

backslash (\\). Otherwise the

closing double quote becomes
part of the parameter instead of a
parameter separator.

Each node in the failover
configuration must specify the
same path and filename and must
have read, write, and file creation
rights to the shared directory
specified by the path parameter.

The service that the interface runs
against must specify a valid logon
user account under the “Log On”
tab for the service properties.

/UFO_Type=type Required The Failover Type indicates which
type of failover configuration the
interface will run. The valid types
for failover are HOT, WARM, and
COLD configurations.

If an interface does not supported
the requested type of failover, the
interface will shutdown and log an

error to the pipc.log file stating

the requested failover type is not
supported.

COLD|WARM|HOT /
COLD

/UFO_Interval=# Optional Failover Update Interval

Specifies the heartbeat Update
Interval in milliseconds and must
be the same on both interface
computers.

This is the rate at which UniInt
updates the Failover Heartbeat
tags as well as how often UniInt
checks on the status of the other
copy of the interface.

50 – 20000 / 5000

UniInt Failover Configuration

60

Parameter Required/
Optional

Description Value/Default

/Host=server Required Host PI Data Archive for
exceptions and PI point updates

The value of the /Host startup

parameter depends on the PI Data
Archive configuration. If the PI
Data Archive is not part of a PI
Data collective, the value of
/Host must be identical on both

interface computers.

If the redundant interfaces are
being configured to send data to a
PI Data collective, the value of the
/Host parameters on the

different interface nodes should
equal to different members of the
PI Data collective.

This parameter ensures that
outputs continue to be sent to the
data source if one of the PI Data
Archives becomes unavailable for
any reason.

For IF-Node1

PrimaryPI / None

For IF-Node2

SecondaryPI / None

Failover Control Points

The following table describes the points that are required to manage failover. In Phase 2

Failover, these points are located in a data file shared by the primary and backup interfaces.

OSIsoft recommends that you locate the shared file on a dedicated server that has no other

role in data collection. This avoids potential resource contention and processing degradation

if your system monitors a large number of data points at a high frequency.

Point Description Value / Default

ActiveID Monitored by the interfaces to determine which
interface is currently sending data to the PI Data
Archive. ActiveID must be initialized so that

when the interfaces read it for the first time, it is
not in an error state.

ActiveID can also be used to force failover. For

example, if the current primary is IF-Node 1 and
ActiveID is 1, you can manually change
ActiveID to 2. This causes the interface at IF-

Node2 to transition to the primary role and the
interface at IF-Node1 to transition to the backup
role.

From 0 to the highest
interface Failover ID
number / None)

Updated by the
redundant interfaces

Can be changed
manually to initiate a
manual failover

Heartbeat 1 Updated periodically by the interface on
IF-Node1. The interface on IF-Node2 monitors
this value to determine if the interface on
IF-Node1 has become unresponsive.

Values range between
0 and 31 / None

Updated by the
interface on IF-Node1

Heartbeat 2 Updated periodically by the interface on IF-
Node2. The interface on IF-Node1 monitors this
value to determine if the interface on IF-Node2
has become unresponsive.

Values range between
0 and 31 / None

Updated by the
interface on IF-Node2

PI Interface for HTML 61

PI Tags

The following tables list the required UniInt Failover Control PI tags, the values they will

receive, and descriptions.

Active_ID Tag Configuration

Attributes ActiveID

Tag <Intf>_ActiveID

CompMax 0

ExDesc [UFO2_ActiveID]

Location1 Match # in /id=#

Location5 Optional, Time in min to wait for backup
to collect data before failing over.

PointSource Match x in /ps=x

PointType Int32

Shutdown 0

Step 1

Heartbeat and Device Status Tag Configuration

Attribute Heartbeat 1 Heartbeat 2 DeviceStatus 1 DeviceStatus 2

Tag <HB1> <HB2> <DS1> <DS2>

ExDesc

[UFO2_Heartbeat:#]

Match # in
/UFO_ID=#

[UFO2_Heartbeat:#]

Match # in
/UFO_OtherID=#

[UFO2_DeviceStat:#]

Match # in
/UFO_ID=#

[UFO2_DeviceStat:#]

Match # in
/UFO_OtherID=#

Location1
Match # in /id=#

Match # in

/id=#
Match # in /id=# Match # in /id=#

Location5 Optional, Time in
min to wait for
backup to collect
data before failing
over.

Optional, Time in
min to wait for
backup to collect
data before failing
over.

Optional, Time in
min to wait for
backup to collect
data before failing
over.

Optional, Time in
min to wait for
backup to collect
data before failing
over.

Point
Source

Match x in /ps=x Match x in /ps=x Match x in /ps=x Match x in /ps=x

PointType int32 int32 int32 int32

Shutdown 0 0 0 0

Step 1 1 1 1

Interface State Tag Configuration

Attribute Primary Backup

Tag <Tagname1> <Tagname2>

CompMax 0 0

DigitalSet UFO_State UFO_State

ExDesc [UFO2_State:#]

(Match /UFO_ID=# on primary node)

[UFO2_State:#]

(Match /UFO_ID=# on backup node)

Location1 Match # in /id=# Same as for primary node

PointSource Match x in /ps=x Same as for primary node

UniInt Failover Configuration

62

Attribute Primary Backup

PointType digital digital

Shutdown 0 0

Step 1 1

The following table describes the extended descriptor for the above PI tags in more detail.

PI Tag ExDesc Required /
Optional

Description Value

 [UFO2_ACTIVEID] Required Active ID tag

The ExDesc must start with the
case sensitive string:
[UFO2_ACTIVEID].

The PointSource must match the
interfaces’ Pointsource.

Location1 must match the ID for the
interfaces.

Location5 is the COLD failover retry
interval in minutes. This can be
used to specify how long before an
interface retries to connect to the
device in a COLD failover
configuration. (See the description
of COLD failover retry interval for a
detailed explanation.)

0 – highest
Interface Failover
ID

Updated by the
redundant
interfaces

 [UFO2_HEARTBEAT:#]

(IF-Node1)

Required Heartbeat 1 Tag

The ExDesc must start with the
case sensitive string:

[UFO2_HEARTBEAT:#]

The number following the colon (#)
must be the Failover ID for the
interface running on IF-Node1.

The PointSource must match the
interfaces’ PointSource.

Location1 must match the ID for the
interfaces.

0 – 31 / None

Updated by the
interface on
IF-Node1

 [UFO2_HEARTBEAT:#]

(IF-Node2)

Required Heartbeat 2 Tag

The ExDesc must start with the
case sensitive string:

[UFO2_HEARTBEAT:#]

The number following the colon (#)
must be the Failover ID for the
interface running on IF-Node2.

The PointSource must match the
interfaces’ Point Source.

Location1 must match the ID for the
interfaces.

0 – 31 / None

Updated by the
interface on
IF-Node2

PI Interface for HTML 63

PI Tag ExDesc Required /
Optional

Description Value

 [UFO2_DEVICESTAT :#]

(IF-Node1)

Required Device Status 1 Tag

The ExDesc must start with the
case sensitive string:

[UFO2_DEVICESTAT:#]

The value following the colon (#)
must be the Failover ID for the
interface running on IF-Node1

The PointSource must match the
interfaces’ PointSource.

Location1 must match the ID for the
interfaces.

A lower value is a better status and
the interface with the lower status
will attempt to become the primary
interface.

The failover 1 device status tag is
very similar to the UniInt Health
Device Status tag except the data
written to this tag are integer
values. A value of 0 is good and a
value of 99 is OFF. Any value
between these two extremes may
result in a failover. The interface
client code updates these values
when the health device status tag is
updated.

0 – 99 / None

Updated by the
interface on
IF-Node1

 [UFO2_DEVICESTAT :#]

(IF-Node2)

Required Device Status 2 Tag

The ExDesc must start with the
case sensitive string:

[UFO2_DEVICESTAT:#]

The number following the colon (#)
must be the Failover ID for the
interface running on IF-Node2

The PointSource must match the
interfaces’ PointSource.

Location1 must match the ID for the
interfaces.

A lower value is a better status and
the interface with the lower status
will attempt to become the primary
interface.

0 – 99 / None

Updated by the
interface on
IF-Node2

 [UFO2_STATE:#]

(IF-Node1)

Optional State 1 Tag

The ExDesc must start with the
case sensitive string:

[UFO2_STATE:#]

The number following the colon (#)
must be the Failover ID for the
interface running on IF-Node1

The failover state tag is
recommended.

The failover state tags are digital
tags assigned to a digital state set
with the following values.

0 = Off: The interface has been
shut down.

1 = Backup No Data Source: The

0 – 5 / None

Normally updated
by the interface
currently in the
primary role.

UniInt Failover Configuration

64

PI Tag ExDesc Required /
Optional

Description Value

interface is running but cannot
communicate with the data source.

2 = Backup No PI Connection: The
interface is running and connected
to the data source but has lost its
communication to the PI Data
Archive.

3 = Backup: The interface is
running and collecting data
normally and is ready to take over
as primary if the primary interface
shuts down or experiences
problems.

4 = Transition: The interface stays
in this state for only a short period
of time. The transition period
prevents thrashing when more than
one interface attempts to assume
the role of primary interface.

5 = Primary: The interface is
running, collecting data and
sending the data to the PI Data
Archive.

 [UFO2_STATE:#]

(IF-Node2)

Optional State 2 Tag

The ExDesc must start with the
case sensitive string:

[UFO2_STATE:#]

The number following the colon (#)
must be the Failover ID for the
interface running on IF-Node2

The failover state tag is
recommended.

Normally updated
by the interface
currently in the
Primary state.

Values range
between 0 and 5.
See description of
State 1 tag.

PI Interface for HTML 65

Detailed Explanation of Synchronization through a Shared File
(Phase 2)

In a shared file failover configuration, there is no direct failover control information passed

between the data source and the interface. This failover scheme uses five PI tags to control

failover operation, and all failover communication between primary and backup interfaces

passes through a shared data file.

Once the interface is configured and running, the ability to read or write to the PI tags is not

required for the proper operation of failover. This solution does not require a connection to

the PI Data Archive after initial startup because the control point data are set and monitored

in the shared file. However, the PI tag values are sent to the PI Data Archive so that you can

monitor them with standard OSIsoft client tools.

You can force manual failover by changing the ActiveID point on the PI Data Archive to the

backup failover ID.

Business Network

Process Network

IF-Node1

PI-Interface.exe

/host=PrimaryPI

/UFO_ID=1

/UFO_OTHERID=2

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

IF-Node2

PI-Interface.exe

/host=SecondaryPI

/UFO_ID=2

/UFO_OTHERID=1

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

DataSource

DCS/PLC/Data Server

Client

Process Book

DataLink

PrimaryPI

PI Server

Role = 1

SecondaryPI

PI Server

Role = 2

Data register 0

.

.

.

Data register n

FileSvr

.\UFO\Intf_PS_1.dat

The figure above shows a typical network setup in the normal or steady state. The solid

magenta lines show the data path from the interface nodes to the shared file used for failover

synchronization. The shared file can be located anywhere in the network as long as both

interface nodes can read, write, and create the necessary file on the shared file machine.

OSIsoft strongly recommends that you put the file on a dedicated file server that has no other

role in the collection of data.

The major difference between synchronizing the interfaces through the data source (Phase 1)

and synchronizing the interfaces through the shared file (Phase 2) is where the control data is

located. When synchronizing through the data source, the control data is acquired directly

UniInt Failover Configuration

66

from the data source. We assume that if the primary interface cannot read the failover control

points, then it cannot read any other data. There is no need for a backup communications path

between the control data and the interface.

When synchronizing through a shared file, however, we cannot assume that loss of control

information from the shared file implies that the primary interface is down. We must account

for the possible loss of the path to the shared file itself and provide an alternate control path

to determine the status of the primary interface. For this reason, if the shared file is

unreachable for any reason, the interfaces use the PI Data Archive as an alternate path to pass

control data.

