(@ osi

Pl Interface for HTML

Version 2.3.0.x

OSilsoft, LLC
777 Davis St., Suite 250
San Leandro, CA 94577 USA

Tel: (01) 510-297-5800
Fax: (01) 510-357-8136
Web: http://www.osisoft.com

OSlsoft Australia « Perth, Australia

OSilsoft Europe GmbH * Frankfurt, Germany

OSlsoft Asia Pte Ltd. » Singapore

OSlsoft Canada ULC * Montreal & Calgary, Canada

OSlsoft, LLC Representative Office » Shanghai, People’s Republic of China
OSlsoft Japan KK « Tokyo, Japan

OSlsoft Mexico S. De R.L. De C.V. » Mexico City, Mexico

OSlsoft do Brasil Sistemas Ltda. « Sao Paulo, Brazil

OSlsoft France EURL ¢ Paris, France

Pl Interface for HTML
Copyright: © 2001-2014 OSlsoft, LLC. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
mechanical, photocopying, recording, or otherwise, without the prior written permission of OSlsoft, LLC.

OSlsoft, the OSlsoft logo and logotype, Pl Analytics, Pl ProcessBook, PI DataLink, ProcessPoint, Pl Asset Framework (Pl AF), IT
Monitor, MCN Health Monitor, Pl System, PI ActiveView, Pl ACE, Pl AlarmView, Pl BatchView, PI Coresight, Pl Data Services, PI
Event Frames, Pl Manual Logger, Pl ProfileView, Pl WebParts, ProTRAQ, RLINK, RtAnalytics, RtBaseline, RtPortal, RtPM,
RtReports and RtWebParts are all trademarks of OSlsoft, LLC. All other trademarks or trade names used herein are the property of
their respective owners.

U.S. GOVERNMENT RIGHTS

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the OSlsoft, LLC license agreement and
as provided in DFARS 227.7202, DFARS 252.227-7013, FAR 12.212, FAR 52.227, as applicable. OSlsoft, LLC.

Published: 04/2014

http://www.osisoft.com/

Table of Contents

Chapter 1. INTrOTUCTION ...uuiiiiiiiiiiiiiieeiiietee bbb sennesnnnee 7
Reference Manuals ..., 8

Supported Operating SYStEMSuuuiiiieeeiiiiiiiir e serrre e e e e e nnneeees 8

YU o] oTo] g (=T [T=T= L 10 £ PSSR 8

Diagram of Hardware CONNECHIONcuiiiiiiiiieiiiiiee e 11

Chapter 2. Principles of Operationuuuiiii i 12
O PP PR 12

IMSHTIML Lottt e ettt e e e st e e e st e e e snbb e e e e snbaeeeesntbeeeeans 12

CONTIGUIALION ...ttt e e e s anneeas 12

INtEITACE OPEIALION.ciii ittt esbneeeea 13

Pattern MatChingcccooieie i 14

PIUG NS e ————————— 14

Chapter 3. Installation CheCKIiSt.........oooeiiiiiii e 16
Data CollECtION StEPS.....c.vveieiiiiiie ettt ee e 16

INterface DIagnNOSHICScccieie e 18

Chapter 4. Interface Installation..............ouiiii i 19
Naming Conventions and ReqUIFEMENTSeeiiiiiieeiiiiiiee e 19

Additional Required SOftWare........ccccoiiiiiiieice e 19

Microsoft Internet EXPIOrer..........uuuvuveiuimiiiiiiieiiinieieinieininrnrnesrninesrnrnrnn. 19

MICrOSOft XML ParSEI ..ccooiiiiiiiiiiie ettt 20

Microsoft .NET Framework 4.0oocuuiiiiiiiiiniiiiiiee e 20

INEEIfACE DIFECIONIESeteiiiieee ettt a e abeee e 20

(1 (@Y =l] = Tox o] VRN I == 20

Interface Installation Dir€CLOrYuuvevuimiuimiminiiieiiinininieieieeneeree. 20

Interface Installation ProCeAUreoociuiiiiiiiiiiiie e 21

PI1 Trust for Interface AuthentiCation.............c.cevveieiiiiiiiiieee e 21

Installing Interface as a WiNAOWS SEIVICE..........coiiiiiiiiiiiiiie et 21

Installing Interface Service with PI Interface Configuration Utility..................... 22

Service Configuration ..o, 22

Installing Interface Service Manually..............cccoe oo, 25

Chapter 5. Digital STAteS......ccvuiiiiiii i e e e e e e 26
Chapter 6. POINTSOUICEuuiiiiiiiiiiiiiiiiitieieeeeaeeeeeeeeeb e bbb eeeesebabesebebbbsbeseseeeeeenensesnnnes 27
Chapter 7. PI Point Configurationouuueiiii e 28
POINt ATHDULES ... 28

TG e 28

POINESOUICE ...vuviiiiiiiiiiiiititiiiiit bbb e e abababebabebababababsbebarsbarsrnsnrnres 29

o T L 1Y o1 OSSR 29

Pl Interface for HTML

Table of Contents

(o To%= 1o i TR PTPRPTPTPRP 29

(o To%= 1 1o] 0 V2SR PPPRPTPPRP 29

(o To%= 1o)X E SR PPRPTRPRP 29

[Yo 1 1 o] o U PR URRRP 29

[o= 1 1 o] o 1T PRSP URRRR 29

INSITUMENTTAGeveieeiie e e e 30

EXDIBSC ..ttt n bbbt n et et nbn b nbnrnees 30

S AN e 32

IS 101 (o (0171 o PP PPRRP 32

(D= 1= K Y=o U] A SRS 33

POINTESECUILY ...t e e e e e e e s e e e e e e st r e e e e e e e e annns 33

(@ 10)7 U1 =0]) SRR 33

Chapter 8. Startup Command Fileuuiuiiiiiiiiiiiiiiiii e 34
Configuring the Interface With PIICU.........cccuiiiiie oo 34

html Interface Page............uuuuiiiiiiiiiiiiiiiiiiiiiieiieeeeeeeareeeernrerererneernne 36

Configuring the Interface Without the PIICU ... 45

Command-line Parametersccuuvviiiiie et 45

Sample PIHTML.DAL FIle ..o 50

Converting Older Configuration Files...........cccccccveviiii 50

Chapter 9. Unilnt Failover Configurationcccciiiiiiieee e 52
LT 0T [0 1o o] o 1R PSR 52

QUICK OVEIVIEW ...ttt ettt e et e e e e e e e annes 53

Synchronization through a Shared File (Phase 2)cccoocveveiiiiiiiiniiiccen, 54

Configuring Synchronization through a Shared File (Phase 2)......................... 55

Configuring Unilnt Failover through a Shared File (Phase 2)ccccceevineeen. 58

Start-Up Parameters ... 58

Failover Control POINESc.vviiiiieeeec e e e 60

[IR 1= T 1 TSP PP PP PT PR PR PRPRPRPRPRPRTN 61

Detailed Explanation of Synchronization through a Shared File (Phase 2)......65

Steady State OPErationcceeeiiiiiiiiiiiiee e 66

Failover Configuration USiNg Pl ICUc.coiiiiiiiiiiiii e 68

Create the Interface Instance with P1ICUccccoiiiiiiiin 68

Configuring the Unilnt Failover Startup Parameters with PI ICU 69

Creating the Failover State Digital State Setcccoceeviiiiiiie i, 69

Using the PI ICU Utility to create Digital State Setcccccvvvvvvvierninnnn. 70

Using the PI SMT 3 Utility to create Digital State Set..........cccccccveeennnns 70

Creating the Unilnt Failover Control and Failover State Tags (Phase 2).......... 73

Chapter 10. Interface NOde ClOCKcuuiiiiii e 74
(O F= 1oL (T i I S 7= o] U1 1 Y 75
AULNENTICATION. ...t e e e e eeeaaeas 75

F U 11 o] 2= 11 [S 76

Chapter 12. Starting / Stopping the Interfaceccccoovieeiiiiiiicii e, 77
Starting INterface as @ SErVICEeiii oo 77

Stopping Interface RUNNING @S @ SEIVICE........uciiiiiiiiiiiiiiieie e 77

Chapter 13. BUfEING oo 78

Which Buffering Application t0 USE.........uuuvvieeiiiiiiiiiiiee e eeee e 78

HOW BUFFEING WOTKS. .. .eiiiiieec ettt e et e e e 78

Buffering and Pl Data Archive SECUILY..........ocoviiiiiiiiiiiiiiie e 79

Enabling Buffering on an Interface Node with the ICUcccccooviiiiiiinnne 80

ChO0SE BUfEI TYPE .evviiiieiei ittt ee e e e e e 80

BUFfErNG SELHNGS. . .uvieiiee i e e e 81

BUFfEIrEd SEIVEISoeiiiiiiiiie et srree e 83

Installing Buffering as a SErviCecoocciiiiiiiiiiiiec e 86

Chapter 14. Interface Diagnostics Configurationcccccovviiiiiii i, 89
Scan Class Performance POINESoooiiiiiiiiiiieee e 89

Performance Counters POINTScooiiiiiiiiiiieeee e 92

Performance COUNEIS...........uuiiiiiee et e e 93

Performance Counters for both (_Total) and (Scan Class X) 93

Performance Counters for (_Total) onlycccccoviiieiiiiiiiiiiiiicieeeee 95

Performance Counters for (Scan Class X) ONlyccooveeeiiiieeeniiieeenns 97

Interface Health Monitoring POINESocviiiiiiiii e 99

/O RALE POINT...ciiiiiiiiieeee ettt e e e 104

Interface Status POINt...........ccocoiiiiii 107

Appendix A. Error and Informational MeSSages..........coeeeeeeeeeeieeeeeeeeeeeeeeeeee 109
Troubleshooting Differences Between the ICU Setup and the Interface 109

Check the Proxy and HTTP Authentication Settingsccccceveveviviviienenen. 109

Connecting to an FTP ..o 109

View the HTML Source EXIErNallycc.coooiiiiiiiiiiieiiiieee e 110

Look For JavaScript InClude DIr€CHIVEScoouiiieiiiiiieiiiieee e 110

MESSAGE LOGS tevuiieiiieiiiiiii ittt e e e e e e e e 110

Y CESIST= Vo [T TP SURPPTPPR 111

System Errors and PlEITOISouveiioiiiiec e 112

AppendixX B. Pl SDK OPtiONS....ccuuiiiiiii e e ettt e e e e e e e e e eeaneenns 113
Appendix C. Plug-in ArChiteCture ... 114
Dynamic URL GENEratiONccoooeie et 114