When the backup interface does not receive updates from the shared file, it cannot tell

definitively why the primary is not updating the file, whether the path to the shared file is

down, whether the path to the data source is down, or whether the interface itself is having

problems. To resolve this uncertainty, the backup interface uses the path to the PI Data

Archive to determine the status of the primary interface. If the primary interface is still

communicating with the PI Data Archive, then failover to the backup is not required.

However, if the primary interface is not posting data to the PI Data Archive, then the backup

must initiate failover operations.

The primary interface also monitors the connection with the shared file to maintain the

integrity of the failover configuration. If the primary interface can read and write to the

shared file with no errors but the backup control information is not changing, then the backup

is experiencing some error condition. To determine exactly where the problem exists, the

primary interface uses the path to the PI Data Archive to establish the status of the backup

interface. For example, if the backup interface information indicates that it has been

shutdown, it may have been restarted and is now experiencing errors reading and writing to

the shared file. Both primary and backup interfaces must always check their status through

the PI Data Archive to determine if one or the other is not updating the shared file and why.

Steady State Operation

Steady state operation is considered the normal operating condition. In this state, the primary

interface is actively collecting data and sending its data to PI points. The primary interface is

also updating its heartbeat value; monitoring the heartbeat value for the backup interface,

checking the active ID value, and checking the device status for the backup interface every

failover update interval on the shared file. Likewise, the backup interface is updating its

heartbeat value; monitoring the heartbeat value for the primary interface, checking the active

ID value, and checking the device status for the primary interface every failover update

interval on the shared file. As long as the heartbeat value for the primary interface indicates

that it is operating properly, the ActiveID has not changed, and the device status on the

primary interface is good, the backup interface will continue in this mode of operation.

An interface configured for hot failover will have the backup interface actively collecting and

queuing data but not sending that data to PI. An interface for warm failover in the backup role

is not actively collecting data from the data source even though it may be configured with PI

tags and may even have a good connection to the data source. An interface configured for

cold failover in the backup role is not connected to the data source and upon initial startup

will not have configured PI tags.

The interaction between the interface and the shared file is fundamental to failover. The

discussion that follows only refers to the data written to the shared file. However, every value

written to the shared file is echoed to the tags on the PI Data Archive. Updating of the tags on

the PI Data Archive is assumed to take place unless communication with the PI Data Archive

PI Interface for HTML 67

is interrupted. The updates to the PI Data Archive will be buffered by bufserv or BufSS in

this case.

In a hot failover configuration, each interface participating in the failover solution will queue

three failover intervals worth of data to prevent any data loss. When a failover occurs, there

may be a period of overlapping data for up to 3 intervals. The exact amount of overlap is

determined by the timing and the cause of the failover and may be different every time. Using

the default update interval of 5 seconds will result in overlapping data between 0 and 15

seconds. The no data loss claim for hot failover is based on a single point of failure. If both

interfaces have trouble collecting data for the same period of time, data will be lost during

that time.

As mentioned above, each interface has its own heartbeat value. In normal operation, the

Heartbeat value on the shared file is incremented by UniInt from 1 – 15 and then wraps

around to a value of 1 again. UniInt increments the heartbeat value on the shared file every

failover update interval. The default failover update interval is 5 seconds. UniInt also reads

the heartbeat value for the other interface copy participating in failover every failover update

interval. If the connection to the PI Data Archive is lost, the value of the heartbeat will be

incremented from 17 – 31 and then wrap around to a value of 17 again. Once the connection

to the PI Data Archive is restored, the heartbeat values will revert back to the 1 – 15 range.

During a normal shutdown process, the heartbeat value will be set to zero.

During steady state, the ActiveID will equal the value of the failover ID of the primary

interface. This value is set by UniInt when the interface enters the primary state and is not

updated again by the primary interface until it shuts down gracefully. During shutdown, the

primary interface will set the ActiveID to zero before shutting down. The backup interface

has the ability to assume control as primary even if the current primary is not experiencing

problems. This can be accomplished by setting the ActiveID tag on the PI Data Archive to

the ActiveID of the desired interface copy.

As previously mentioned, in a hot failover configuration the backup interface actively collects

data but does not send its data to PI points. To eliminate any data loss during a failover, the

backup interface queues data in memory for three failover update intervals. The data in the

queue is continuously updated to contain the most recent data. Data older than three update

intervals is discarded if the primary interface is in a good status as determined by the backup.

If the backup interface transitions to the primary, it will have data in its queue to send to the

PI point. This queued data is sent to the PI points using the same function calls that would

have been used had the interface been in a primary state when the function call was received

from UniInt. If UniInt receives data without a timestamp, the primary copy uses the current

PI Data Archive time to timestamp data sent to PI points. Likewise, the backup copy

timestamps data it receives without a timestamp with the current PI Data Archive time before

queuing its data. This preserves the accuracy of the timestamps.

UniInt Failover Configuration

68

Failover Configuration Using PI ICU

The use of the PI ICU is the recommended and safest method for configuring the interface for

UniInt failover. With the exception of the notes described in this section, the interface shall

be configured with the PI ICU as described in the Configuring the Interface with PI ICU

section of this manual.

Note: With the exception of the /UFO_ID and /UFO_OtherID startup command-

line parameters, the UniInt failover scheme requires that both copies of the interface
have identical startup command files. This requirement causes the PI ICU to
produce a message when creating the second copy of the interface stating that the
“PS/ID combo already in use by the interface” as shown in Figure 2 below. Ignore
this message and click the Add button.

Create the Interface Instance with PI ICU

If the interface does not already exist in the ICU it must first be created. The procedure for

doing this is the same as for non-failover interfaces. When configuring the second instance

for UniInt Failover the Point Source and Interface ID # boxes will be in yellow and a

message will be displayed saying this is already in use. This should be ignored.

Figure 2: PI ICU configuration screen shows that the “PS/ID combo is already in use by

the interface.” The user must ignore the yellow boxes, which indicate errors, and click the

Add button to configure the interface for failover.

PI Interface for HTML 69

Configuring the UniInt Failover Startup Parameters with PI ICU

There are three interface startup parameters that control UniInt failover: /UFO_ID,

/UFO_OtherID, and /UFO_Interval. The UFO stands for UniInt Failover. The /UFO_ID

and /UFO_OtherID parameters are required for the interface to operate in a failover

configuration, but the /UFO_Interval is optional. Each of these parameters is described in

detail in Configuring UniInt Failover through a Shared File (Phase 2) section and Start-Up

Parameters

Figure 3: The figure above illustrates the PI ICU failover configuration screen showing

the UniInt failover startup parameters (Phase 2). This copy of the interface defines its

Failover ID as 2 (/UFO_ID=2) and the other Interfaces Failover ID as 1

(/UFO_OtherID=1). The other failover interface copy must define its Failover ID as 1

(/UFO_ID=1) and the other Interface Failover ID as 2 (/UFO_OtherID=2) in its ICU

failover configuration screen. It also defines the location and name of the

synchronization file as well as the type of failover as COLD.

Creating the Failover State Digital State Set

The UFO_State digital state set is used in conjunction with the failover state digital tag. If

the UFO_State digital state set has not been created yet, it can be created using either the

Failover page of the ICU (1.4.1.0 or later) or the Digital States plug-in in the SMT 3 Utility

(3.0.0.7 or later).

UniInt Failover Configuration

70

Using the PI ICU Utility to create Digital State Set

To use the UniInt Failover page to create the UFO_State digital state set, right-click on any

of the failover tags in the tag list and then click the Create UFO_State Digital Set on PI Data

Archive XXXXXX… command, where XXXXXX is the PI Data Archive where the points will

be or are created.

This command will be unavailable if the UFO_State digital state set already exists on the

XXXXXX PI Data Archive.

Using the PI SMT 3 Utility to create Digital State Set

Optionally the Export UFO_State Digital Set (.csv) command on the shortcut menu can be

selected to create a comma-separated file to be imported via the System Management Tools

(SMT3) (version 3.0.0.7 or later) or use the

UniInt_Failover_DigitalSet_UFO_State.csv file included in the installation kit.

The procedure below outlines the steps necessary to create a digital set on a PI Data Archive

using the Import from File command found in the SMT3 application. The procedure assumes

the user has a basic understanding of the SMT3 application.

1. Open the SMT3 application.

2. Select the appropriate PI Data Archive from the PI Data Archives window. If the

desired PI Data Archive is not listed, add it using the PI Connection Manager. A

view of the SMT application is shown in Figure 4 below.

3. From the System Management Plug-Ins window, expand Points then select

Digital States. A list of available digital state sets will be displayed in the main

window for the selected PI Data Archive. Refer to Figure 4 below.

4. In the main window, right-click on the desired PI Data Archive and select the Import

from File command. Refer to Figure 4 below.

PI Interface for HTML 71

Figure 4: PI SMT application configured to import a digital state set file. The PI Data

Archives window shows the “localhost” PI Data Archive selected along with the System

Management Plug-Ins window showing the Digital States Plug-In as being selected. The

digital state set file can now be imported by selecting the Import from File command.

5. Navigate to and select the UniInt_Failover_DigitalSet_UFO_State.csv file

for import using the Browse icon on the display. Select the desired Overwrite

Options. Refer to Figure 5 below.

Figure 5: PI SMT application Import Digital Set(s) window. This view shows the

UniInt_Failover_DigitalSet_UFO_State.csv file as being selected for import.

Select the desired Overwrite Options by choosing the appropriate option button.

6. Click on the OK button. Refer to Figure 5 above.

7. The UFO_State digital set is created as shown in Figure 6 below.

UniInt Failover Configuration

72

Figure 6: The PI SMT application showing the UFO_State digital set created on the

“localhost” PI Data Archive.

PI Interface for HTML 73

Creating the UniInt Failover Control and Failover State Tags (Phase 2)

The ICU can be used to create the UniInt Failover Control and State Tags.

To use the ICU Failover page to create these tags simply right-click any of the failover tags

in the tag list and click the Create all points (UFO Phase 2) command.

If this menu choice is unavailable, it is because the UFO_State digital state set has not been

created on the PI Data Archive yet. Create UFO_State Digital Set on PI Data Archive

xxxxxxx… on the shortcut menu can be used to create that digital state set. After this has been

done then the Create all points (UFO Phase2) command should be available.

Once the failover control and failover state tags have been created the Failover page of the

ICU should look similar to the illustration below.

Interface Node Clock

74

Chapter 10. Interface Node Clock

Make sure that the time and time zone settings on the computer are correct. To confirm, run

the Date/Time applet located in the Windows Control Panel. If the locale where the interface

node resides observes Daylight Saving Time, check the Automatically adjust clock for

daylight saving changes box. For example,

In addition, make sure that the TZ environment variable is not defined. All of the currently

defined environment variables can be viewed by opening a Command Prompt window and

typing set. That is,

C:> set

Confirm that TZ is not in the resulting list. If it is, run the System applet of the Control

Panel, click the Environment Variables button under the Advanced tab, and remove TZ from

the list of environment variables.

PI Interface for HTML 75

Chapter 11. Security

The PI Firewall Database and the PI Trust Database must be configured so that the interface

is allowed to write data to the PI Data Archive.

The Trust Database, which is maintained by the Base Subsystem, replaces the Proxy

Database used prior to PI Data Archive version 3.3. The PI Trust Database maintains all the

functionality of the proxy mechanism while being more secure.

See “Trust Login Security” in the chapter “Managing Security” of the PI Data Archive

System Management Guide.

If the interface cannot write data to the PI Data Archive because it has insufficient privileges,

a -10401 error will be reported in the pipc.log file. If the interface cannot send data to a

PI2 Data Archive, it writes a -999 error. See the section Appendix A: Error and Informational

Messages for additional information on error messaging.

Authentication

Interface instances are usually configured to run as Windows services. Since a service runs in

a non-interactive context, a PI Trust is required to authenticate the interface service to the PI

Data Archive.

PI Data Archive v3.3 and Higher

Security configuration using piconfig

For PI Data Archive v3.3 and higher, the following example demonstrates how to edit the PI

Trust table:

C:\PI\adm> piconfig

@table pitrust

@mode create

@istr Trust,IPAddr,NetMask,PIUser

a_trust_name,192.168.100.11,255.255.255.255,piadmins

@quit

For the above,

Trust: An arbitrary name for the trust table entry; in the above example,

a_trust_name

IPAddr: the IP Address of the computer running the interface; in the above example,

192.168.100.11

NetMask: the network mask; 255.255.255.255 specifies an exact match with IPAddr

PIUser: the PI identify, user, or group the interface is entrusted as

Security Configuring using Trust Editor

The Trust Editor plug-in for PI System Management Tools 3.x may also be used to edit the PI

Trust table.

Security

76

See the PI System Management chapter in the PI Data Archive manual for more details on

security configuration.

PI Data Archive v3.2

For PI Data Archive v3.2, the following example demonstrates how to edit the PI Proxy table:

C:\PI\adm> piconfig

@table pi_gen,piproxy

@mode create

@istr host,proxyaccount

piapimachine,piadmin

@quit

In place of piapimachine, put the name of the interface node as it is seen by the PI Data

Archive.

Authorization

For an interface instance to start and write data to PI points, the following permissions must

be granted to the PI identity, user, or group in the PI Trust that authenticates the interface

instance.

Database Security Permission Notes

PIPOINT r

Point Database Permission Notes

PtSecurity r

DataSecurity r,w Unbuffered

 r Buffered (the buffering application
requires r,w for the interface points)

The permissions in the preceding table must be granted for every PI point that is configured

for the interface instance. Observe that buffering on the interface node is significant to PI

point permissions.

When the interface instance is running on an unbuffered interface node, the interface instance

sends PI point updates directly to the PI Data Archive. Therefore, DataSecurity write access

must be granted to the PI identity, user, or group in the PI Trust that authenticates the

interface instance.

When the interface instance is running on a buffered interface node, the interface instance

sends PI point updates to the local buffering application, which relays the PI point updates to

the PI Data Archive. The buffering application is a separate client to the PI Data Archive and,

therefore, authenticates independently of the interface instances. DataSecurity write access

must be granted to the PI identity, user, or group in the PI Trust that authenticates the

buffering application.

PI Interface for HTML 77

Chapter 12. Starting / Stopping the Interface

This section describes starting and stopping the interface once it has been installed as a

service. See the UniInt Interface User Manual to run the interface interactively.

Starting Interface as a Service

If the interface was installed as service, it can be started from PI ICU, the Services control

panel or with the command:

PIHTML.exe /start

To start the interface service with PI ICU, use the button on the PI ICU toolbar.

A message will inform the user of the status of the interface service. Even if the message

indicates that the service has started successfully, double check through the Services control

panel applet. Services may terminate immediately after startup for a variety of reasons, and

one typical reason is that the service is not able to find the command-line parameters in the

associated .bat file. Verify that the root name of the .bat file and the .exe file are the same,

and that the .bat file and the .exe file are in the same directory. Further troubleshooting of

services might require consulting the pipc.log file, Windows Event Viewer, or other

sources of log messages. See the section Appendix A: Error and Informational Messages for

additional information.

Stopping Interface Running as a Service

If the interface was installed as service, it can be stopped at any time from PI ICU, the

Services control panel or with the command:

PIHTML.exe /stop

The service can be removed by:

PIHTML.exe /remove

To stop the interface service with PI ICU, use the button on the PI ICU toolbar.

Buffering

78

Chapter 13. Buffering

Buffering refers to an interface node’s ability to temporarily store the data that interfaces

collect and to forward these data to the appropriate PI Data Archives. OSIsoft strongly

recommends that you enable buffering on your interface nodes. Otherwise, if the interface

node stops communicating with the PI Data Archive, you lose the data that your interfaces

collect.

The PI SDK installation kit installs two buffering applications: the PI Buffer Subsystem

(PIBufss) and the PI API Buffer Server (Bufserv). PIBufss and Bufserv are mutually

exclusive; that is, on a particular computer, you can run only one of them at any given time.

If you have PI Data Archives that are part of a PI Data collective, PIBufss supports n-way

buffering. N-way buffering refers to the ability of a buffering application to send the same

data to each of the PI Data Archives in a PI Data collective. (Bufserv also supports n-way

buffering, but OSIsoft recommends that you run PIBufss instead.)

Which Buffering Application to Use

You should use PIBufss whenever possible because it offers better throughput than Bufserv.

In addition, if the interfaces on an interface node are sending data to a PI Data collective,

PIBufss guarantees identical data in the archive records of all the PI Data Archives that are

part of that PI Data collective.

You can use PIBufss only under the following conditions:

 the PI Data Archive version is at least 3.4.375.x; and

 all of the interfaces running on the interface node send data to the same PI Data

Archive or to the same PI Data collective.

If any of the following scenarios apply, you must use Bufserv:

 the PI Data Archive version is earlier than 3.4.375.x; or

 the interface node runs multiple interfaces, and these interfaces send data to multiple

PI Data Archives that are not part of a single PI Data collective.

If an interface node runs multiple interfaces, and these interfaces send data to two or more PI

Data collectives, then neither PIBufss nor Bufserv is appropriate. The reason is that PIBufss

and Bufserv can buffer data only to a single PI Data collective. If you need to buffer to more

than one PI Data collective, you need to use two or more interface nodes to run your

interfaces.

It is technically possible to run Bufserv on the PI Data Archive Node. However, OSIsoft does

not recommend this configuration.

How Buffering Works

A complete technical description of PIBufss and Bufserv is beyond the scope of this

document. However, the following paragraphs provide some insights on how buffering

works.

PI Interface for HTML 79

When an interface node has buffering enabled, the buffering application (PIBufss or Bufserv)

connects to the PI Data Archive. It also creates shared memory storage.

When an interface program makes a PI API function call that writes data to the PI Data

Archive (for example, pisn_sendexceptionqx()), the PI API checks whether buffering is

enabled. If it is, these data writing functions do not send the interface data to the PI Data

Archive. Instead, they write the data to the shared memory storage that the buffering

application created.

The buffering application (either Bufserv or PIBufss) in turn

 reads the data in shared memory, and

 if a connection to the PI Data Archive exists, sends the data to the PI Data Archive;

or

 if there is no connection to the PI Data Archive, continues to store the data in shared

memory (if shared memory storage is available) or writes the data to disk (if shared

memory storage is full).

When the buffering application re-establishes connection to the PI Data Archive, it writes to

the PI Data Archive the interface data contained in both shared memory storage and disk.

(Before sending data to the PI Data Archive, PIBufss performs further tasks such as data

validation and data compression, but the description of these tasks is beyond the scope of this

document.)

When PIBufss writes interface data to disk, it writes to multiple files. The names of these

buffering files are PIBUFQ_*.DAT.

When Bufserv writes interface data to disk, it writes to a single file. The name of its buffering

file is APIBUF.DAT.

As a previous paragraph indicates, PIBufss and Bufserv create shared memory storage at

startup. These memory buffers must be large enough to accommodate the data that an

interface collects during a single scan. Otherwise, the interface may fail to write all its

collected data to the memory buffers, resulting in data loss. The buffering configuration

section of this chapter provides guidelines for sizing these memory buffers.

When buffering is enabled, it affects the entire interface node. That is, you do not have a

scenario whereby the buffering application buffers data for one interface running on an

interface node but not for another interface running on the same interface node.

Buffering and PI Data Archive Security

After you enable buffering, it is the buffering application – and not the interface program –

 that writes data to the PI Data Archive. If the PI Data Archive’s trust table contains a trust

entry that allows all applications on an interface node to write data, then the buffering

application is able to write data to the PI Data Archive.

However, if the PI Data Archive contains an interface-specific PI Trust entry that allows a

particular interface program to write data, you must have a PI Trust entry specific to

buffering. The following are the appropriate entries for the Application Name field of a PI

Trust entry:

Buffering Application Application Name field for PI Trust

PI Buffer Subsystem PIBufss.exe

Buffering

80

Buffering Application Application Name field for PI Trust

PI API Buffer Server APIBE (if the PI API is using 4 character process
names)

APIBUF (if the PI API is using 8 character process
names)

To use a process name greater than 4 characters in length for a trust application name, use the

LONGAPPNAME=1 in the PIClient.ini file.

See the Security chapter for additional information.

Enabling Buffering on an Interface Node with the ICU

The ICU allows you to select either PIBufss or Bufserv as the buffering application for your

interface node. Run the ICU and select Tools > Buffering.

Choose Buffer Type

To select PIBufss as the buffering application, choose Enable buffering with PI Buffer

Subsystem.

To select Bufserv as the buffering application, choose Enable buffering with API Buffer

Server.

PI Interface for HTML 81

If a warning message such as the following appears, click Yes.

Buffering Settings

There are a number of settings that affect the operation of PIBufss and Bufserv. The

Buffering Settings section allows you to set these parameters. If you do not enter values for

these parameters, PIBufss and Bufserv use default values.

PIBufss

For PIBufss, the paragraphs below describe the settings that may require user intervention.

Please contact OSIsoft Technical Support for assistance in further optimizing these and all

remaining settings.

Primary and Secondary Memory Buffer Size (Bytes)

This is a key parameter for buffering performance. The sum of these two memory buffer sizes

must be large enough to accommodate the data that an interface collects during a single scan.

A typical event with a Float32 point type requires about 25 bytes. If an interface writes data

to 5,000 points, it can potentially send 125,000 bytes (25 * 5000) of data in one scan. As a

result, the size of each memory buffer should be 62,500 bytes.

The default value of these memory buffers is 32,768 bytes. OSIsoft recommends that these

two memory buffer sizes should be increased to the maximum of 2000000 for the best

buffering performance.

Buffering

82

Send rate (milliseconds)

Send rate is the time in milliseconds that PIBufss waits between sending up to the Maximum

transfer objects (described below) to the PI Data Archive. The default value is 100. The valid

range is 0 to 2,000,000.

Maximum transfer objects

Maximum transfer objects is the maximum number of events that PIBufss sends between

each Send rate pause. The default value is 500. The valid range is 1 to 2,000,000.

Event Queue File Size (Mbytes)

This is the size of the event queue files. PIBufss stores the buffered data to these files. The

default value is 32. The range is 8 to 131072 (8 to 128 Gbytes). Please see the section entitled

“Queue File Sizing” in the PIBufss.chm file for details on how to appropriately size the event

queue files.

Event Queue Path

This is the location of the event queue file. The default value is [PIHOME]\DAT.

For optimal performance and reliability, OSIsoft recommends that you place the PIBufss

event queue files on a different drive/controller from the system drive and the drive with the

Windows paging file. (By default, these two drives are the same.)

Bufserv

For Bufserv, the paragraphs below describe the settings that may require user intervention.

Please contact OSIsoft Technical Support for assistance in further optimizing these and all

remaining settings.

PI Interface for HTML 83

Maximum buffer file size (KB)

This is the maximum size of the buffer file ([PIHOME]\DAT\APIBUF.DAT). When Bufserv

cannot communicate with the PI Data Archive, it writes and appends data to this file. When

the buffer file reaches this maximum size, Bufserv discards data.

The default value is 2,000,000 KB, which is about 2 GB. The range is from 1 to 2,000,000.

Primary and Secondary Memory Buffer Size (Bytes)

This is a key parameter for buffering performance. The sum of these two memory buffer sizes

must be large enough to accommodate the data that an interface collects during a single scan.

A typical event with a Float32 point type requires about 25 bytes. If an interface writes data

to 5,000 points, it can potentially send 125,000 bytes (25 * 5000) of data in one scan. As a

result, the size of each memory buffer should be 62,500 bytes.

The default value of these memory buffers is 32,768 bytes. OSIsoft recommends that these

two memory buffer sizes should be increased to the maximum of 2000000 for the best

buffering performance.

Send rate (milliseconds)

Send rate is the time in milliseconds that Bufserv waits between sending up to the Maximum

transfer objects (described below) to the PI Data Archive. The default value is 100. The valid

range is 0 to 2,000,000.

Maximum transfer objects

Max transfer objects is the maximum number of events that Bufserv sends between each

Send rate pause. The default value is 500. The valid range is 1 to 2,000,000.

Buffered Servers

The Buffered Servers section allows you to define the PI Data Archives or PI Data collective

that the buffering application writes data.