Timestamp and Value GENErationccccoeeeeiiiiiiiiiie e 114

L LYY o o 1 ToT= 1o o USRS 115

Receiving Pre-Transformed Information from the Interface.................cce.... 115

The COM INEITACES ...coiiiiiiie et 115

SetDocument, ReleaseDOCUMENtc.evviiiiiieiiiiiiiiiiieee e 116

GEIURL ...ttt 116

ProcesSTIMESIAMP ...coiiiiiiiiiiii et a e 117

PrOCESSD@ALAvuvuvitiiiiiiiiititititib bbbttt e bbb e e aenraee 117
ProcessDowWNIOadedHTMLcvvvieiiiiciiiiiii e 117

Plug-in Registration and Categorization.............ccevruvereiiiieee e 117

Quick Registration and Categorizationccccceeuviiiieeeeeiniiiiiieeeeenn, 118

Creating a Visual BasiC PIUQ-iN..........ciiiiii e 119

Appendix D. TermMiNOIOQY ..ucoiiiiieiiiiiiieee e e e e e e e e e s e e e aaeaeaanes 121
Appendix E. Technical Support and REeSOUICESuuuiiiieeeiiiiiiiiiiaee e 124

Pl Interface for HTML

Table of Contents

Appendix F. ReVISION HISTOIY ..o 125

i (@ os

chapter 1. INtroduction

The PI Interface for HTML (HyperText Markup Language) allows a user to collect data that
is available in HTML-formatted text. This HTML text can be retrieved by the interface via
HTTP (HyperText Transfer Protocol), HTTPS (HyperText Transfer Protocol Secure), FTP
(File Transfer Protocol), Gopher, or from the interface node’s local file system.

The PI Interface for HTML has the capability of storing a script describing how to get to a
particular web page. This is useful for pages that require a login, or for pages that are created
by filling out a form.

The interface can either provide its own timestamps for data, or it can parse timestamps from
the HTML. Timestamps should be in a format that can be understood by the Visual Basic
function CDate.

Starting with version 1.1.0, the HTML interface supports user-developed plug-ins for
dynamically generating URLSs, and for post-processing timestamps and values. Starting with
version 1.2.0.4, the HTML interface supports one more plug-in routine for modifying the
downloaded HTML before parsing it.

The software requirements for the Pl Interface for HTML are Microsoft Internet Explorer 5.5
or later, the PI Interface Configuration Utility (Pl ICU), the PI SDK (which installs the Pl
API library), Visual C++ 10.0 runtime libraries, and the .NET Framework 4.0.

Note: The value of [PIHOME] variable for the 32-bit interface will depend on whether the
interface is being installed on a 32-bit operating system (C: \Program Files\PIPC)Or
a 64-bit operating system (C:\Program Files (x86)\PIPC).

The value of [PIHOMEG64] variable for a 64-bit interface will be C:\Program Files\PIPC on
the 64-bit operating system.

In this documentation [PIHOME] will be used to represent the value for either [PIHOME]
or [PIHOME®64]. The value of [PIHOME] is the directory which is the common location for
PI client applications.

Note: Throughout this manual there are references to where messages are written
by the interface which is the PIPC.log. This interface has been built against a Unilnt
version (4.5.0.59 and later) which now writes all its messages to the local Pl
Message log.

Please note that any place in this manual where it references PIPC.log should now
refer to the local Pl message log. Please see the document Unilnt Interface
Message Logging.docx in the $PTHOME%\Interfaces\UniInt directory for more
details on how to access these messages.

Pl Interface for HTML 7

Introduction

Reference Manuals

OSlsoft

P1 Data Archive manuals

Pl API Installation Instructions manual

Unilnt Interface User Manual

Regular Expressions Tutorial

PI Interface Configuration Utility User Manual

Supported Operating Systems

Platforms 32-bit application 64-bit application
) 32-bit OS Yes No
Windows 2003 Server - -
64-bit OS Yes (Emulation Mode) No
]] 32-bit OS Yes No
Windows Vista - .
64-bit OS Yes (Emulation Mode) No
Windows 2008 32-bit OS Yes No
Windows 2008 R2 64-bit OS Yes (Emulation Mode) No
. 32-bit OS Yes No
Windows 7 - -
64-bit OS Yes (Emulation Mode) No
Windows 8 32-bit OS Yes No
64-bit OS Yes (Emulation Mode) No
Windows 2012 Server 64-bit OS Yes (Emulation Mode) No

The interface is designed to run on the above mentioned Microsoft Windows operating

systems and their associated service packs.
Please contact OSIsoft Technical Support for more information.

= Security Note: We recommend installing all available updates from Windows
Update service. We recommend the newest versions of Windows for latest security

features.
Supported Features
Feature Support
Interface Part Number PI-IN-OS-HTML-NTI
Auto Creates Pl Points No
Point Builder Utility No
ICU Control Yes

PI Point Types

floatl6 / float32 / float64 / int16 / int32 / string /

digital

(@ os

Feature Support
Sub-second Timestamps No
Sub-second Scan Classes No
Automatically Incorporates Pl Point Yes
Attribute Changes

Exception Reporting Yes
Outputs from PI No
Inputs to PI: Scan-based / Event Tags
Supports Questionable Bit No
Supports Multi-character PointSource Yes
Maximum Point Count Unlimited
* Uses Pl SDK No

PINet String Support No

* Source of Timestamps

HTML Page / Current Interface Node Time

History Recovery

No

* Unilnt-based Yes
* Disconnected Startup No
* SetDeviceStatus Yes

* Failover Unilnt Failover (Phase 2) cold
* Vendor Software Required on Yes

Interface Node / PINet Node

Vendor Software Required on Foreign | No

Device

Vendor Hardware Required No

Additional PI Software Included with Yes

interface

Device Point Types String

Serial-Based interface No

* See paragraphs below for further explanation.

Uses Pl SDK

The P1 SDK and the PI API are bundled together and must be installed on each interface

node. This interface does not specifically make PI SDK calls.

Source of Timestamps

Many web sites will provide timestamps with any data they have published. Some will not.
The user can configure whether to read a timestamp from the web page or whether to just use
the time the HTML page was read by the interface.

Unilnt-based

Unilnt stands for Universal Interface. Unilnt is not a separate product or file; it is an
OSlsoft-developed template used by developers and is integrated into many interfaces,
including this interface. The purpose of Unilnt is to keep a consistent feature set and behavior
across as many of OSlsoft’s interfaces as possible. It also allows for the very rapid
development of new interfaces. In any Unilnt-based interface, the interface uses some of the

Pl Interface for HTML 9

Introduction

Unilnt-supplied configuration parameters and some interface-specific parameters. Unilnt is
constantly being upgraded with new options and features.

The Unilnt Interface User Manual is a supplement to this manual.

SetDeviceStatus

For a Health Tag with an Extended Descriptor attribute that contains [Ul_DEVSTAT], the
interface writes the following values:

e "1 |Could not read web page.” — If the interface cannot connect to the web site, this
message is written to the Health tag.

Refer to the uniInt Interface User Manual.pdf file for more information about how
to configure Health Tags.

Failover
e Unilnt Failover Support (Phase 2 Cold failover)

Unilnt Phase 2 Failover provides support for cold, warm, or hot failover
configurations. The Phase 2 hot failover results in a no data loss solution for bi-
directional data transfer between the Pl Data Archive and the Data Source given a
single point of failure in the system architecture similar to Phase 1. However, in
warm and cold failover configurations, you can expect a small period of data loss
during a single point of failure transition. This failover solution requires that two
copies of the interface be installed on different interface nodes collecting data
simultaneously from a single data source. Phase 2 Failover requires each interface
have access to a shared data file. Failover operation is automatic and operates with no
user interaction. Each interface participating in failover has the ability to monitor and
determine liveliness and failover status. To assist in administering system operations,
the ability to manually trigger failover to a desired interface is also supported by the
failover scheme.

The failover scheme is described in detail in the Unilnt Interface User Manual,
which is a supplement to this manual. Details for configuring this interface to use
failover are described in the Unilnt Failover Configuration section of this manual.

Vendor Software Required

The PI Interface for HTML takes advantage of technology used in Microsoft Internet
Explorer. Version 5.5 or later of Internet Explorer is required for the interface to function
properly. It is available from Microsoft’s web site at http://www.microsoft.com.

2 Security Note: To take advantage of the latest security features, we recommend
using the latest version of Microsoft Internet Explorer.

Also required by the PI Interface for HTML is Microsoft’s XML Parser, version 6.0 or later.
The interface uses an XML file to store much of the interface configuration information. This
is available at Microsoft’s web site, and is installed by the interface install kit as well as the
P1 SDK version 1.3.1 or later.

Since version 2.3.0.0, the PI Interface for HTML requires the .NET Framework 4.0 or later.
The .NET Framework 4.5 is included with newer versions of Windows. For older versions of

10

(@ os

http://www.microsoft.com/

Windows, .NET Framework 4.0 is available for download either from Microsoft’s web site or
by using Windows Update.

In most cases, this interface will be used to retrieve data from a web site. In that case, a
remote web server is required to serve the data that will be used by the interface.

Additional Pl Software

The PI Interface Configuration Utility is recommended to configure the PI Interface for
HTML. It is included with the interface, and it can be used to configure some other interfaces.
As of this time, the PI ICU requires a Pl Data Archive of version 3.3 or later. For Pl Data
Archives earlier than version 3.3, there is another simpler configuration utility also supplied
with the interface.

Device Point Types

Although there are many point types that can be read from a web page, in their native form as
text on the page, they are text strings. The PI Interface for HTML parses data into the
appropriate data types before sending them to the Pl Data Archive.

Diagram of Hardware Connection

PI Data Archive

Sormewhere on the

TCHIF Internet or on vour LAN
Pl Interface Node HTTF |HTTP=S | FTF| FILE [GOPHER
Pl-AFI-MTI Internet Server
Wincoens MT
HTML Interface

Pl Interface for HTML 11

Principles of Operation

chapter2. Principles of Operation

CURL

Curl is a freely available library for retrieving HTML pages from the internet. Version 2.0 of
the PI Interface for HTML uses Curl as its downloading engine. The Curl library is built into
the PI Interface for HTML, and therefore does not require a DLL.