PIBufss

PIBufss buffers data only to a single PI Data Archive or a PI Data collective. Select the PI

Data Archive or the PI Data collective from the Buffering to PI Data collective/archive drop

down list box.

The following screen shows that PIBufss is configured to write data to a standalone PI Data

Archive named starlight. Notice that the Replicate data to all PI Data collective member

nodes check box is disabled because this PI Data Archive is not part of a PI Data collective.

(PIBufss automatically detects whether a PI Data Archive is part of a PI Data collective.)

Buffering

84

The following screen shows that PIBufss is configured to write data to a PI Data collective

named admiral. By default, PIBufss replicates data to all PI Data collective members. That

is, it provides n-way buffering.

You can override this option by not checking the Replicate data to all PI Data collective

member nodes check box. Then, uncheck (or check) the PI Data collective members as

desired.

PI Interface for HTML 85

Bufserv

Bufserv buffers data to a standalone PI Data Archive, or to multiple standalone PI Data

Archives. (If you want to buffer to multiple PI Data Archives that are part of a PI Data

collective, you should use PIBufss.)

If the PI Data Archive to which you want Bufserv to buffer data is not in the Server list, enter

its name in the Add a server box and click the Add Server button. This PI Data Archive name

must be identical to the API Hostname entry:

The following screen shows that Bufserv is configured to write to a standalone PI Data

Archive named etamp390. You use this configuration when all the interfaces on the interface

node write data to etamp390.

The following screen shows that Bufserv is configured to write to two standalone PI Data

Archives, one named etamp390 and the other one named starlight. You use this

configuration when some of the interfaces on the interface node write data to etamp390 and

some write to starlight.

Buffering

86

Installing Buffering as a Service

Both the PIBufss and Bufserv applications run as a Service.

PI Buffer Subsystem Service

Use the PI Buffer Subsystem Service page to configure PIBufss as a Service. This page also

allows you to start and stop the PIBufss service.

PIBufss does not require the logon rights of the local administrator account. It is sufficient to

use the LocalSystem account instead. Although the screen below shows asterisks for the

LocalSystem password, this account does not have a password.

PI Interface for HTML 87

API Buffer Server Service

Use the API Buffer Server Service page to configure Bufserv as a Service. This page also

allows you to start and stop the Bufserv Service

Bufserv version 1.6 and later does not require the logon rights of the local administrator

account. It is sufficient to use the LocalSystem account instead. Although the screen below

shows asterisks for the LocalSystem password, this account does not have a password.

Buffering

88

PI Interface for HTML 89

Chapter 14. Interface Diagnostics Configuration

The PI Point Configuration chapter provides information on building PI points for collecting

data from the device. This chapter describes the configuration of points related to interface

diagnostics.

Note: The procedure for configuring interface diagnostics is not specific to this
interface. Thus, for simplicity, the instructions and screenshots that follow refer to an
interface named ModbusE.

Some of the points that follow refer to a “performance summary interval”. This interval is 8

hours by default. You can change this parameter via the Scan performance summary box in

the UniInt – Debug parameter category page:

Scan Class Performance Points

A Scan Class Performance Point measures the amount of time (in seconds) that this interface

takes to complete a scan. The interface writes this scan completion time to millisecond

resolution. Scan completion times close to 0 indicate that the interface is performing

optimally. Conversely, long scan completion times indicate an increased risk of missed or

skipped scans. To prevent missed or skipped scans, you should distribute the data collection

points among several scan classes.

You configure one Scan Class Performance Point for each scan class in this interface. From

the ICU, select this interface from the Interface drop-down list and click UniInt-Performance

Points in the parameter category pane:

Interface Diagnostics Configuration

90

Right-click the row for a particular Scan Class # to open the shortcut menu:

You need not restart the interface for it to write values to the Scan Class Performance Points.

To see the current values (snapshots) of the Scan Class Performance Points, right-click and

select Refresh Snapshots.

Create / Create All

To create a Performance Point, right-click the line belonging to the tag to be created, and

select Create. Click Create All to create all the Scan Class Performance Points.

Delete

To delete a Performance Point, right-click the line belonging to the tag to be deleted, and

select Delete.

Correct / Correct All

If the “Status” of a point is marked “Incorrect”, the point configuration can be automatically

corrected by ICU by right-clicking on the line belonging to the tag to be corrected, and

selecting Correct. The Performance Points are created with the following PI attribute values.

PI Interface for HTML 91

If ICU detects that a Performance Point is not defined with the following, it will be marked

Incorrect: To correct all points, click Correct All.

The Performance Points are created with the following PI attribute values:

Attribute Details

Tag Tag name that appears in the list box

Point Source Point Source for tags for this interface, as specified on the first tab

Compressing Off

Excmax 0

Descriptor Interface name + “ Scan Class # Performance Point”

Rename

Right-click the line belonging to the tag and select Rename to rename the Performance Point.

Column descriptions

Status

The Status column in the Performance Points table indicates whether the Performance Point

exists for the scan class in the Scan Class # column.

Created – Indicates that the Performance Point does exist

Not Created – Indicates that the Performance Point does not exist

Deleted – Indicates that a Performance Point existed, but was just deleted by the user

Scan Class #

The Scan Class column indicates which scan class the Performance Point in the Tagname

column belongs to. There will be one scan class in the Scan Class column for each scan class

listed in the Scan Classes box on the General page.

Tagname

The Tagname column holds the Performance Point tag name.

PS

This is the point source used for these performance points and the interface.

Location1

This is the value used by the interface for the /ID=# point attribute.

ExDesc

This is the used to tell the interface that these are performance points and the value is used to

corresponds to the /ID=# command line parameter if multiple copies of the same interface

are running on the interface node.

Interface Diagnostics Configuration

92

Snapshot

The Snapshot column holds the snapshot value of each Performance Point that exists in PI.

The Snapshot column is updated when the Performance Points page is selected, and when the

interface is first loaded. You may have to scroll to the right to see the snapshots.

Performance Counters Points

When running as a Service or interactively, this interface exposes performance data via

Windows Performance Counters. Such data include items like:

 the amount of time that the interface has been running;

 the number of points the interface has added to its point list;

 the number of tags that are currently updating among others

There are two types or instances of Performance Counters that can be collected and stored in

PI Points. The first is (_Total) which is a total for the Performance Counter since the

interface instance was started. The other is for individual scan classes (Scan Class x) where x

is a particular scan class defined for the interface instance that is being monitored.

OSIsoft’s PI Performance Monitor interface is capable of reading these performance values

and writing them to PI points. Please see the Performance Monitor Interface for more

information.

If there is no PI Performance Monitor Interface registered with the ICU in the Module

Database for the PI Data Archive the interface is sending its data to, you cannot use the ICU

to create any interface instance’s Performance Counters Points:

After installing the PI Performance Monitor Interface as a service, select this interface

instance from the Interface drop-down list, then click Performance Counters in the parameter

categories pane, and right-click on the row containing the Performance Counters Point you

wish to create. This will open the shortcut menu:

PI Interface for HTML 93

Click Create to create the Performance Counters Point for that particular row. Click Create

All to create all the Performance Counters Points listed which have a status of Not Created.

To see the current values (snapshots) of the created Performance Counters Points, right-click

on any row and select Refresh Snapshots.

Note: The PI Performance Monitor Interface – and not this interface – is responsible
for updating the values for the Performance Counters Points in PI. So, make sure
that the PI Performance Monitor Interface is running correctly.

Performance Counters

In the following lists of Performance Counters the naming convention used will be:

“PerformanceCounterName” (.PerformanceCounterPointSuffix)

The tagname created by the ICU for each Performance Counter point is based on the setting

found under the Tools  Options  Naming Conventions  Performance Counter Points.

The default for this is “sy.perf.[machine].[if service] followed by the Performance Counter

Point suffix.

Performance Counters for both (_Total) and (Scan Class x)

“Point Count” (.point_count)

A .point_count Performance Counters Point is available for each scan class of this interface

as well as an “(_Total)” for the interface instance.

The .point_count Performance Counters Point indicates the number of PI Points per scan

class or the total number for the interface instance. This point is similar to the Health Point

[UI_SCPOINTCOUNT] for scan classes and [UI_POINTCOUNT] for totals.

Interface Diagnostics Configuration

94

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1(Scan Class 1).point_count”) refers to scan

class 1, “(Scan Class 2)” refers to scan class 2, and so on. The tag containing “(_Total)”

refers to the sum of all scan classes.

“Scheduled Scans: % Missed” (.sched_scans_%missed)

A .sched_scans_%missed Performance Counters Point is available for each scan class of this

interface as well as an “(_Total)” for the interface instance.

The .sched_scans_%missed Performance Counters Point indicates the percentage of scans the

interface missed per scan class or the total number missed for all scan classes since startup. A

missed scan occurs if the interface performs the scan one second later than scheduled.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1(Scan Class 1).sched_scans_%missed”) refers

to scan class 1, “(Scan Class 2)” refers to scan class 2, and so on. The tag containing

“(_Total)” refers to the sum of all scan classes.

“Scheduled Scans: % Skipped” (.sched_scans_%skipped)

A .sched_scans_%skipped Performance Counters Point is available for each scan class of this

interface as well as an “(_Total)” for the interface instance.

The .sched_scans_%skipped Performance Counters Point indicates the percentage of scans

the interface skipped per scan class or the total number skipped for all scan classes since

startup. A skipped scan is a scan that occurs at least one scan period after its scheduled time.

This point is similar to the [UI_SCSKIPPED] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1(Scan Class 1).sched_scans_%skipped”)

refers to scan class 1, “(Scan Class 2)” refers to scan class 2, and so on. The tag containing

“(_Total)” refers to the sum of all scan classes.

“Scheduled Scans: Scan count this interval” (.sched_scans_this_interval)

A .sched_scans_this_interval Performance Counters Point is available for each scan class of

this interface as well as an “(_Total)” for the interface instance.

The .sched_scans_this_interval Performance Counters Point indicates the number of scans

that the interface performed per performance summary interval for the scan class or the total

number of scans performed for all scan classes during the summary interval. This point is

similar to the [UI_SCSCANCOUNT] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1(Scan Class 1).sched_scans_this_interval”

refers to scan class 1, “(Scan Class 2)” refers to scan class 2, and so on. The tag containing

“(_Total)” refers to the sum of all scan classes.

PI Interface for HTML 95

Performance Counters for (_Total) only

“Device Actual Connections” (.Device_Actual_Connections)

The .Device_Actual_Connections Performance Counters Point stores the actual number of

foreign devices currently connected and working properly out of the expected number of

foreign device connections to the interface. This value will always be less than or equal to the

Device Expected Connections counter.

“Device Expected Connections” (.Device_Expected_Connections)

The .Device_Expected_Connections Performance Counters Point stores the total number of

foreign device connections for the interface. This is the expected number of foreign device

connections configured that should be working properly at runtime. If the interface can only

communicate with 1 foreign device then the value of this counter will always be one. If the

interface can support multiple foreign device connections then this is the total number of

expected working connections configured for this interface.

“Device Status” (.Device_Status)

The .Device_Status Performance Counters Point stores communication information about the

interface and the connection to the foreign device(s). The value of this counter is based on the

expected connections, actual connections and value of the /PercentUp command line

option. If the device status is good then the value is ‘0’. If the device status is bad then the

value is ‘1’. If the interface only supports connecting to 1 foreign device then the

/PercentUp command line value does not change the results of the calculation. If for

example the interface can connect to 10 devices and 5 are currently working then the value of

the /PercentUp command line parameter is applied to determine the Device Status. If the

value of the /PercentUp command line parameter is set to 50 and at least 5 devices are

working then the DeviceStatus will remain good (that is, have a value of zero).

“Failover Status” (.Failover_Status)

The .Failover_Status Performance Counters Point stores the failover state of the interface

when configured for UniInt failover. The value of the counter will be ‘0’ when the interface is

running as the primary interface in the failover configuration. If the interface is running in

backup mode then the value of the counter will be ‘1’.

“Interface up-time (seconds)” (.up_time)

The .up_time Performance Counters Point indicates the amount of time (in seconds) that this

interface has been running. At startup the value of the counter is zero. The value will continue

to increment until it reaches the maximum value for an unsigned integer. Once it reaches this

value then it will start back over at zero.

“IO Rate (events/second)” (.io_rates)

The .io_rates Performance Counters Point indicates the rate (in event per second) at which

this interface writes data to its input tags. (As of UniInt 4.5.0.x and later this performance

counters point will no longer be available.)

Interface Diagnostics Configuration

96

“Log file message count” (.log_file_msg_count)

The .log_file_msg_count Performance Counters Point indicates the number of messages that

the interface has written to the log file. This point is similar to the [UI_MSGCOUNT] Health

Point.

“PI Status” (PI_Status)

The .PI_Status Performance Counters Point stores communication information about the

interface and the connection to the PI Data Archive. If the interface is properly

communicating with the PI Data Archive then the value of the counter is ‘0’. If the

communication to the PI Data Archive goes down for any reason then the value of the

counter will be ‘1’. Once the interface is properly communicating with the PI Data Archive

again then the value will change back to ‘0’.

“Points added to the interface” (.pts_added_to_interface)

The .pts_added_to_interface Performance Counter Point indicates the number of points the

interface has added to its point list. This does not include the number of points configured at

startup. This is the number of points added to the interface after the interface has finished a

successful startup.

“Points edited in the interface”(.pts_edited_in_interface)

The .pts_edited_in_interface Performance Counters Point indicates the number of point edits

the interface has detected. The interface detects edits for those points whose PointSource

attribute matches the /ps= parameter and whose Location1 attribute matches the /id=

parameter of the interface.

“Points Good” (.Points_Good)

The .Points_Good Performance Counters Point is the number of points that have sent a good

current value to PI. A good value is defined as any value that is not a system digital state

value. A point can either be Good, In Error, or Stale. The total of Points Good, Points In

Error, and Points State will equal the Point Count. There is one exception to this rule. At

startup of an interface, the Stale timeout must elapse before the point will be added to the

Stale Counter. Therefore the interface must be up and running for at least 10 minutes for all

tags to belong to a particular Counter.

“Points In Error” (.Points_In_Error)

The .Points_In_Error Performance Counters Point indicates the number of points that have

sent a current value to PI that is a system digital state value. Once a point is in the In Error

count it will remain in the In Error count until the point receives a new, good value. Points in

Error do not transition to the Stale Counter. Only good points become stale.

“Points removed from the interface” (.pts_removed_from_interface)

The .pts_removed_from_interface Performance Counters Point indicates the number of points

that have been removed from the interface configuration. A point can be removed from the

interface when one of the point attributes is updated and the point is no longer a part of the

interface configuration. For example, changing the PointSource, Location1, or Scan attribute

can cause the tag to no longer be a part of the interface configuration.

PI Interface for HTML 97

“Points Stale 10(min)” (.Points_Stale_10min)

The .Points_Stale_10min Performance Counters Point indicates the number of good points

that have not received a new value in the last 10 minutes. If a point is Good, then it will

remain in the good list until the Stale timeout elapses. At this time if the point has not

received a new value within the Stale Period then the point will move from the Good count to

the Stale count. Only points that are Good can become Stale. If the point is in the In Error

count then it will remain in the In Error count until the error clears. As stated above, the total

count of Points Good, Points In Error, and Points Stale will match the Point Count for the

interface.

“Points Stale 30(min)” (.Points_Stale_30min)

The .Points_Stale_30min Performance Counters Point indicates the number of points that

have not received a new value in the last 30 minutes. For a point to be in the Stale 30 minute

count it must also be a part of the Stale 10 minute count.

“Points Stale 60(min)” (.Points_Stale_60min)

The .Points_Stale_60min Performance Counters Point indicates the number of points that

have not received a new value in the last 60 minutes. For a point to be in the Stale 60 minute

count it must also be a part of the Stale 10 minute and 30 minute count.

“Points Stale 240(min)” (.Points_Stale_240min)

The .Points_Stale_240min Performance Counters Point indicates the number of points that

have not received a new value in the last 240 minutes. For a point to be in the Stale 240

minute count it must also be a part of the Stale 10 minute, 30 minute and 60 minute count.

Performance Counters for (Scan Class x) only

“Device Scan Time (milliseconds)” (.Device_Scan_Time)

A .Device_Scan_Time Performance Counter Point is available for each scan class of this

interface.

The .Device_Scan_Time Performance Counters Point indicates the number of milliseconds

the interface takes to read the data from the foreign device and package the data to send to PI.

This counter does not include the amount of time to send the data to PI. This point is similar

to the [UI_SCINDEVSCANTIME] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1 (Scan Class 1).device_scan _time”) refers to

scan class 1, “(Scan Class 2) refers to scan class 2, and so on.

Interface Diagnostics Configuration

98

“Scan Time (milliseconds)” (.scan_time)

A .scan_time Performance Counter Point is available for each scan class of this interface.

The .scan_time Performance Counter Point indicates the number of milliseconds the interface

takes to both read the data from the device and send the data to PI. This point is similar to the

[UI_SCINSCANTIME] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for

example, “sy.perf.etamp390.E1(Scan Class 1).scan_time”) refers to scan class

1, “(Scan Class 2)” refers to scan class 2, and so on.

PI Interface for HTML 99

Interface Health Monitoring Points

Interface Health Monitoring Points provide information about the health of this interface. To

use the ICU to configure these points, select this interface from the Interface drop-down list

and click Health Points from the parameter category pane:

Right click the row for a particular Health Point to display the shortcut menu:

Click Create to create the Health Point for that particular row. Click Create All to create all

the Health Points.

To see the current values (snapshots) of the Health Points, right-click and select Refresh

Snapshots.

Interface Diagnostics Configuration

100

For some of the Health Points described subsequently, the interface updates their values at

each performance summary interval (typically, 8 hours).

[UI_HEARTBEAT]

The [UI_HEARTBEAT] Health Point indicates whether the interface is currently running.

The value of this point is an integer that increments continuously from 1 to 15. After reaching

15, the value resets to 1.

The fastest scan class frequency determines the frequency at which the interface updates this

point:

Fastest Scan Frequency Update frequency

Less than 1 second 1 second

Between 1 and 60
seconds, inclusive

Scan frequency

More than 60 seconds 60 seconds

If the value of the [UI_HEARTBEAT] Health Point is not changing, then this interface is in

an unresponsive state.

[UI_DEVSTAT]

For a Health Tag with an Extended Descriptor attribute that contains [UI_DEVSTAT], the

interface writes the following values:

 “1 | Could not read web page.” – If the interface cannot connect to the web site this

message is written to the Health tag.

Refer to the UniInt Interface User Manual.doc file for more information about how

to configure Health Tags.

[UI_SCINFO]

The [UI_SCINFO] Health Point provides scan class information. The value of this point is a

string that indicates

 the number of scan classes;

 the update frequency of the [UI_HEARTBEAT] Health Point; and

 the scan class frequencies

An example value for the [UI_SCINFO] Health Point is:

3 | 5 | 5 | 60 | 120

The interface updates the value of this point at startup and at each performance summary

interval.

PI Interface for HTML 101

[UI_IORATE]

The [UI_IORATE] Health Point indicates the sum of

1. the number of scan-based input values the interface collects before it performs

exception reporting; and

2. the number of event-based input values the interface collects before it performs

exception reporting; and

3. the number of values that the interface writes to output tags that have a SourceTag.

The interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

value of this [UI_IORATE] Health Point may be zero. A stale timestamp for this point

indicates that this interface has stopped collecting data.

[UI_MSGCOUNT]

The [UI_MSGCOUNT] Health Point tracks the number of messages that the interface has

written to the log file since start-up. In general, a large number for this point indicates that

the interface is encountering problems. You should investigate the cause of these problems by

looking in log messages.

The interface updates the value of this point every 60 seconds. While the interface is running,

the value of this point never decreases.

[UI_POINTCOUNT]

The [UI_POINTCOUNT] Health Point counts number of PI tags loaded by the interface. This

count includes all input, output, and triggered input tags. This count does NOT include any

Interface Health tags or performance points.

The interface updates the value of this point at startup, on change, and at shutdown.

[UI_OUTPUTRATE]

After performing an output to the device, this interface writes the output value to the output

tag if the tag has a SourceTag. The [UI_OUTPUTRATE] Health Point tracks the number of

these values. If there are no output tags for this interface, it writes the System Digital State No

Result to this Health Point.

The interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

interface resets the value of this point to zero at each performance summary interval.

[UI_OUTPUTBVRATE]

The [UI_OUTPUTBVRATE] Health Point tracks the number of System Digital State values

that the interface writes to output tags that have a SourceTag. If there are no output tags for

this interface, it writes the System Digital State No Result to this Health Point.

The interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

interface resets the value of this point to zero at each performance summary interval.

Interface Diagnostics Configuration

102

[UI_TRIGGERRATE]

The [UI_TRIGGERRATE] Health Point tracks the number of values that the interface writes

to event-based input tags. If there are no event-based input tags for this interface, it writes the

System Digital State No Result to this Health Point.

The interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

interface resets the value of this point to zero at each performance summary interval.

[UI_TRIGGERBVRATE]

The [UI_TRIGGERBVRATE] Health Point tracks the number of System Digital State values

that the interface writes to event-based input tags. If there are no event-based input tags for

this interface, it writes the System Digital State No Result to this Health Point.

The interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The

interface resets the value of this point to zero at each performance summary interval.

[UI_SCIORATE]

You can create a [UI_SCIORATE] Health Point for each scan class in this interface. The ICU

uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class IO Rate.sc1) refers to scan class 1, “.sc2” refers to

scan class 2, and so on.

A particular scan class’s [UI_SCIORATE] point indicates the number of values that the

interface has collected. If the current value of this point is between zero and the

corresponding [UI_SCPOINTCOUNT] point, inclusive, then the interface executed the scan

successfully. If a [UI_SCIORATE] point stops updating, then this condition indicates that an

error has occurred and the tags for the scan class are no longer receiving new data.

The interface updates the value of a [UI_SCIORATE] point after the completion of the

associated scan.

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not

applicable to this interface.

[UI_SCBVRATE]

You can create a [UI_SCBVRATE] Health Point for each scan class in this interface. The

ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class Bad Value Rate.sc1) refers to scan class 1, “.sc2”

refers to scan class 2, and so on.

A particular scan class’s [UI_SCBVRATE] point indicates the number System Digital State

values that the interface has collected.

The interface updates the value of a [UI_SCBVRATE] point after the completion of the

associated scan.

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not

applicable to this interface.

PI Interface for HTML 103

[UI_SCSCANCOUNT]

You can create a [UI_SCSCANCOUNT] Health Point for each scan class in this interface.

The ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class Scan Count.sc1) refers to scan class 1, “.sc2”

refers to scan class 2, and so on.

A particular scan class’s [UI_ SCSCANCOUNT] point tracks the number of scans that the

interface has performed.

The interface updates the value of this point at the completion of the associated scan. The

interface resets the value to zero at each performance summary interval.

Although there is no “Scan Class 0”, the ICU allows you to create the point with the suffix

“.sc0”. This point indicates the total number of scans the interface has performed for all of its

Scan Classes.

[UI_SCSKIPPED]

You can create a [UI_SCSKIPPED] Health Point for each scan class in this interface. The

ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class Scans Skipped.sc1) refers to scan class 1, “.sc2”

refers to scan class 2, and so on.

A particular scan class’s [UI_SCSKIPPED] point tracks the number of scans that the

interface was not able to perform before the scan time elapsed and before the interface

performed the next scheduled scan.

The interface updates the value of this point each time it skips a scan. The value represents

the total number of skipped scans since the previous performance summary interval. The

interface resets the value of this point to zero at each performance summary interval.

Although there is no “Scan Class 0”, the ICU allows you to create the point with the suffix

“.sc0”. This point monitors the total skipped scans for all of the interface’s Scan Classes.

[UI_SCPOINTCOUNT]

You can create a [UI_SCPOINTCOUNT] Health Point for each scan class in this interface.

The ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class Point Count.sc1) refers to scan class 1, “.sc2”

refers to scan class 2, and so on.