Curl can access pages that require HTTP authentication. This is a new feature in version 2.0.
Curl can also go through proxy servers for networks that require going through a proxy to get
to the internet. This is also a new feature in version 2.0.

MSHTML

The PI Interface for HTML incorporates Microsoft’s Internet Explorer (MSIE) components.
MSIE is not a monolithic application. It is composed of several components. The component
of interest is the MSHTML component. This is responsible for making the network calls to
retrieve an HTML page and for parsing the page. The page is parsed into a hierarchy of
objects that are then used by MSHTML to efficiently draw the page in the browser window.

Microsoft makes these components available for reuse by developers who are developing
web-browsing applications. The PI Interface for HTML uses the hierarchical object model of
the HTML page provided by MSHTML to get the data out of the page. Previous to version
2.0, the PI Interface for HTML also used MSHTML to download the pages from the internet.
This function is now handled by the Curl library.

Configuration

The PI Interface Configuration Utility (Pl ICU) is used to configure the PI Interface for
HTML. The configuration for this interface is done graphically. The user browses to the
target web page in a custom browser window, selects (using the mouse) where the data is on
that page, and saves that information into a configuration file. That configuration file is read
by the interface to figure out where specific data is located on the page.

The configuration file is an XML file stored locally. The configuration file can be generated
or edited manually, but it should follow the schema provided with the install kit.

Starting with version 2.3.0.0 the interface is using encryption for Proxy and HTTP Security
passwords. If you are using an XML configuration file from previous versions (2.0 or 2.2)
and it contains Proxy or/and HTTP Security passwords, you need to recreate the HTML
Locator Script configuration item and reenter the passwords before you can use Pl Interface
for HTML. See HTML Locator Script section for technical details about Locator Script
configuration item.

3] Security Note: The communications between the interface and a source web
site are visible to a malicious eavesdropper, which can include the user IDs and
passwords used to connect to the web sites. If the target website requires a
password, https or VPN should be used to protect the password on the wire. Also

12

(@ os

restrict access using permissions and enable security auditing for all access to the
configuration file.

The PI ICU is a separate product, but it is included with the distribution package of the Pl
Interface for HTML. The PI ICU can be used to configure most other Pl interfaces. Since
many of our interfaces are Unilnt-based, the PI ICU has a constant set of configuration
parameters it can configure. However, since each of those interfaces also has its own
interface-specific parameters, there are plug-ins available for the interfaces that are
compatible with the PI ICU that allow configuration of those interface-specific parameters.

Refer to the section in this document titled Configuring the Interface with PI ICU, and refer
to the PI Interface Configuration Utility User Manual for more information about the PI ICU.

If the target PI Data Archive is not version 3.3 or later, the PI ICU will not work with that PI
Data Archive. This is because the Pl ICU makes extensive use of the Pl Module Database,
which was added in Pl Data Archive 3.3. In this case, there is also a simpler configuration
tool provided specifically for configuring the HTML interface.

Interface Operation

The PI Interface for HTML uses the configuration settings created by the PI ICU to find data
on the specified HTML page. There is a series of steps to dig through the HTML to get to the
correct location on the page where the data is.

First, the interface downloads the correct page. In the process of configuring the interface
using the PI ICU (or with the simpler configuration tool), the ICU will have recorded a series
of steps the user took to find the right target HTML page. The PI Interface for HTML follows
those steps that were recorded to get to the same page.

Next, the interface uses the MSHTML component to parse the HTML page into an object
model. The important thing about this step is that the HTML text is converted into a
hierarchical object model. This hierarchical view of the web page may be queried for a
particular node. During the configuration process, the Pl ICU records the exact node that the
user selected. Then, after the MSHTML component has parsed the page and presented the
interface with this hierarchical model, the interface navigates to the same node in the object
model and extracts whatever data is there.

Timestamps as well as data can be extracted from a web page. It is possible to associate
timestamps with data from a web page to form a complete timestamp-value pair.

For those systems that do not support the PI ICU, a simpler configuration tool is available.

Pl Interface for HTML 13

Principles of Operation

Pattern Matching

The PI Interface for HTML uses regular expression (regexp) pattern matching in order to
allow you to do some more advanced searching in the HTML page for data. In some cases, to
select exactly the correct data, regexp is required. Take the following snippet of HTML code:
<TABLE>
<TR VALIGN="BOTTOM">
<TD COLSPAN=3>Weather data for December 12, 2001 12:32pm</TD>
</TR>
<TR>
<TH>Temperature</TH>
<TH>Humidity</TH>
<TH>Barometric pressure</TH>
</TR>
<TR>
<TD>51 °F</TD>
<TD>72 %</TD>
<TD>29.97 inHg</TD>
</TR>
</TABLE>

The data of interest is the timestamp, and the three values. The way data is retrieved from
MSHTML, the timestamp would actually be returned to the interface as “Weather data for
December 12, 2001 12:32 pm”. This is because MSHTML uses the HTML tags as delimiters
for the text. In this case, there are no HTML tags separating the “Weather data for”” and the
actual date part. When the interface tries to parse that into a date, as error will occur, because
of the leading text. Pattern matching and substitution can be used to search through this text
and select only the data you are interested in.

The values would be read fine without having to use pattern matching, because the numbers
themselves are stored inside the bold () tags. So even though there is text right next to the
numbers when viewed in the web browser, in the HTML code, the digits are delimited from
the units of measure by HTML tags.

This topic is described in more detail in the Regular Expressions Tutorial. There are
techniques and examples for many common situations where pattern matching may be
required to have the interface correctly gather the data you want to gather.

Plug-ins
Starting with version 1.1.0, the PI Interface for HTML supports user-created plug-ins. See

Appendix C Plug-In Architecture for technical details about how to create these plug-ins
using COM. There are two uses for plug-ins.

The first use for plug-ins is to dynamically generate URLS during interface operation. Many
times, the target web page will not have a constant URL. For example, a page that includes
the date will have a different URL every day. One day, the desired web page is
http://www.yoururl.com/pricing data 04202002.html. The next day’s data,
however, might be found at
http://www.yoururl.com/pricing data 04212002.html. The Pl Interface for
HTML will check with the plug-in to determine the correct URL.

14 (@ os

The second use for plug-ins is to post-process timestamps and values. There are some
timestamps that just cannot be parsed by the interface. Other times, the timestamp may need
to be tweaked just a little. Other times, there may be some kind of convention used by a
page, where the reader can easily tell what time the page is talking about, but a machine
cannot. For example, there may be a page that gives data at 5-minute intervals, and the
interval is reported on the page (1-12) instead of the actual timestamp. For values, there may
be data that needs to be massaged before it is sent to the Pl Data Archive. The interface will
report the timestamps and values read from the page to the plug-in, and the plug-in will
perform some operation on the data, and return the timestamp and value back to the interface.

Pl Interface for HTML 15

Installation Checklist

Chapter 3.

Installation Checklist

If you are familiar with running PI data collection interface programs, this checklist helps you
get the interface running. If you are not familiar with Pl interfaces, return to this section after
reading the rest of the manual in detail.

This checklist summarizes the steps for installing this interface. You need not perform a
given task if you have already done so as part of the installation of another interface. For
example, you only have to configure one instance of Buffering for every interface node
regardless of how many interfaces run on that node.

The Data Collection Steps below are required. Interface Diagnostics and Advanced Interface
Features are optional.

Data Collection Steps

1.
2.

Verify that the .NET Framework 4.0 has been installed.

Confirm that you can use PI SMT to configure the PI Data Archive. You need not run
Pl SMT on the same computer on which you run this interface.

If you are running the interface on an interface node, edit the Pl Data Archive’s Trust
Table to allow the interface to read attributes and point data. If a buffering
application is not running on the interface node, the PI Trust must allow the interface
to write data.

Run the installation kit for the PI Interface Configuration Utility (ICU) on the
interface node if the ICU will be used to configure the interface. This kit runs the Pl
SDK installation kit, which installs both the Pl API and the Pl SDK.

Install Microsoft Internet Explorer version 5.5 or higher
(http://www.microsoft.com/windows/ie/).

Run the installation kit for this interface. This kit also runs the Pl SDK installation kit
which installs both the Pl API and the Pl SDK if necessary.

If you are running the interface on an interface node, check the computer’s time zone
properties. An improper time zone configuration can cause the P1 Data Archive to
reject the data that this interface writes.

Run the ICU or the simpler HTML Interface Configuration Utility to setup timestamp
and data markers and configure a new instance of this interface. Essential startup
parameters for this interface are

Point Source (/ps=x)

Interface ID (/ID=#)

PI Data Archive (/Host=host :port)

Scan Class (/F=##:##:##,0ffset)

HTML Config File (/htmlconfigfile=<UNC Path>)

Test the connection between the interface node and the target web page by opening it
in Internet Explorer.

10. If you will use digital points, define the appropriate digital state sets.

16

(@ os

http://www.microsoft.com/windows/ie/

11.

12.

13.
14.

15.

16.

17.

Build input tags for this interface. Important point attributes and their purposes are:

Locationl specifies the interface instance ID.

Location2 specifies digital states.

Location3 is not used.

Location4 specifies the scan class.

Location5 is not used.

ExDesc is not used.

InstrumentTag is the data marker (or markers) associated with the PI point. Delimit
data markers with a semicolon (;).

PtSecurity must permit read access for the Pl identity, group, or user configured in
the PI Trust that is used by the interface.

DataSecurity must permit read access (buffering enabled) or read/write access
(unbuffered) for the PI identity, group, or user configured in the PI Trust that is used
by the interface.

3] Security Note: When buffering is configured, the DataSecurity attribute must
permit write access for the buffering applications’ Pl Trust or mapping.
DataSecurity write permission for the interface’s Pl Trust is required only when
buffering is not configured.

Start the interface interactively and confirm its successful connection to the Pl Data
Archive without buffering. (The DataSecurity attribute for interface points must
permit write access for the interface’s PI Trust.)

Confirm that the interface collects data successfully.