This Health Point monitors the number of tags in a scan class.

The interface updates a [UI_SCPOINTCOUNT] Health Point when it performs the associated

scan.

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not

applicable to this interface.

[UI_SCINSCANTIME]

You can create a [UI_SCINSCANTIME] Health Point for each scan class in this interface.

The ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class Scan Time.sc1) refers to scan class 1, “.sc2” refers

to scan class 2, and so on.

Interface Diagnostics Configuration

104

A particular scan class’s [UI_ SCINSCANTIME] point represents the amount of time (in

milliseconds) the interface takes to read data from the device, fill in the values for the tags,

and send the values to the PI Data Archive.

The interface updates the value of this point at the completion of the associated scan.

[UI_SCINDEVSCANTIME]

You can create a [UI_SCINDEVSCANTIME] Health Point for each scan class in this

interface. The ICU uses a tag naming convention such that the suffix “.sc1” (for example,

sy.st.etamp390.E1.Scan Class Device Scan Time.sc1) refers to scan class 1,

“.sc2” refers to scan class 2, and so on.

A particular scan class’s [UI_ SCINDEVSCANTIME] point represents the amount of time

(in milliseconds) the interface takes to read data from the device and fill in the values for the

tags.

The value of a [UI_ SCINDEVSCANTIME] point is a fraction of the corresponding

[UI_SCINSCANTIME] point value. You can use these numbers to determine the percentage

of time the interface spends communicating with the device compared with the percentage of

time communicating with the PI Data Archive.

If the [UI_SCSKIPPED] value is increasing, the [UI_SCINDEVSCANTIME] points along

with the [UI_SCINSCANTIME] points can help identify where the delay is occurring:

whether the reason is communication with the device, communication with the PI Data

Archive, or elsewhere.

The interface updates the value of this point at the completion of the associated scan.

I/O Rate Point

An I/O Rate point measures the rate at which the interface writes data to its input tags. The

value of an I/O Rate point represents a 10-minute average of the total number of values per

minute that the interface sends to the PI Data Archive.

When the interface starts, it writes 0 to the I/O Rate point. After running for ten minutes, the

interface writes the I/O Rate value. The interface continues to write a value every 10 minutes.

When the interface stops, it writes 0.

The ICU allows you to create one I/O Rate point for each copy of this interface. Select this

interface from the Interface drop-down list, click IO Rate in the parameter category pane, and

check Enable IORates for this interface.

PI Interface for HTML 105

As the preceding picture shows, the ICU suggests an Event Counter number and a Tagname

for the I/O Rate Point. Click the Save button to save the settings and create the I/O Rate point.

Click the Apply button to apply the changes to this copy of the interface.

You need to restart the interface in order for it to write a value to the newly created I/O Rate

point. Restart the interface by clicking the Restart button:

(The reason you need to restart the interface is that the PointSource attribute of an I/O Rate

point is Lab.)

To confirm that the interface recognizes the I/O Rate Point, look in the pipc.log for a

message such as:

PI-ModBus 1> IORATE: tag sy.io.etamp390.ModbusE1 configured.

To see the I/O Rate point’s current value (snapshot), click the Refresh snapshot button:

Enable IORates for this Interface

The Enable IORates for this interface check box enables or disables I/O Rates for the current

interface. To disable I/O Rates for the selected interface, uncheck this box. To enable I/O

Rates for the selected interface, check this box.

Interface Diagnostics Configuration

106

Event Counter

The Event Counter correlates a tag specified in the iorates.dat file with this copy of the

interface. The command-line equivalent is /ec=x, where x is the same number that is

assigned to a tag name in the iorates.dat file.

Tagname

The tag name listed in the Tagname box is the name of the I/O Rate tag.

Tag Status

The Tag Status box indicates whether the I/O Rate tag exists in PI. The possible states are:

 Created – This status indicates that the tag exist in PI

 Not Created – This status indicates that the tag does not yet exist in PI

 Deleted – This status indicates that the tag has just been deleted

 Unknown – This status indicates that the PI ICU is not able to access the PI Data

Archive

In File

The In File box indicates whether the I/O Rate tag listed in the tag name and the event

counter is in the IORates.dat file. The possible states are:

 Yes – This status indicates that the tag name and event counter are in the IORates.dat

file

 No – This status indicates that the tag name and event counter are not in the

IORates.dat file

Snapshot

The Snapshot column holds the snapshot value of the I/O Rate tag, if the I/O Rate tag exists

in PI. The Snapshot box is updated when the IORate page is selected, and when the interface

is first loaded.

Create/Save

Create the suggested I/O Rate tag with the tag name indicated in the Tagname box. Or Save

any changes for the tag name indicated in the Tagname box.

Delete

Delete the I/O Rate tag listed in the Tagname box.

Rename

Allow the user to specify a new name for the I/O Rate tag listed in the Tagname box.

Add to File

Add the tag to the IORates.dat file with the event counter listed in the Event Counter box.

Search

Allow the user to search the PI Data Archive for a previously defined I/O Rate tag.

PI Interface for HTML 107

Interface Status Point

The PI Interface Status Utility (ISU) alerts you when an interface is not currently writing data

to the PI Data Archive. This situation commonly occurs if

 the monitored interface is running on an interface node, but the interface node cannot

communicate with the PI Data Archive; or

 the monitored interface is not running, but it failed to write at shutdown a system

state such as Intf Shut.

The ISU works by periodically looking at the timestamp of a Watchdog Tag. The Watchdog

Tag is a tag whose value a monitored interface (such as this interface) frequently updates.

The Watchdog Tag has its ExcDev, ExcMin, and ExcMax point attributes set to 0. So, a non-

changing timestamp for the Watchdog Tag indicates that the monitored interface is not

writing data.

Please see the Interface Status Utility Interface for complete information on using the ISU. PI

Interface Status Utility Interface runs only on a PI Data Archive Node.

If you have used the ICU to configure the PI Interface Status Utility Interface on the PI Data

Archive Node, the ICU allows you to create the appropriate ISU point. Select this interface

from the Interface drop-down list and click Interface Status in the parameter category pane.

Right-click on the ISU tag definition window to open the shortcut menu:

Click Create to create the ISU tag.

Use the Tag Search button to select a Watchdog Tag. (Recall that the Watchdog Tag is one of

the points for which this interface collects data.)

Interface Diagnostics Configuration

108

Select a Scan frequency from the drop-down list box. This Scan frequency is the interval at

which the ISU monitors the Watchdog Tag. For optimal performance, choose a Scan

frequency that is less frequent than the majority of the scan rates for this interface’s points.

For example, if this interface scans most of its points every 30 seconds, choose a Scan

frequency of 60 seconds. If this interface scans most of its points every second, choose a Scan

frequency of 10 seconds.

If the Tag Status indicates that the ISU tag is Incorrect, right-click to open the shortcut

menu and select Correct.

Note: The PI Interface Status Utility Interface – and not this interface – is responsible
for updating the ISU tag. So, make sure that the PI Interface Status Utility Interface is
running correctly.

PI Interface for HTML 109

Appendix A. Error and Informational Messages

A string NameID is pre-pended to error messages written to the message log. Name is a

non-configurable identifier that is no longer than 9 characters. ID is a configurable identifier

that is no longer than 9 characters and is specified using the /id parameter on the startup

command-line.

Troubleshooting Differences Between the ICU Setup and the Interface

For some web pages during marker setup, the ICU will show one thing in the preview tab and

another thing in the Validate Markers window. This is due to differences in how the ICU gets

and parses web pages and how the interface gets and parses pages. In order to maintain ease

of configuration, the ICU and the interface use slightly different methods to get and parse

their web pages.

Check the Proxy and HTTP Authentication Settings

When configuring the HTML interface using the ICU, sometimes you will come across pages

where an authentication screen will appear. The ICU cannot automatically record this. Make

sure that if a proxy server, username, and password are required, that they are specified in the

first box that appears after you click Record New.

Also, make sure that if a web site requires authentication for a page, that those credentials are

entered in the Locator Script Details window described in Steps for Creating a New HTML

Locator Script of section html Interface Page.

Connecting to an FTP

A webpage that is being stored on an FTP site can be configured for anonymous login access

only. The interface does not currently support connections to an FTP which requires

authentication. There is an additional step required in setting up a connection to an FTP site

with anonymous login. Record a new locator script. After the Record Locator Script page is

successfully loaded, click Path to Current Location in the box on the upper right corner of

the page. Although the page is allowing anonymous access, the interface still requires that a

login be entered in the HTTP Username and Password section.

Error and Informational Messages

110

After entering the information:

Close the Locator Script Details dialog box, and then click OK on the Record Locator

Script, and save the changes.

View the HTML Source Externally

Sometimes the HTML source code that is downloaded when editing the markers may be

different from the source code downloaded using the Curl library, which is what is used when

validating the markers and when the interface itself is running. Click Validate Markers, and

then click See HTML to see the HTML source code. Save that source code to a file, and then

open that file in Internet Explorer. This is what the interface will see when it is parsing the

page. There is no single answer as to why the HTML may be different.

Look For JavaScript Include Directives

Because of the major change in how the interface downloads and parses HTML pages,

JavaScript include directives do not work correctly. Many times, JavaScript code that is

common to multiple web pages is placed in a single file and referenced by multiple web

pages. Versions of the HTML interface prior to 2.0 were able to fetch these JavaScript

include files automatically, just as images on a page are fetched automatically when a page is

loaded in Internet Explorer. Since version 2.0, however, the interface is not able to fetch these

pages automatically. Some critical JavaScript code may be missing from the target page and

the data on the page may not show up properly.

To see if this is a problem, view the source code for the page by clicking Validate Markers.

If there is a section on the page that includes the following code, it is trying to include an

external JavaScript source file:

<SCRIPT LANGUAGE=”JavaScript” SRC=”somefile.js”></SCRIPT>

The important point is that there is a SRC=”somefile.js” in the declaration.

Message Logs

The location of the message log depends upon the platform on which the interface is running.

See the UniInt Interface User Manual for more information.

PI Interface for HTML 111

Messages are written to [PIHOME]\dat\pipc.log at the following times.

 When the interface starts many informational messages are written to the log. These

include the version of the interface, the version of UniInt, the command-line

parameters used, and the number of points.

 As the interface loads points, messages are sent to the log if there are any problems

with the configuration of the points.

 If the UniInt /dbUniInt parameter is found in the command-line, then various

informational messages are written to the log file.

Messages

Message No interface configuration file specified, exiting

Meaning There was no XML configuration file specified (using /htmlconfigfile) in the

interface startup file.

Message Warning: No interface ID was specified, all points with

pointsource X will be used

Meaning When a non-numeric interface ID or no interface ID is specified, all points with the
corresponding pointsource will be treated as belonging to this interface.

Message Tag X (D) has an invalid instrumenttag (), point rejected.

Meaning There must be an instrumenttag specified for all points, and the instrumenttag must
either be in the list of data markers or must be a semi-colon delimited list of data
markers.

Message Tag X (D) has a data marker (someinstrumenttag) that does

not exist in the XML configuration doc, point rejected.

Meaning The instrumenttag must either be in the list of data markers or must be a semi-colon
delimited list of data markers.

Message Tag X (D) has multiple data markers defined, so digital

state errors will not be reported for this tag.

Meaning For points with multiple data markers defined, it is assumed that there will be multiple
timestamps for the values. Therefore it is impossible to determine what timestamp to
use when sending a digital state error to PI.

Message HTML parsing error (parser errors will not be logged until

a successful parse): Some error.

Meaning There was a problem parsing the HTML page. Errors are logged only once until the
parser is working again.

Message Error: Timestamp|Data marker <marker> for tag <tag> could

not be read from page, errors will not be repeated for

this tag until the tag is read successfully.

Meaning The data or timestamp marker was not found on the page. Check the marker definitions
using the PI ICU to make sure the page has not changed.

Error and Informational Messages

112

Message Error: Error executing search and replace for

timestamp|data marker <marker> for tag <tag>, errors will

not be repeated for this tag until the tag is read

successfully.

Meaning There some kind of problem using the RegExp engine. Check the search and replace
settings in the marker definitions.