Stop the interface and configure a buffering application (either Bufserv or PIBufss).
When configuring buffering use the ICU menu item Tools = Buffering... >
Buffering Settings to make a change to the default value (32678) for the Primary and
Secondary Memory Buffer Size (Bytes) to 2000000. This will optimize the throughput
for buffering and is recommended by OSlsoft.

Start the buffering application and the interface. Confirm that the interface works
together with the buffering application by physically removing the connection
between the interface node and the Pl Data Archive Node. (The DataSecurity
attribute for interface points must permit write access for the buffering application’s
PI Trust or mapping. The interface’s PI Trust does not require DataSecurity write
permission.)

Configure the interface to run as a Service. Confirm that the interface runs properly
as a Service.

Restart the interface node and confirm that the interface and the buffering application
restart.

Pl Interface for HTML 17

Installation Checklist

Interface Diagnostics

1. Configure Scan Class Performance points.

N

Install the PI Performance Monitor Interface (Full Version only) on the interface
node.

Configure Performance Counter points.

Configure Unilnt Health Monitoring points

Configure the 1/0 Rate point.

Install and configure the Interface Status Utility on the PI Data Archive Node.

N o gk~ w

Configure the Interface Status point.

18 (@ osi

chapter 4. INterface Installation

OSlsoft recommends that interfaces be installed on interface nodes instead of directly on the
Pl Data Archive node. An interface node is any node other than the Pl Data Archive node
where the PI Application Programming Interface (Pl API) is installed (see the Pl

API manual). With this approach, the PI Data Archive need not compete with interfaces for
the machine’s resources. The primary function of the Pl Data Archive is to archive data and
to service clients that request data.

After the interface has been installed and tested, Buffering should be enabled on the interface
node. Buffering refers to either PI AP1 Buffer Server (Bufserv) or the Pl Buffer Subsystem
(PIBufss). For more information about Buffering see the Buffering chapter of this manual.

In most cases, interfaces on interface nodes should be installed as automatic services.
Services keep running after the user logs off. Automatic services automatically restart when
the computer is restarted, which is useful in the event of a power failure.

The guidelines are different if an interface is installed on the Pl Data Archive node. In this
case, the typical procedure is to install the Pl Data Archive as an automatic service and install
the interface as an automatic service that depends on the Pl Update Manager and Pl Network
Manager services. This typical scenario assumes that Buffering is not enabled on the PI Data
Archive node. Bufserv or PIBufss can be enabled on the Pl Data Archive node so that
interfaces on the Pl Data Archive node do not need to be started and stopped in conjunction
with the PI Data Archive, but it is not standard practice to enable buffering on the PI Data
Archive node. The PI Buffer Subsystem can also be installed on the Pl Data Archive. See the
Unilnt Interface User Manual for special procedural information.

Naming Conventions and Requirements

In the installation procedure below, it is assumed that the name of the interface executable is
PIHTML.exe and that the startup command file is called PTHTML . bat.

When Configuring the Interface Manually

It is customary for the user to rename the executable and the startup command file when
multiple copies of the interface are run. For example, PTHTML1 .exe and PTHTML1 .bat
would typically be used for instance 1, PTHTML2 . exe and PTHTML2 . bat for instance 2, and
so on. When an interface is run as a service, the executable and the command file must have
the same root name because the service looks for its command-line parameters in a file that
has the same root name.

Additional Required Software

Microsoft Internet Explorer

Microsoft Internet Explorer version 5.5 or later is required for the PI Interface for HTML. Its
browsing and parsing functionality is used by the interface. This should be installed before

Pl Interface for HTML 19

Interface Installation

the interface is configured or started. The software is available on Microsoft’s web site at
http://www.microsoft.com/windows/ie/default.htm.

Microsoft XML Parser

The Microsoft XML Parser (MSXML) version 6.0 or later is also required for the PI Interface
for HTML. The configuration file used to store the location of the target web page, as well as
the spots on the page where the data is stored, is an XML document. MSXML 6.0 is available
from Microsoft’s web site and is installed by the OSlsoft Prerequisite Kits.

Microsoft .NET Framework 4.0

The Microsoft .NET Framework version 4.0 is required for the PI Interface for HTML to run.
The interface is now a managed application, and uses the .NET Framework. The .NET
Framework 4.5 is included with newer versions of Windows. For older versions of Windows,
NET Framework 4.0 is available for download either from Microsoft’s web site or by using
Windows Update.

Interface Directories

PIHOME Directory Tree

The [pIHOME] directory tree is defined by the pTHOME entry in the pipc.ini configuration
file. This pipc.ini file is an ASCII text file, which is located in the swindir$ directory.

For 32-bit operating systems, a typical pipc.ini file contains the following lines:

[PIPC]
PIHOME=C:\Program Files\PIPC

For 64-bit operating systems, a typical pipc.ini file contains the following lines:

[PIPC]
PIHOME=C:\Program Files (X86)\PIPC

The above lines define the root of the pTHOME directory on the C: drive. The PTHOME
directory does not need to be on the C: drive. OSlsoft recommends using the paths shown
above as the root pTHOME directory name.

3] Security Note: Restrict the Windows accounts that can create or write files in
the interface and configuration folder.

Interface Installation Directory

The interface install kit will automatically install the interface to:

PIHOME\Interfaces\HTML\

PIHOME is defined in the pipc.ini file.

20 (@ osi

http://www.microsoft.com/windows/ie/default.htm

Interface Installation Procedure

The PI Interface for HTML setup program uses the services of the Microsoft Windows
Installer. Windows Installer is a standard part of Windows 2000 and later operating systems.
To install, run the appropriate installation kit.

HTML_#.#.#.#_ .exe

Pl Trust for Interface Authentication

A PI Interface usually runs on an interface node as a Windows service, which is a non-
interactive environment. In order for an interface to authenticate itself to a PI Data Archive
and obtain the access permissions for proper operation, the Pl Data Archive must have a

Pl Trust that matches the connection credentials of the interface. Determine if a suitable

PI Trust for the interface exists on the Pl Data Archive. If a suitable Pl Trust does not exist,
see the Security chapter for instructions on creating a new PI Trust.

Installing Interface as a Windows Service

The PI Interface for HTML service can be created, preferably, with the
Pl Interface Configuration Utility, or can be created manually.

) Security Note: We recommend running this interface service under a non-
administrative account, such as the Windows built-in NetworkService account or a
non-administrative account that you create.

The advantage of running the interface service under an account with least privileges is
improved security.

The disadvantage of running the interface service with least privileges is that, depending on
the account, the interface service may not be able to create performance counters and extra
administrative actions are needed to create and maintain the performance counters. Since
performance counters are associated with each scan class, performance counters for the
interface instance must be updated after additions or deletions of scan classes by running the
interface instance, at least for a short time, from an account that has sufficient privileges to
create or delete performance counters.

Log On as Security and DCOM Settings When Running as a Service

Previous versions of the PI Interface for HTML required special security settings to be
configured prior to running the interface as a service. Starting with version 2.0, the PI
Interface for HTML can run as a service logged on as Local System (the default setting when
creating a service), and DCOM does not need to be configured past the default settings.

Pl Interface for HTML 21

Interface Installation

Installing Interface Service with Pl Interface Configuration Utility

The PI Interface Configuration Utility provides a user interface for creating, editing, and
deleting the interface service:

iy Pl-Interface Configuration Utility - pihtml1

Interface Tools Help
NE X B G 7]
Interface: |pihtml‘| -» mkellylaptop ﬂ Renarne
Type: hitrnl | ‘web Bazed Interface using HTML Pl Server Connection Status
Drescription: | ‘_f mkelylaptop
. v whriteabls
Wersions: |pihtml.exe wergion 2.0.0.0 Unilrt verzion 4.0.0.0
General Service Configuration
Urilnt Service name: |pintmi1 ID: |1 Startup Type Creale / Remave
PI SDK _ _ f+ Auto Creats
Digconnected Startup Display name: |F'|'I2'lhtl'l'l|'I " Marwal
De.bug Log on as: |LocaIS_l,lstem £ Disabled
Failower
Performance Paints Passwaord: |
Performance Counters Confitm passward: |
Health Paints) Inzstalled services:
Wtrnl Dependencies: tepip Alerter B
e Bufzen: ALG
ID FH 4 | | Apple Mobile Device
Apphkdgmt
Interface Status [3 aspgne?rltate
AudinGry
BatchFL10 -
< >
Alerter
Close | |
Ready Service Uninstalled pihtmll - Mot Ihstalled

Service Configuration

Service name

The Service name box shows the name of the current interface service. This service name is
obtained from the interface executable.

ID

This is the service ID used to distinguish multiple instances of the same interface using the
same executable.

Display name

The Display name text box shows the current Display Name of the interface service. If there
is currently no service for the selected interface, the default Display Name is the service name
with a “P1-" prefix. Users may specify a different Display Name. OSIsoft suggests that the

prefix “PI-” be appended to the beginning of the interface name to indicate that the service is
part of the OSlsoft suite of products.

22

(@ osi

Log on as

The Log on as text box shows the current “Log on as” Windows User Account of the
interface service. If the service is configured to use the Local System account, the Log on as
text box will show “LocalSystem.” Users may specify a different Windows User account for
the service to use.

2 Security Note: For best security, we recommend running this interface service
under an account with minimum privileges, such as the Windows built-in
NetworkService account or a non-administrative account that you create.

The consequence of increasing security by following this recommendation is that extra
administrative actions are needed to create and maintain the performance counters for the
interface service. Since performance counters are associated with each scan class,
performance counters for the interface instance must be updated after additions or deletions
of scan classes by running the interface instance, at least for a short time, from an account
that has sufficient privileges to create or delete performance counters.

Unfortunately, the current version of the ICU cannot create a service that runs under the
Windows built-in NetworkService account. After ICU creates the interface service, you can
change the account with a Windows administrative tool, such as Services on the Control
Panel or the sc command-line utility.

Password

If a Windows User account is entered in the Log on as text box, then a password must be
provided in the Password text box, unless the account requires no password.

Confirm password

If a password is entered in the Password text box, then it must be confirmed in the Confirm
password text box.

Dependencies

The Installed services list is a list of the services currently installed on this machine. Services
upon which this interface is dependent should be moved into the Dependencies list using the

L button. For example, if API Buffering is running, then “bufserv’” should be selected
from the list at the right and added to the list on the left. To remove a service from the list of

4

dependencies, use the —=_1 button, and the service name will be removed from the
Dependencies list.