Message ‘value’ could not be converted to <data type> for

timestamp|data marker <marker> for tag <tag>, errors will

not be repeated for this tag until the tag is read

successfully.

Meaning There was an error converting a value read from the page to the desired data type. For
timestamp markers, this is the date data type. For data markers, this is the pointtype of
the target point.

Message Downloading HTML from <URL> timed out, scan skipped.

Meaning The download timeout has been passed when downloading the HTML page from its
source.

Message Error navigating to <URL> on attempt D (<Error>), trying

again|no more retries.

Meaning Navigating to the page failed. The interface will try to navigate to a page up to 3 times
before finally concluding that it has failed. Check the proxy settings, http authentication
settings, and the URL.

Message At least one point for Pointsource H was found where

Location1 does not match with /ID=x.

Meaning This is not an error. It just means that there are points that match this interface’s
pointsource, but the location1 does not match the id, meaning that there are several
copies of this interface that need to run at the same time.

System Errors and PI Errors

System errors are associated with positive error numbers. Errors related to PI are associated

with negative error numbers.

Error Descriptions

Descriptions of system and PI errors can be obtained with the pidiag utility:

\PI\adm\pidiag /e error_number

PI Interface for HTML 113

Appendix B. PI SDK Options

To access the PI SDK settings for this interface, select this interface from the Interface drop-

down list and click UniInt – PI SDK in the parameter category pane.

Disable PI SDK

Select Disable PI SDK to tell the interface not to use the PI SDK. If you want to run the

interface in disconnected startup mode, you must choose this option.

The command line equivalent for this option is /pisdk=0.

Use the Interface’s default setting

This selection has no effect on whether the interface uses the PI SDK. However, you must not

choose this option if you want to run the interface in disconnected startup mode.

Enable PI SDK

Select Enable PI SDK to tell the interface to use the PI SDK. Choose this option if the PI

Data Archive version is earlier than 3.4.370.x or the PI API is earlier than 1.6.0.2, and you

want to use extended lengths for the Tag, Descriptor, ExDesc, InstrumentTag, or PointSource

point attributes. The maximum lengths for these attributes are:

Attribute Enable the Interface to use
the PI SDK

PI Data Archive earlier than 3.4.370.x
or PI API earlier than 1.6.0.2, without
the use of the PI SDK

Tag 1023 255

Descriptor 1023 26

ExDesc 1023 80

InstrumentTag 1023 32

PointSource 1023 1

However, if you want to run the interface in disconnected startup mode, you must not choose

this option.

The command line equivalent for this option is /pisdk=1.

Plug-in Architecture

114

Appendix C. Plug-in Architecture

The PI Interface for HTML supports COM plug-ins in order to customize its functionality.

There are four main customizable actions that can be taken by plug-ins. They are:

 Dynamic URL generation

 Timestamp generation

 Value generation

 HTML modification

COM is used as the mechanism to activate plug-ins. This makes it very simple to use

Microsoft Visual Basic to create plug-ins. It’s as simple as adding “implements

PIHTMLPlugin” to the top of a project’s code page. There is also a Visual Basic sample in

the PIPC\interfaces\HTML\Plugins\Samples\ directories.

Dynamic URL Generation

Dynamic URL generation is useful when there is a page you are trying to read on a regular

basis, whose URL changes every so often. For example, if there is a page that has today’s

weather, and the date is part of the URL, a dynamic URL will need to be generated. So, if the

URL for that page looks like:
http://www.yourfavoriteweathersite.com/OAK_08_12_2002.html

 this will obviously be different for each day the weather needs to be read from the site.

With dynamic URL generation, the plug-in is given a “dummy” URL that the user specifies

in the HTML locator script, which is configured using the PI ICU or the simpler PI Interface

for HTML configuration tool. Continuing the weather example, this URL could be:

http://www.yourfavoriteweathersite.com/OAK_[month]_[day]_[year].html.

The plug-in would then be responsible for making any text substitutions in this URL. So the

plug-in could look for [month] and replace it with the current month, and so on.

Timestamp and Value Generation

Timestamp and value generation are two separate features, but are almost identical, so they

will be covered simultaneously.

Many times, the timestamps on the HTML page are not exactly what you want to be sending

to PI. For example, there may be a site that lists some alternate representation for hours.

Instead of showing 12:00 am, 1:00 am, 2:00 am, etc., the site may have a table with a column

heading “hour”, and the column will list 0 (for 12:00 am), 1 (for 1:00 am), etc. The plug-in

would receive this old value and do the appropriate math on this and return an actual

timestamp to the interface.

There may also be sites where the values themselves are not exactly how you want to send

them to PI. There may need to be some mathematical transformation performed on the data.

For example, there may be raw data on a web site from some system that is meant to be taken

PI Interface for HTML 115

as the exponent for the exponential function (ex). The plug-in would receive this raw value,

perform the transformation on the value, and send the new value back to the interface.

HTML Modification

HTML Modification is a new feature added to version 2.0 of the HTML interface. This

feature allows the HTML downloaded from the web page to be modified before being sent to

the parser. This feature is only accessible through the IPIHTMLPlugins2 COM interface.

There are several reasons someone might want to modify the HTML before the interface

parses the page. The HTML might be malformed, and thus might need to be modified in

order for it to be parsed. For example, a page may use the wrong order to close HTML tags,

like in the following malformed snippet:

Text in here.

HTML requires that tags be closed in the reverse order that they were opened. So a plug-in

might be coded to search for this particular section of the page and re-write it this way:
Text in here.

Another reason to modify the page is to deal with text files. Some web pages are plain text

files with no HTML markup at all. To tell if a page is just plain text, open the page in a web

browser and view its source. If there is no HTML markup in the page, it is plain text. Putting

<PRE> before the text and </PRE> after the text makes it a little easier to use regular

expressions to search the text, because the parser replaces all returns, tabs, and multiple

spaces with a single space when parsing if the text is not enclosed in <PRE> tags.

Receiving Pre-Transformed Information from the Interface

As stated above, the plug-in receives pre-transformed information from the interface. This is

done using the interface’s HTML Locator script functionality, for dynamic URL generation,

and the interface’s timestamp and data marker functionality, for timestamp and value

generation. So, if you want the pre-transformed URL to look like

http://www.yourfavoriteweathersite.com/OAK_[month]_[day]_[year].html,

you need to set that as the URL when you are configuring the locator script. If this is set as

the target URL before a plug-in is selected in the configuration utility, the interface will try to

actually navigate to this page as it is written above. Of course, this page will likely not exist.

So be sure to have the plug-in selected in the Misc dialog box before testing.

The timestamp and data markers are used to determine the pre-transformed timestamp and

value information. Whatever is on the HTML page at the locations pointed to by the

timestamp and data markers is what the plug-in will receive. The plug-in is then responsible

for performing the transformation, and returning a modified timestamp or value.

The COM Interfaces

The following is the IDL for the COM interface used as the bridge between the interface and

any plug-in.

interface IPIHTMLPlugin : Idispatch

{

 [id(1), helpstring(„method SetDocument“)] HRESULT

SetDocument([in] IHTMLDocument2 * newVal);

Plug-in Architecture

116

 [id(2), helpstring(„method GetURL“)] HRESULT GetURL([in] BSTR

BSTROld, [in,out] BSTR * BSTRURL, [in,out] VARIANT_BOOL * vbUsingPost);

 [id(3), helpstring(„method ProcessTimestamp“)] HRESULT

ProcessTimestamp([in] BSTR BSTRTimestampMarker, [in] BSTR

BSTROldTimestamp, [out, retval] VARIANT * varNewTimestamp);

 [id(4), helpstring(„method ProcessData“)] HRESULT

ProcessData([in] BSTR BSTRDataMarker, [in] BSTR BSTROldData, [out, retval]

VARIANT * varNewData);

 [id(5), helpstring(„method ReleaseDocument“)] HRESULT

ReleaseDocument();

};

interface IPIHTMLPlugin2 : Idispatch

{

 [id(1), helpstring(„method ProcessDownloadedHTML“)] HRESULT

ProcessDownloadedHTML([in] BSTR BSTROldHTML, [in, out] BSTR *

BSTRNewHTML);

};

The following is a skeleton of what the interface methods would look like when implemented

in VB.

Implements IPIHTMLPlugin

Implements IPIHTMLPlugin2 ‘Optional

Private Sub IPIHTMLPlugin_SetDocument(ByVal newVal As MSHTML.IHTMLDocument2)

End Sub

Private Sub IPIHTMLPlugin_GetURL(ByVal BSTROld As String, BSTRURL As String,

vbUsingPost As Boolean)

End Sub

Private Function IPIHTMLPlugin_ProcessTimestamp(ByVal BSTRTimestampMarker As

String, ByVal BSTROldTimestamp As String) As Variant

End Function

Private Function IPIHTMLPlugin_ProcessData(ByVal BSTRDataMarker As String,

ByVal BSTROldData As String) As Variant

End Function

Private Sub IPIHTMLPlugin_ReleaseDocument()

End Sub

‘Only required if Implements IPIHTMLPlugins2 is used

Private Sub IPIHTMLPlugin2_ProcessDownloadedHTML(ByVal BSTROldHTML As

String, BSTRNewHTML As String)

End Sub

There are five required and one optional function that need to be implemented by a plug-in.

The required ones are SetDocument, GetURL, ProcessTimestamp, ProcessData, and

ReleaseDocument. The optional one is ProcessDownloadedHTML.

Implementing the IPIHTMLPlugin COM interface is required for a plug-in, even if none of

its functionality is required. Implementing the IPIHTMLPlugin2 COM interface is optional.

SetDocument, ReleaseDocument

SetDocument and ReleaseDocument are currently not called by the interface. They are

included in the COM interface as a future enhancement in case a future plug-in developer

decides that he needs to store a reference to the IHTMLDocument2 object used by the

interface.

GetURL

GetURL is called after the locator script is read but before the navigation to the URL is

handled. BSTROld is the original URL stored in the locator script. This may be used by the

PI Interface for HTML 117

plug-in developer, or it may be ignored. BSTRURL is the buffer for the new URL. This should

be set by the plug-in developer before returning from GetURL. Even if there is no change

desired, BSTRURL should at least be set to mirror the original URL, which is passed in

BSTROld. So at a minimum, this function should contain logic that sets the value of BSTRURL

to BSTROld. If there are any query parameters for a POST or a GET query, they should be

appended to the end of the URL as if it were a GET query (even if it is a POST query).

VbUsingPost should be set to True if the request is meant to be a POST request. Otherwise,

it should be set to False for a GET query.

ProcessTimestamp

ProcessTimestamp is called after a timestamp marker has been read off the HTML page by

the interface but before the timezone offset is applied and before the timestamp/value pair is

sent to PI. The original contents of the timestamp marker are passed to this interface method,

and it is up to the plug-in developer to transform and return the new timestamp.

BSTRTimestampMarker is the name of the timestamp marker being sent to the plug-in. This

is useful for identifying which timestamp is being currently processed, if there is more than

one. BSTROldTimestamp is the timestamp as read off the HTML page. The return value is

set as the transformed timestamp.

ProcessData

ProcessData is called after a data marker has been read off the HTML page by the interface

but before the timestamp/value pair is sent to PI. The original contents of the data marker are

passed to this interface method, and it is up to the plug-in developer to transform and return

the new value. BSTRDataMarker is the name of the data marker being sent to the plug-in.

This is useful for identifying which piece of data is being currently processed, if there is more

than one. BSTROldData is the value as read off the HTML page. The return value is set as

the transformed value.

ProcessDownloadedHTML

ProcessDownloadedHTML is called after the page has been downloaded but before it is

parsed. This gives the user a chance to change the downloaded HTML for whatever reason.

Plug-in Registration and Categorization

A plug-in needs to be registered and categorized before it can be used by the PI Interface for

HTML. Registration is the process by which any COM server (in this case, a plug-in) is

registered with Windows so it can be called by an application (in this case, the PI Interface

for HTML). Categorization is the process by which a COM server (plug-in) is registered as

belonging to a certain category. Categorization is normally not required for COM servers, but

for the PI Interface for HTML, it is required. This is so the configuration utility can more

easily find all plug-ins that are actually valid PI Interface for HTML plug-ins.