When the interface is started (as a service), the services listed in the dependency list will be
verified as running (or an attempt will be made to start them). If the dependent service(s)
cannot be started for any reason, then the interface service will not run.

Note: Please see the Pl Log and Windows Event Logger for messages that may
indicate the cause for any service not running as expected.

Pl Interface for HTML 23

Interface Installation

M - Add Button

To add a dependency from the list of Installed services, select the dependency name, and
click the Add button.

4

—J - Remove Button

To remove a selected dependency, select the service name in the Dependencies list, and click
the Remove button.

The full name of the service selected in the Installed services list is displayed below the
Installed services list box.

Startup Type

The Startup Type indicates whether the interface service will start automatically or needs to
be started manually on reboot.

o If the Auto option is selected, the service will be installed to start automatically when
the machine reboots.

o If the Manual option is selected, the interface service will not start on reboot, but will
require someone to manually start the service.

o If the Disabled option is selected, the service will not start at all.

Generally, interface services are set to start automatically.

Create

The Create button adds the displayed service with the specified Dependencies and with the
specified Startup Type.

Remove

The Remove button removes the displayed service. If the service is not currently installed, or
if the service is currently running, this button will be grayed out.

Start or Stop Service

The toolbar contains a Start button # and a Stop button Il If this interface service is not
currently installed, these buttons will remain grayed out until the service is added. If this
interface service is running, the Stop button is available. If this service is not running, the
Start button is available.

The status of the interface service is indicated in the lower portion of the Pl ICU dialog.

— Ready Stopped pihtmll - Installed
Status of Status of the Service
the ICU Interface installed or

Service uninstalled

24 (@ os

Installing Interface Service Manually

Help for installing the interface as a service is available at any time with the command:
PIHTML.exe /help

Open a Windows command prompt window and change to the directory where the
PIHTML.exe executable is located. Then, consult the following table to determine the
appropriate service installation command.

Note: In the following Windows service installtation commands you may use either a
slash (/) or dash (-) as the delimiter.

Windows Service Installation Commands on an Interface Node or a Pl Data Archive Node
with Bufserv implemented

Manual service PIHTML.exe /install /depend "tcpip bufserv"

Automatic service PIHTML.exe /install /auto /depend "tcpip bufserv"

*Automatic service with | PIHTML.exe /serviceid X /install /auto /depend "tcpip bufserv"
service ID

Windows Service Installation Commands on an Interface Node or a Pl Data Archive Node
without Bufserv implemented

Manual service PIHTML.exe /install /depend tcpip

Automatic service PIHTML.exe /install /auto /depend tcpip

*Automatic service with | PIHTML.exe /serviceid X /install /auto /depend tcpip
service ID

*When specifying service 1D, the user must include an ID number. It is suggested that this
number correspond to the interface ID (/id) parameter found in the interface .bat file.

Check the Microsoft Windows Services control panel to verify that the service was added
successfully. The services control panel can be used at any time to change the interface from
an automatic service to a manual service or vice versa.

The service installation commands in this section always create an interface service that runs
under the built-in LocalSystem account. The LocalSystem account is highly privileged and
the interface does not need most of the LocalSystem privileges to operate correctly.

=) Security Note: For best security, we recommend running this interface service
under an account with minimum privileges, such as the Windows built-in
NetworkService account or a non-administrative account that you create.

The consequence of increasing security by following this recommendation is that extra
administrative actions are needed to create and maintain the performance counters for the
interface service. Since performance counters are associated with each scan class,
performance counters for the interface instance must be updated after additions or deletions
of scan classes by running the interface instance, at least for a short time, from an account
that has sufficient privileges to create or delete performance counters.

The services control panel can change the account that the interface service runs under.
Changing the account while the interface service is running does not take effect until the
interface service is restarted.

Pl Interface for HTML 25

Digital States

chapter 5. Digital States

For more information regarding Digital States, refer to the Pl Data Archive documentation.

Digital State Sets

Pl digital states are discrete values represented by strings. These strings are organized in the
Pl Data Archive as digital state sets. Each digital state set is a user-defined list of strings,
enumerated from 0 to n to represent different values of discrete data. For more information
about PI digital tags and editing digital state sets, see the Pl Data Archive manuals.

An interface point that contains discrete data can be stored in the Pl Data Archive as a digital
point. A digital point associates discrete data with a digital state set, as specified by the user.

System Digital State Set

Similar to digital state sets is the system digital state set. This set is used for all points,
regardless of type, to indicate the state of a point at a particular time. For example, if the
interface receives bad data from the data source, it writes the system digital state Bad Input
to the PI point instead of a value. The system digital state set has many unused states that can
be used by the interface and other PI clients. Digital States 193-320 are reserved for OSlsoft
applications.

26

(@ os

chapter 6. PointSource

The PointSource is a unique, single or multi-character string that is used to identify the PI
point as a point that belongs to a particular interface. For example, the string Boilerl may be
used to identify points that belong to the Myint interface. To implement this, the PointSource
attribute would be set to Boiler1 for every Pl point that is configured for the MyInt
interface. Then, if /ps=Boiler1l is used on the startup command-line of the Mylnt interface,
the interface will search the Pl Point Database upon startup for every PI point that is
configured with a PointSource of Boiler1. Before an interface loads a point, the interface
usually performs further checks by examining additional Pl point attributes to determine
whether a particular point is valid for the interface. For additional information, see the /ps
parameter. If the Pl API version being used is earlier than 1.6.x or the Pl Data Archive
version is earlier than 3.4.370.x, the PointSource is limited to a single character unless the
SDK is being used.

Case-sensitivity for PointSource Attribute

The PointSource character that is supplied with the /ps command-line parameter is not case
sensitive. That is, /ps=P and /ps=p are equivalent.

Reserved Point Sources

Several subsystems and applications that ship with the Pl System are associated with default
PointSource characters. The Totalizer Subsystem uses the PointSource character T, the Alarm
Subsystem uses @ for Alarm Tags, G for Group Alarms and ¢ for SQC Alarm Tags, Random
uses r, RampSoak uses 9, and the Performance Equations Subsystem uses c. Do not use
these PointSource characters or change the default point source characters for these
applications. Also, if a PointSource character is not explicitly defined when creating a

Pl point; the point is assigned a default PointSource character of Lab (Pl 3). Therefore, it
would be confusing to use L.ab as the PointSource character for an interface.

Note: Do not use a point source character that is already associated with another
interface program. However it is acceptable to use the same point source for multiple
instances of an interface.

Pl Interface for HTML 27

P1 Point Configuration

chapter 7. Pl Point Configuration

The PI point is the basic building block for controlling data flow to and from the PI Data
Archive. A single point is configured for each measurement value that needs to be archived.

Point Attributes

Use the point attributes below to define the PI point configuration for the interface, including
specifically what data to transfer.

This document does not discuss the attributes that configure Unilnt or Pl Data Archive
processing for a PI point. Specifically, Unilnt provides exception reporting and the Pl Data
Archive provides data compression. Exception reporting and compression are very important
aspects of data collection and archiving, which are not discussed in this document.

Note: See the Unilnt Interface User Manual and Pl Data Archive documentation for
information on other attributes that are significant to PI point data collection and
archiving.

Tag

The Tag attribute (or tag name) is the name for a point. There is a one-to-one correspondence
between the name of a point and the point itself. Because of this relationship, PI
documentation uses the terms “tag” and “point” interchangeably.

Follow these rules for naming PI points:
e The name must be unique on the PI Data Archive.
e The first character must be alphanumeric, the underscore (), or the percent sign (%).
e Control characters such as linefeeds or tabs are illegal.

~an

e The following characters also are illegal: *”?; {} []]\

Length

Depending on the version of the Pl API and the PI Data Archive, this interface supports tags
whose length is at most 255 or 1023 characters. The following table indicates the maximum
length of this attribute for all the different combinations of PI APl and Pl Data Archive
versions.

Pl API Pl Data Archive Maximum Length
1.6.0.2 or later 3.4.370.x or later 1023

1.6.0.2 or later Earlier than 3.4.370.x | 255

Earlier than 1.6.0.2 | 3.4.370.x or later 255

Earlier than 1.6.0.2 | Earlier than 3.4.370.x | 255

If the Pl Data Archive version is earlier than 3.4.370.x or the Pl API version is earlier than
1.6.0.2, and you want to use a maximum tag length of 1023, you need to enable the Pl SDK.

28

See Appendix B for information.
(@ osi

PointSource

The PointSource attribute contains a unique, single or multi-character string that is used to
identify the Pl point as a point that belongs to a particular interface. For additional
information, see the /ps command-line parameter and the PointSource chapter.

PointType

Typically, device point types do not need to correspond to Pl point types. For example,
integer values from a device can be sent to floating-point or digital PI tags. Similarly, a
floating-point value from the device can be sent to integer or digital Pl tags, although the
values will be truncated.

Float16, float32, int16, int32, digital, and string point types are supported. For more
information on the individual point types, see Pl Data Archive Manuals.

Locationl

Locationl indicates to which copy of the interface the point belongs. The value of this
attribute must match the /id command-line parameter.

Location2

Location2 is used by digital points. Set Location2 = 0 when the text on the page corresponds
to the string representation of a digital state. Set Location2 = 1 when the text on the page
corresponds to the zero-based integer offset of a digital state in the point’s digital state set.

Location3

Location3 is not used by this interface.

Location4

Scan-based Inputs

For interfaces that support scan-based collection of data, Location4 defines the scan class for
the PI point. The scan class determines the frequency at which input points are scanned for
new values. For more information, see the description of the /£ parameter in the Startup
Command File chapter.

To use event-based scanning, set Location4 to 0 and see the section describing the extended
descriptor (ExDesc), below.

Trigger-based Inputs, Unsolicited Inputs, and Output Points
Location4 should be set to zero for these points.
Location5

Location5 is not used by this interface.

Pl Interface for HTML 29

P1 Point Configuration

InstrumentTag

This field should contain the data marker from which this point will be reading data. This
field is not case-sensitive.

If this PI point will be receiving data from multiple data markers, list them all here, delimited
by semicolons (;). This is useful when a single point needs to receive multiple values from a
page. For example, hourly weather information could be listed as 24 different
timestamp/value pairs on the same page, but all values need to go to the same point.

Note: When using multiple markers for a single point, digital state errors are
suppressed for that point.

Length

Depending on the version of the PI API and the PI Data Archive, this interface supports an
InstrumentTag attribute whose length is at most 32 or 1023 characters. The following table
indicates the maximum length of this attribute for all the different combinations of Pl API
and PI Data Archive versions.

Pl API Pl Data Archive Maximum Length
1.6.0.2 or later 3.4.370.x or later 1023
1.6.0.2 or later Earlier than 32
3.4.370.x
Earlier than 1.6.0.2 3.4.370.x or later 32
Earlier than 1.6.0.2 Earlier than 32
3.4.370.x

If the Pl Data Archive version is earlier than 3.4.370.x or the Pl API version is earlier than
1.6.0.2, and you want to use a maximum InstrumentTag length of 1023, you need to enable
the PI SDK. See Appendix B for information.

ExDesc

ExDesc is not used by the PI Interface for HTML for any interface-specific features, but it
does enable some functionality present in Unilnt interfaces.

Length
Depending on the version of the Pl API and the PI Data Archive, this interface supports an

ExDesc attribute whose length is at most 80 or 1023 characters. The following table indicates

the maximum length of this attribute for all the different combinations of Pl APl and PI Data
Archive versions.

Pl API Pl Data Archive Maximum Length
1.6.0.2 or later 3.4.370.x or later 1023

1.6.0.2 or later Earlier than 3.4.370.x | 80

Earlier than 1.6.0.2 3.4.370.x or later 80

Earlier than 1.6.0.2 Earlier than 3.4.370.x | 80

If the Pl Data Archive version is earlier than 3.4.370.x or the PI API version is earlier than
1.6.0.2, and you want to use a maximum ExDesc length of 1023, you need to enable the PI
SDK. See Appendix B for information.

30

(@ os

Performance Points

For Unilnt-based interfaces, the extended descriptor is checked for the string
“PERFORMANCE_POINT”. If this character string is found, Unilnt treats this point as a
performance point. See the section called Scan Class Performance Points.

Trigger-based Inputs

For trigger-based input points, a separate trigger point must be configured. An input point is
associated with a trigger point by entering a case-insensitive string in the extended descriptor
(ExDesc) PI point attribute of the input point of the form:

keyword=trigger tag name

where keyword is replaced by “event” or “trig” and trigger tag name is replaced by the
name of the trigger point. There should be no spaces in the string. Unilnt automatically
assumes that an input point is trigger-based instead of scan-based when the
keyword=trigger tag name String is found in the extended descriptor attribute.

An input is triggered when a new value is sent to the Snapshot of the trigger point. The new
value does not need to be different than the previous Snapshot value to trigger an input, but
the timestamp of the new value must be greater than (more recent than) or equal to the
timestamp of the previous value. This is different than the trigger mechanism for output
points. For output points, the timestamp of the trigger value must be greater than (not greater
than or equal to) the timestamp of the previous value.

Conditions can be placed on trigger events. Event conditions are specified in the extended
descriptor as follows:

Event='trigger tag name' event condition
The trigger tag name must be in single quotes. For example,
Event='Sinusoid' Anychange

will trigger on any event to the Pl Tag sinusoid as long as the next event is different than the
last event. The initial event is read from the snapshot.

The keywords in the following table can be used to specify trigger conditions.

Event Description
Condition

Anychange Trigger on any change as long as the value of the current event is different than
the value of the previous event. System digital states also trigger events. For
example, an event will be triggered on a value change from 0 to “Bad Input,” and
an event will be triggered on a value change from “Bad Input” to 0.

Increment Trigger on any increase in value. System digital states do not trigger events.
For example, an event will be triggered on a value change from 0 to 1, but an
event will not be triggered on a value change from “Pt Created” to 0. Likewise,
an event will not be triggered on a value change from 0 to “Bad Input.”

Decrement Trigger on any decrease in value. System digital states do not trigger events.
For example, an event will be triggered on a value change from 1 to 0, but an
event will not be triggered on a value change from “Pt Created” to 0. Likewise,
an event will not be triggered on a value change from 0 to “Bad Input.”

Nonzero Trigger on any non-zero value. Events are not triggered when a system digital
state is written to the trigger tag. For example, an event is triggered on a value
change from “Pt Created” to 1, but an event is not triggered on a value change
from 1 to “Bad Input.”

Pl Interface for HTML 31

Pl Point Configuration

Scan

By default, the Scan attribute has a value of 1, which means that scanning is turned on for the
point. Setting the Scan attribute to 0 turns scanning off. If the Scan attribute is 0 when the
interface starts, a message is written to the pipc. log and the tag is not loaded by the
interface. There is one exception to the previous statement.

If any PI point is removed from the interface while the interface is running (including setting
the Scan attribute to 0), scan orr will be written to the PI point regardless of the value of
the Scan attribute. Two examples of actions that would remove a Pl point from an interface
are to change the point source or set the Scan attribute to 0. If an interface-specific attribute is
changed that causes the tag to be rejected by the interface, scan orr will be written to the Pl
point.

Shutdown

The Shutdown attribute is 1 (true) by default. The default behavior of the Pl Shutdown
subsystem is to write the suuTpDOWN digital state to all PI points when Pl is started. The
timestamp that is used for the sHuTDOWN events is retrieved from a file that is updated by the
Snapshot Subsystem. The timestamp is usually updated every 15 minutes, which means that
the timestamp for the sauTDOWN events will be accurate to within 15 minutes in the event of
a power failure. For additional information on shutdown events, refer to Pl Data Archive
manuals.

Note: The SHUTDOWN events that are written by the Pl Shutdown subsystem are
independent of the SHUTDOWN events that are written by the interface when
the /stopstat=Shutdown command-line parameter is specified.

SHUTDOWN events can be disabled from being written to PI points when the PI Data Archive
is restarted by setting the Shutdown attribute to 0 for each point. Alternatively, the default
behavior of the PI Shutdown Subsystem can be changed to write sHuTDOWN events only for
Pl points that have their Shutdown attribute set to 0. To change the default behavior, edit the
\PI\dat\Shutdown.dat file, as discussed in Pl Data Archive manuals.

Bufserv and PIBufss

It is undesirable to write shutdown events when buffering is being used. Bufserv and PIBufss
are utility programs that provide the capability to store and forward events to a Pl Data
Archive, allowing continuous data collection when the Pl Data Archive is down for
maintenance, upgrades, backups, and unexpected failures. That is, when the Pl Data Archive
is shutdown, Bufserv or PIBufss will continue to collect data for the interface, making it
undesirable to write SHUTDOWN events to the PI points for this interface. Disabling Shutdown
is recommended when sending data to a Highly Available Pl Data Collective. Refer to the
Bufserv or PIBufss manuals for additional information.

32 (@ osi

DataSecurity
The PI identity in the PI Trust that authenticates the interface must be granted read access by
the DataSecurity attribute of every PI point that the interface services. If the interface is used
without a buffering application, write access also must be granted. (If the interface is used

with a buffering application, the buffering application requires write access but the interface
does not.)

PointSecurity

The PI identity in the PI Trust that authenticates the interface must be granted read access by
the PointSecurity attribute of every PI point that the interface services.

Output Points

The PI Interface for HTML does not support output points.

Pl Interface for HTML 33

Startup Command File

chapters. Startup Command File

Command-line parameters can begin with a / or with a -. For example, the /ps=M and
-ps=M command-line parameters are equivalent.

For Windows, command file names have a .bat extension. The Windows continuation
character (~) allows for the use of multiple lines for the startup command. The maximum
length of each line is 1024 characters (1 kilobyte). The number of parameters is unlimited,
and the maximum length of each parameter is 1024 characters.

The PI Interface Configuration Utility (P ICU) provides a tool for configuring the interface
startup command file.

Configuring the Interface with PI ICU

Note: PI ICU requires Pl 3.3 or later.

The PI Interface Configuration Utility provides a graphical user interface for configuring Pl
interfaces. If the interface is configured by the Pl ICU, the batch file of the interface
(pzHTML.bat) will be maintained by the PI ICU and all configuration changes will be kept
in that file and the PI Module Database. The procedure below describes the necessary steps
for using PI ICU to configure the PI Interface for HTML.

From the Pl ICU menu, select Interface, then NewWindows Interface Instance from EXE...,
and then Browse to the PTHTML . exe executable file. Then, enter values for Host PI System,
Point Source, and Interface ID#. A window such as the following results:

itu/Co nfigure a New Interface g|
Use the Browse button to select a Pl Interface service file [exe] to configure. The additional
parameters shown may alzo be selected.
1] Browse to interface executable [required):
| Browse...
2] Host Pl Server/Collective [required): Path:
|mke||yla|:-top j |mkell_l,l|aptop
3] Optional Settings
Interface name az dizplayed in the ICU [optional];
[HTML -1
Paint 5 ource: Interface 10 # Service D
[HTHL 1l Suggest 1 -
add | ClearFieits | Clse |

Interface name as displayed in the ICU (optional) will have PI- pre-pended to this name and
it will be the display name in the services menu.

Click Add.

34 (@ os

The following

message should appear:

PIICU Register Interface

‘!I) HTML - 1 (PIHTML1) is now ready to be configured with PI-Interface Confiquration Utility.

Note that in this example the Host Pl Data Archive is mkellylaptop. To configure the

interface to communicate with a remote Pl Data Archive, select Connections...from the Pl
ICU Interface menu and select the default Pl Data Archive. If the remote node is not present
in the list of Pl Data Archives, it can be added.

Once the interface is added to Pl ICU, near the top of the main PI ICU screen, the interface
Type should be htm1. If not, use the drop-down box to change the interface Type to be htm1l.