COM server (plug-in) registration is done by starting up a Command Prompt from Windows.

The command to register a COM server (plug-in) DLL is regsvr32 <path to plug-in>.

The command to unregister a COM server (plug-in) DLL is regsvr32 –u <path to

plug-in>. However, this step can be ignored if you use the configuration utility (either the

Plug-in Architecture

118

PI ICU or the simpler configuration utility provided with the interface) to browse for the

plug-in.

Quick Registration and Categorization

Because Visual Basic does not allow access to DllRegisterServer, the configuration

utility can register and categorize any plug-ins. After installing the plug-in anywhere on the

system, open the configuration utility, click Misc, and find the plug-in section in the dialog

box. Click the Browse button and browse for the plug-in DLL. After selecting it and clicking

OK, it will be registered and categorized.

If a plug-in is not registered and categorized, it cannot be used by the PI Interface for HTML.

PI Interface for HTML 119

Creating a Visual Basic Plug-in

Creating a plug-in is extremely simple using Visual Basic. To create a plug-in, start Visual

Basic. Create a new ActiveX DLL.

1. On the Project/References menu option, click the checkbox next to

PIHTMLPlugins 1.2 Type Library and Microsoft HTML Object Library.

2. Click OK. Then add the line Implements IPIHTMLPlugin to the top of your

code, and you’re ready to start filling in the interface methods.

3. Select the IPIHTMLPlugin item from the left drop-down menu.

Plug-in Architecture

120

4. Select each of the items in the right drop-down menu, until all IPIHTMLPlugin

methods have been added to the code page.

At a minimum, IPIHTMLPlugin_GetURL, IPIHTMLPlugin_ProcessData, and

IPIHTMLPlugin_ProcessTimestamp should contain this code:

Private Sub IPIHTMLPlugin_GetURL(ByVal BSTROld As String, BSTRURL As String,

vbUsingPost As Boolean)

 BSTRURL = BSTROld

End Sub

Private Function IPIHTMLPlugin_ProcessData(ByVal BSTRDataMarker As String,

ByVal BSTROldData As String) As Variant

 IPIHTMLPlugin_ProcessData = BSTROldData

End Function

Private Function IPIHTMLPlugin_ProcessTimestamp(ByVal BSTRTimestampMarker As

String, ByVal BSTROldTimestamp As String) As Variant

 IPIHTMLPlugin_ProcessTimestamp = BSTROldTimestamp

End Function

Private Sub IPIHTMLPlugin_ReleaseDocument()

End Sub

Private Sub IPIHTMLPlugin_SetDocument(ByVal newVal As MSHTML.IHTMLDocument2)

End Sub

To also implement the ProcessDownloadedHTML routine, add “Implements

IPIHTMLPlugin2” to the top of the code page, and add the subroutine shown

below:

Private Sub IPIHTMLPlugin2_ProcessDownloadedHTML(ByVal BSTROldHTML As

String, BSTRNewHTML As String)

 BSTRNewHTML = BSTROldHTML

End Sub

5. Make the DLL using the File menu option Make <pluginname>.dll, and the dll is

ready to be registered and categorized with the configuration utility.

PI Interface for HTML 121

Appendix D. Terminology

To understand this interface manual, you should be familiar with the terminology used in this

document.

Buffering

Buffering refers to an interface node’s ability to store temporarily the data that interfaces

collect and to forward these data to the appropriate PI Data Archives.

N-Way Buffering

If you have PI Data Archives that are part of a PI Data collective, PIBufss supports n-way

buffering. N-way buffering refers to the ability of a buffering application to send the same

data to each of the PI Data Archives in a PI Data collective. (Bufserv also supports n-way

buffering to multiple PI Data Archives in a PI Data collective however it does not guarantee

identical archive records since point compressions attributes could be different between PI

Data Archives. With this in mind, OSIsoft recommends that you run PIBufss instead.)

ICU

ICU refers to the PI Interface Configuration Utility. The ICU is the primary application that

you use to configure PI interface programs. You must install the ICU on the same computer

on which an interface runs. A single copy of the ICU manages all of the interfaces on a

particular computer.

You can configure an interface by editing a startup command file. However, OSIsoft

discourages this approach. Instead, OSIsoft strongly recommends that you use the ICU for

interface management tasks.

ICU Control

An ICU Control is a plug-in to the ICU. Whereas the ICU handles functionality common to

all interfaces, an ICU Control implements interface-specific behavior. Most PI interfaces

have an associated ICU Control.

Interface Node

An interface node is a computer on which

 the PI API and/or PI SDK are installed, and

 PI Data Archive programs are not installed.

PI API

The PI API is a library of functions that allow applications to communicate and exchange

data with the PI Data Archive. All PI interfaces use the PI API.

PI Data collective

A PI Data collective is two or more replicated PI Data Archives that collect data

concurrently. PI Data collectives are part of the High Availability environment. When the

primary PI Data Archive in a PI Data collective becomes unavailable, a secondary PI Data

Terminology

122

collective member node seamlessly continues to collect and provide data access to your PI

clients.

PIHOME

PIHOME refers to the directory that is the common location for PI 32-bit client applications.

A typical PIHOME on a 32-bit operating system is C:\Program Files\PIPC.

A typical PIHOME on a 64-bit operating system is C:\Program Files (x86)\PIPC.

PI 32-bit interfaces reside in a subdirectory of the Interfaces directory under PIHOME.

For example, files for the 32-bit Modbus Ethernet Interface are in

[PIHOME]\PIPC\Interfaces\ModbusE.

This document uses [PIHOME] as an abbreviation for the complete PIHOME or PIHOME64

directory path. For example, ICU files in [PIHOME]\ICU.

PIHOME64

PIHOME64 is found only on a 64-bit operating system and refers to the directory that is the

common location for PI 64-bit client applications.

A typical PIHOME64 is C:\Program Files\PIPC.

PI 64-bit interfaces reside in a subdirectory of the Interfaces directory under PIHOME64.

For example, files for a 64-bit Modbus Ethernet Interface would be found in

 C:\Program Files\PIPC\Interfaces\ModbusE.

This document uses [PIHOME] as an abbreviation for the complete PIHOME or PIHOME64

directory path. For example, ICU files in [PIHOME]\ICU.

PI Message Log

The PI message log is the file to which OSIsoft interfaces based on UniInt 4.5.0.x and later

write informational, debug and error messages. When a PI interface runs, it writes to the

local PI message log. This message file can only be viewed using the PIGetMsg utility. See

the UniInt Interface Message Logging.docx file for more information on how to access these

messages.

PI SDK

The PI SDK is a library of functions that allow applications to communicate and exchange

data with the PI Data Archive. Some PI interfaces, in addition to using the PI API, require the

use of the PI SDK.

PI Data Archive Node

A PI Data Archive Node is a computer on which PI Data Archive programs are installed. The

PI Data Archive runs on the PI Data Archive Node.

PI SMT

PI SMT refers to PI System Management Tools. PI SMT is the program that you use for

configuring PI Data Archives. A single copy of PI SMT manages multiple PI Data Archives.

PI SMT runs on either a PI Data Archive Node or a interface node.

PI Interface for HTML 123

Pipc.log

The pipc.log file is the file to which OSIsoft applications write informational and error

messages. When a PI interface runs, it writes to the pipc.log file. The ICU allows easy

access to the pipc.log.

Point

The PI point is the basic building block for controlling data flow to and from the PI Data

Archive. For a given timestamp, a PI point holds a single value.

A PI point does not necessarily correspond to a “point” on the foreign device. For example, a

single “point” on the foreign device can consist of a set point, a process value, an alarm limit,

and a discrete value. These four pieces of information require four separate PI points.

Service

A Service is a Windows program that runs without user interaction. A Service continues to

run after you have logged off from Windows. It has the ability to start up when the computer

itself starts up.

The ICU allows you to configure a PI interface to run as a Service.

Tag (Input Tag and Output Tag)

The tag attribute of a PI point is the name of the PI point. There is a one-to-one

correspondence between the name of a point and the point itself. Because of this relationship,

PI System documentation uses the terms “tag” and “point” interchangeably.

Interfaces read values from a device and write these values to an Input Tag. Interfaces use an

Output Tag to write a value to the device.

Technical Support and Resources

124

Appendix E. Technical Support and Resources

For technical assistance, contact OSIsoft Technical Support at +1 510-297-5828 or

techsupport@osisoft.com. The OSIsoft Technical Support website offers additional contact

options for customers outside of the United States.

When you contact OSIsoft Technical Support, be prepared to provide this information:

 Product name, version, and build numbers

 Computer platform (CPU type, operating system, and version number)

 Time that the difficulty started

 Log files at that time

 Details of any environment changes prior to the start of the issue

 Summary of the issue, including any relevant log files during the time the issue

occurred

The OSIsoft Virtual Campus (vCampus) website has subscription-based resources to help you

with the programming and integration of OSIsoft products.

http://support.osisoft.com/
http://vcampus.osisoft.com/

PI Interface for HTML 125

Appendix F. Revision History

Date Author Comments

03-May-2001 LNG Restarted manual using Skeleton version 1.08

23-May-2001 CG Skeleton 1.09; removed Program Files from
directory paths; added a more complete sample
.bat file; fixed headers & footers; fixed page
numbering

01-Nov-2001 LNG Updated manual for 1.0.3 release.

04-Feb-2002 LNG Updated for 1.0.5 release.

10-Jul-2002 LNG Updated for 1.1.0 release.

29-Sep-2004 LNG Updated for 1.1.3 release. Added XP DCOM
config, and added more interface options. Added
Appendix C.

22-Oct-2004 Mkelly Fixed headers & footers. Added section on
Configuring Buffering with PI ICU. Made manual
FINAL.

25-Feb-2005 LNG Updated for 1.2.0.0 release. Added section about
converting XML configuration file. Added section
about the new CURL library used to download
pages. Updated screenshots for the new PI ICU
control.

29-Mar-2005 LNG Updated for 1.2.0.4 release. Added
ProcessDownloadedHTML section. Added note
about allowable timestamp formats to the
introduction.

2-May-2005 Mkelly Fixed installation directory references. Included
missing support feature items from latest skeleton
manual. Fixed headers/footers and TOC.
Accepted all changes and made Final.

12-Jul-2005 LNG Updated for version 2.0 release. Added section
about the Validate Markers button. Added
troubleshooting for differences between ICU and
interface operation.

22-Apr-2008 LNG Updated for version 2.2.0.63 release. Added
location2 description. Added file:// URL format
requirement. Updated system requirements.
Removed /maxiescans option.

22-Apr-2008 BJM Using Interface Manual Skeleton 2.5.2. Including
section on FTP connections. Including revised
section on example and setup instructions.

10-Sep-2008 Mkelly Version 2.2.0.63, Revision A; Updated all cross
references to hyperlinks, removed all references to
UniInt End User Document and replaced with
UniInt Interface User Manual, remove all “PI-‘ and
replaced with just PI and a space. Fixed size of
screenshots. Removed all NT4 and UNIX
references. Fixed headers and footers.

08-Oct-2008 Mkelly Version 2.2.0.63, Revision B; Updated to skeleton
3.0.4, fixed all hyperlinks and references.

03-Sep-2012 Sbranscomb Version 2.2.0.63 Revision C: Updated to Skeleton

Revision History

126

Date Author Comments

Version 3.0.35

19-Feb-2013 Mkelly Version 2.2.0.63 Revision D: Update to Skeleton
Version 3.0.36

26-Feb-2013

16-Dec-2013

OPopivshchyi

LDaley

MHruzik

Version 2.3.0.x: Addressed interface name change;
Updated references to .Net Framework v2.0 to
v4.0; Added statements regarding passwords
encryption; Added Phase 2 failover sections;
Removed reference to obsolete plugin projects
samples. Added new security content. Update to
Skeleton Version 3.0.38.

02-Apr-2014 MHruzik Updated terms for PI Data Archive and PI Data
collective

02-Apr-2014 ZRyska Finished name change and small corrections