Click on Apply to enable the PI ICU to manage this instance of the PI Interface for HTML.

iy Pl-Interface Configuration Utility - PIHTML1

CBX

Pl Server Connection Status
f mkellylaptop
v ‘Wiiteable

|piadmin

Lol Lef Lo

|Non-replicated -PI3

|FI3.4.575.38
|5450

[:4Program Files\PIPChInterfacestHT LY

Cloze | |

Interface Tools Help
D= X = G L7
Interface: |HTML -1 [FIHTKLT] > mkelylaptop
Type: htrl | Web Based Interface using HTML
Desointion .
eschiption huskyhost
Yersions: huskyimm i Unilrt version 4.0.0.0
twwphd .
General hwphd_chr Pl Host Information
Uriilnt huwzc3000 .
Rl SDK IBABIRFL B HTHL J Server/Collactive: |mkel|_l,l|aptop
i v
Disconnected STamup HTML J SDE Member:
Detbug AP Hozstname:
Failower
Performance Points Interface ID: |1 Uszer:
Performance Counters .
Type:
Health Paints Scan Classes
hitrel e Version:
Service .
Port:
|0 Rate Scan Frequency | Scan Class # | N
Interface Status Description:
Interface [nstallation Path
Feady Service Uninstalled FIHTHLI - Mot Installed

ﬂ Rename

The next step is to make selections in the interface-specific page (that is, “htm1”) that allows
you to enter values for the startup parameters that are particular to the PI Interface for HTML.

Pl Interface for HTML

35

Startup Command File

iy Pl-Interface Configuration Utility - PIHTML1

Interface Tools Help

NEX |- = G 7]

Interface: [HTML - 1 [FIHTML1] > mkellwlaptop ~| Rename
Type: hitrnl | ‘web Based Interface using HTML Pl Server Connection Status
Diescription: | # mkellylaptap

) ¥ Witsable

Wersiohs: |F'IHTML.erce wergion 2.0.0.0 Unilnt version 4.0.0.0

General wheh Based Interface uzing HTML Interface-S pecific Parameters [2.2.0.63)

Unilmt Current configuration File:

Pl SDK | Misc...
Dizconnectad Startup

HTML locator scripk:

De_bug Record Mew, ..
Failower
Performance Paints IMarkers created on the target HTML page
Performance Counters Data markers: Timestamp markers:
Health Paints
§htrn|
Service
10 Rate

Interface Status

Edit Markers... validate Markers...

Additional parameters (in standard command line format]

Cloge | Apply |

Feady Service Uninstalled FIHTHLI - Mot Installed

Since the Pl Interface for HTML is a Unilnt-based interface, in some cases the user will need
to make appropriate selections in the Unilnt page. This page allows the user to access Unilnt
features through the P1 ICU and to make changes to the behavior of the interface.

To set up the interface as a Windows Service, use the Service page. This page allows
configuration of the interface to run as a service as well as to starting and stopping of the
interface service. The interface can also be run interactively from the P1 ICU. To do that,
select Start Interactive on the Interface menu.

For more detailed information on how to use the above-mentioned and other PI ICU pages
and selections, please refer to the P Interface Configuration Utility user guide. The next
section describes the selections that are available from the html page. Once selections have

been made on the PI ICU window, press the Apply button in order for Pl ICU to make these
changes to the interface’s startup file.

html Interface Page

Since the startup file of the PI Interface for HTML is maintained automatically by the PI ICU,
use the html page to configure the startup parameters and do not make changes in the file
manually. The following is the description of interface configuration parameters used in the
PI1 ICU Control and corresponding manual parameters.

36 (@ osi

html Interface Page

t%u Pl-Interface Configuration Utility - PIHTML1

Interface Tools Help

NE X | H B L7
Interface: |HTML =1 [PIHTMLT] > mkelylaptop j Fenanme
Type: bkl - | ‘web Baged Interface using HTML Pl Server Connection Status
Drescription: | _? mkellylaptop
. v Witeable
Wersions: |F'IHTML.exe wersion 2.0.0.0 Uriltt version 4.0.0.0
General “Web Bazed Interface uzing HTML Interface-S pecific Parameters [2.2.0.63)

Unilnt Current configuration File:
Pl SDK | Misc. .

Dizconnected Startup HTML locator script:

De_bug Record Mew, ..
Failower
Performance Paints Markers created on the target HTML page
Perfarmance Counters Data markers: Timestamp markers:
Health Paints
hitrl
Service
10 Rate

Interface Status

Edit Markers... Yalidate Markers...

Additional parameters (in ztandard command line format)

Cloge | Apply |

Ready Service ninstalled FIHTKLT - Mot Installed

The PI Interface for HTML - ICU Control has one section. A yellow text box indicates that
an invalid value has been entered or that a required value has not been entered.

Current Configuration File

This file is an XML (eXtensible Markup Language)-formatted file that contains detailed
interface configuration information. This file should not be edited manually, unless you
REALLY know what you are doing. Otherwise, this file is automatically maintained by the
Pl ICU.

HTML Locator Script

One item stored in the configuration file is the series of steps required to get to the HTML
page that the interface will be parsing. This is necessary because there are pages that are not
accessible by directly entering a URL. For example, many pages require a login before they
will allow a browser to access certain protected information. This functionality will allow a
user to graphically walk through what steps are necessary to navigate to a particular page.

Click Record New to open a dialog box that prompts you for an initial URL (and possibly
proxy information) and then a web browser appears. Navigate the web using the mini-
browser window that is provided, clicking on links or filling in forms, until the desired page
has been located.

Only one target HTML page can be specified for each instance of the Pl Interface for HTML.
If data is desired from more than one HTML page, another instance of the interface must be
created. This can be done on the first tab of the PI ICU.

Pl Interface for HTML 37

Startup Command File

Steps for Creating a New HTML Locator Script

1. Make sure the desired configuration file is selected in the text box under the Current
Configuration File field. This is the file in which the locator script will be held. The
ellipsis button will allow you to browse for a file. If a non-existing file is selected, a
dialog box will prompt you to create a new configuration file.

2. Click Record New. This opens a dialog box asking where the starting point for the
web browser is. If you are going through an HTTP proxy server, check the I am
using an http proxy check box. Enter your proxy server, username, and password. If
you need the request to be a POST type request, click the checkbox next to Post.

-

@® Locator Script Starting Point

Starting point ;
Cancel
Enter a URL or browse for a local file:

|htn3:ffted'|supp|:|rt.usisu:uft.u:u:um,."ten:hsuppu:urt,.’nu:untemplatesfF‘IMDn.aspx

[~ Post? Browse for local file... |

[Iam using an http proxy

3. Enter the URL to the starting web page, where the navigation to find the target
HTML page will begin. Click OK.

Note: If you select a file on the local file system, the format of the URL must be
file:///C:/Path/To/My/File.html.

4. Use the web browser window that opens to navigate to the target page. Your actions
will be recorded in a list at the bottom of the page.

5. To modify the attributes of the pages navigated to (like the URL, whether the request
will be a GET request or a POST request, and the http authentication username and
password for getting to a particular page), click the URL of the entry you want to
modify in the list box in the upper-right corner of the navigation window and modify
those settings.

=~

@® Locator Script Details

Go to URL: http:/ftechsupport. osisoft.com/techsuppart/nontemplates /FIMan,
aspx

From URL: [Mone]

Post? [
Http Username:

Http Password:

6. When you are finished, click Finished. To revert to the previous locator script, press
Cancel.

38 (@ os

Markers Created on the Target HTML Page

Once an HTML page has been retrieved, the next step is to determine where on that page the
data is located. The idea is that you highlight certain places on the rendered HTML page, and
the locations of those selections are remembered by the configuration utility and saved in the
configuration file. These locations on the page are called markers. By clicking Edit Markers,
the P1 ICU displays the HTML page in a separate window. Select where one piece of data
(timestamp data or value data) on that page is located. After selecting a piece of text, click
Create New Timestamp Marker for timestamp data, or Create New Data Marker for
value data. Enter a name for that location, which is now a marker. The ICU will save where
the highlighted text is located on the page into a marker, and the marker will be stored in the
configuration file. The user will associate a Pl tag with a data marker in the tag configuration,
which is described in section Pl Point Configuration. These steps are described in further
detail below.

There are two different types of markers: data and timestamp markers. Data markers are
created to be the value that is stored for a Pl point. Data markers can be cast into any of the
supported PI data types (assuming the cast is legal; for example, casting “4k123” to an integer
is of course not legal). This includes int16, int32, float16, float32, float64, string, and digital.
Timestamp markers are markers created to be the timestamps for the data markers. Each data
marker requires a timestamp source. This can either be a defined timestamp marker, or the
data marker can use the current clock time as its timestamp, if no timestamp is available on
the actual HTML page. Timestamp markers may be in many different date/time formats.

By selecting the markers in the Data Markers field in the ICU window, you can see with
which timestamp markers those data markers are associated. This association cannot be
changed from this screen; it can only be viewed.

Creating New Markers

1. Make sure the desired configuration file is selected in the Current Configuration
File field. This is the file in which the locator script will be held. The ellipsis button
will allow you to browse for a file. If a non-existing file is selected, a dialog box
appears prompting you to create a new configuration file.

2. Click Edit Markers to open a web browser screen that shows all the data and
timestamp marker information. The following is what the upper-right corner of the
Edit Markers page looks like:

Pl Interface for HTML 39

Startup Command File

=%

Timestamp markers:

SanLeandraTim. ..
- YardleyTimestamp
d PerthTimestamp
FrankfurtTimes...

B [&) X

- Data markers:

SanLeandroTe...
YardleyWindsp. ..
PerthPercentH. ..
FrankfurtBarom. ..

| (& X

3. To create a new marker, highlight the location of the data on the web browser
window that appears, and click Create New Data Marker or Create New
Timestamp Marker to make a new marker of the respective type (hovering your
mouse over the buttons shown above will reveal their function).

Editing Markers

When a new marker is created, or when you click Edit Selected Timestamp (or Data)
Marker after selecting a marker in one of the two lists, the properties window will appear for
the new (in the case of a new marker) or selected (in the case of an already-existing marker)
marker.

The name field at the top of the page lets you specify an identifier to give this marker. This
name should be unique. For data markers, this name is the name that will be specified in the
InstrumentTag Pl point attribute to associate the Pl point with the data marker. For timestamp
markers, this name is the name that will be selected in the edit window of a data marker, for
associating a timestamp marker with a data marker.

1. Select a new name for the marker. Make sure it is unique (per XML configuration
file). Type that into the Name field.

40

(@ os

2. If this is a timestamp marker, the Edit Marker Properties window will look like

this:
-
@ Edit Marker Properties
Mame |SanLE.anu:Ir|:|'I'|mestamp
Location on the Page
HTML Hierarchy l RegExp Search] Preview]
---<i-i> TBODY -~
+-shi TR
=] TR
<= TD
+-<bE TD
+-<bE TD
+-<bE TD
+-<bE TD
= cﬂl} -I-D
<o SPAN -
Default Day: ﬂ Today+ Cancel
Default Time: ¥ | loo:oo:oo
Timezone Offset: I':'_ hours

O

Default Day is telling the interface how it should handle situations where
there is a time without a date. Click on the arrow button next to the text field
to make a selection. Today will add the current local date to the time that
was read on the HTML page. Yesterday will take today’s date, subtract a
day, and add that to the time. Today with extra logic will use the current
date, but in the case that the combination of date plus time results in a
timestamp that is more than 10 minutes into the future, it will subtract a day.
This is useful in cases where, for example, the interface reads a page at 12:01
am, but the time on the page says 11:59 pm. If the current day’s date were to
be used, the timestamp would be today at 11:59 pm, when in reality, the
desired date would be yesterday’s date. Hardcoded will allow you to specify
a hard-coded date, in Pl date format (dd-mmm-yy or dd-mmm-yyyy). This is
not very useful for normal operation of the interface, but can be useful if you
need to read old pages that did not have dates on them, only times.

Default Time instructs the interface how it should handle situations where
there is a date without a time. This time will be applied to the date.

Timezone Offset is a floating point number that instructs the interface how
many hours to add to the timestamp (or subtract if it is a negative number).
For example, for an interface running on US Pacific Time (GMT-8), but
reading data from US Eastern time (GMT-5), this number should be -3.

Pl Interface for HTML

41

Startup Command File

3.

If this is a data marker, the Edit Marker Properties window will look like this.

@ Edit Marker Properties

-,

Name |sanl eandroTemperature
Location on the Page

HTML Hierarchy l RegExp Search] Preview l

—|.-<ii> TABLE
—|-<hi= TBODY
H-r TR
=l-€hix TR
iz TD
=iz TO

...............

Timestamp Marker: SanLeandroTimestamp ﬂ Cancel

Ok

o Timestamp Marker is a dropdown box that lists all the timestamp markers
that have been created so far. Also listed is [Use Current Timestamp]. That
option will set this data marker to use the current interface time as opposed to

reading a timestamp off the HTML page.

4. The HTML Hierarchy tab lets you select which node in the HTML hierarchy will
be read for data. This tree view is a representation of how Internet Explorer exposes
the HTML page to the interface. This box shows how you tell the interface where
your data is. Normally, you do not have to edit this tree view box, because the correct
node was selected when you initially created the marker. So edit this box if you really

know what you are doing.

42

(@ osi

5. Clicking RegExp Search tab displays the following:

@ Edit Marker Properties

Name |san| eandroTimestamp

Location on the Page

Regexp Pattern: [+ \s(\d*2)\s(. *2) \s(\d*2) \s('d*2:..)\s(..). = i
Replace With: |51 &7 £3 &4 &5 ﬂ

{l eave hlank for no repdscemeant)
Searching in: Tue, 01 Jul 2008 5:53 pm POT
Default Day: ﬂ Today + Cancel
Default Time: ¥ | [oo:o0:o0

J | []4

Timezone Cffset: 0 haurs

The text inside the node selected in the HTML Hierarchy tab may not be exactly the text
you want to store into a PI point. See section Pattern Matching for an example. The regexp
search and replace functionality lets you find the exact text you’re looking for. Refer to the
Regular Expressions Tutorial for detailed information and many examples on how to use
regexp to get the correct data out of your HTML page. A quick summary follows.

Click the Preview tab to see what text would be selected if the regexp fields were not
changed. There is a good chance that the data you were looking for has already been found
without using the regexp fields. In the example HTML in section Pattern Matching, the data
values for temperature, humidity, and barometric pressure should be found correctly, because
the numbers are alone inside the HTML tags. However, the timestamp marker will not be
read correctly, because there is additional data inside the HTML tags besides the timestamp.
If you were configuring the timestamp marker for that page, you would find “Weather data
for December 12, 2001 12:32 pm” shown in the preview frame. The goal is to narrow this
text down to a date.

First, delete the old pattern (“.*”). Then specify patterns for the data you want, and the data
you do not want. You want to remove the “Data for” part, but keep the following date part.
One pattern you could use is . *for\s. *, (period-asterisk-f-o-r-backslash-s-period-asterisk.)
The first period-asterisk is a wildcard search of any number of characters. The f-o-r matches
the “for” in “Data for.” The backslash-s matches the space after “for”. The final period-
asterisk matches the actual date part. What we want to keep in this example is the date part,
which is represented in the pattern by the last period-asterisk. So place that part in
parentheses, like this: . *for\s (.*)

Pl Interface for HTML 43

Startup Command File

Use parentheses to create a group in the pattern. In the Regular Expressions Tutorial, groups
are discussed in more detail. As discussed in the tutorial, there can be several groups defined
in a pattern. In our case, there is only one group defined. We want to select that first (and
only) group as our final data, so select (found 1) from the menu that appears when you click
on the arrow button next to the Replace With field. Then, when you click the Preview tab,
only the date appears.

Pattern matching and substitution can be complicated, but typically the HTML page you want
to read will not be formatted in a way that would require you to use anything other than the
default. Otherwise, read the Regular Expressions Tutorial.

6. The Preview tab shows you what the results of your selection (along with any
changes you made in the RegExp Search tab you made) are. This tab is how the
marker will be interpreted by the interface.

@ Edit Marker Properties

Mame |SanLE.anu:Ir|:|'I'|mestamp

Location on the Page

.........................

01 Jul 2008 5:53 pm

Default Day: ﬂ |'|'.;..jay + Cancel
Default Time: ¥ | |00:00:00

J | Ok
Timezone Offset: g hours

Validate Markers

Since version 2.0, the HTML interface uses a third-party library called Curl to perform the
download of all web pages. However, in order to facilitate easier configuration of the
interface, the ICU (and HTMLConfigUtil) uses Internet Explorer as its method of getting the
web pages off the internet. Sometimes this causes differences in what the user has configured
and what the HTML interface sees as its target web page.

Click Validate Markers to display a screen that shows what the interface would see when it
attempts to navigate to the target page and search for the markers on that page. This is a good
way to test to make sure your markers will be properly read by the HTML interface after the

configuration is finished.

If the markers do not appear correctly, there are a few techniques for troubleshooting.

44

(@ os

Misc

Click this button to open a dialog box with other options, mostly used to modify how the
interface runs. These options correspond to command line parameters discussed above in
section Command-line Parameters.

Additional Parameters

This section is provided for backwards compatibility. If, for some reason, there are additional
parameters required for a newer version of the interface to operate, and the htm1.d11 file
that is available on the current computer is not up to date, the ICU will not be able to
correctly configure the newly added parameters. Use the Additional Parameters field to
enter options that are not available in the graphical part of the ICU. This text box is normally
left blank unless the versions of htm1 . ocx and the PI Interface for HTML executable file are
out of sync.

Additional Parameters

Note: The Unilnt Interface User Manual includes details about other command-line
parameters, which may be useful.

Configuring the Interface Without the PI ICU

For communicating with Pl Data Archives earlier than version 3.3, the PI ICU cannot be
used. A small tool (HTMLConfigUtil.exe) has been supplied for those without the PI ICU.
The GUI is almost exactly the same as if you were using the Pl ICU, but much of the
functionality of the PI ICU is not available. For example, this utility cannot edit a startup
.bat file, so you will be responsible for maintaining that. The options for configuring the
startup file are in section Startup Command File.

An XML configuration file can be edited in just the same way from this tool as from the Pl
ICU.

Command-line Parameters

Any options discussed below marked with an asterisk before the name of the parameter are
not normally used, and thus are not configurable by using the Pl ICU except by manually
typing the parameter in the Additional Parameters field of the html tab in the PI ICU. If
you use more than one in the Additional Parameters field, separate each command-line
parameter with a space.

Pl Interface for HTML 45

Startup Command File

Parameter Description
/db=# Use to print out debug messages. The value of this flag is
Optional determined by adding the number that accompanies the

debugging messages you want to see that are listed below:
1 — Reading the XML configuration file.

2 — Adding points to the interface’s internal list and finding
their corresponding data markers in the configuration file.

4 — Connecting to the HTML page server (if there is one) and
downloading the HTML pages.

8 — Parsing the HTML into a tree-like hierarchy.

16 — Writing data to PI points.

32 — Taking the text from a marker and converting it to the
appropriate type (timestamp for timestamp markers, or
numeric for data markers)

64 — Generate curldebug. 1og file for debug messages
printed by libCurl.

/dltimeout=#
Optional

Use to indicate how long (in seconds) the interface should
wait for your page or pages to download before timing out.
The default is 60 seconds.

/ec=+#
Optional

The first instance of the /ec parameter on the command-line
is used to specify a counter number, #, for an I/O Rate point.
If the # is not specified, then the default event counter is 1.
Also, if the /ec parameter is not specified at all, there is still
a default event counter of 1 associated with the interface. If
there is an /O Rate point that is associated with an event
counter of 1, every interface that is running without /ec=#
explicitly defined will write to the same 1/O Rate point. Either
explicitly define an event counter other than 1 for each
instance of the interface or do not associate any 1/0O Rate
points with event counter 1. Configuration of I/O Rate points
is discussed in the section called /O Rate Point.

For interfaces that run on Windows nodes, subsequent
instances of the /ec parameter may be used by specific
interfaces to keep track of various input or output operations.
Subsequent instances of the /ec parameter can be of the
form /ec*, where * is any ASCII character sequence. For
example, /ecinput=10, /ecoutput=11, and /ec=12
are legitimate choices for the second, third, and fourth event
counter strings.

/E=SS. ##

or

/£=SS. ##,ss. ##
or

/E=HH:MM:SS. ##
or

/E£=HH:MM:SS. ##,
hh:mm:ss.##

Required for reading scan-based
inputs

The /£ parameter defines the time period between scans in
terms of hours (HH), minutes (MM), seconds (SS) and sub-
seconds (##). The scans can be scheduled to occur at
discrete moments in time with an optional time offset
specified in terms of hours (hh), minutes (mm), seconds (ss),
and sub-seconds (##). If HH and MM are omitted, then the
time period that is specified is assumed to be in seconds.
Each instance of the /£ parameter on the command-line
defines a scan class for the interface. There is no limit to the
number of scan classes that can be defined. The first
occurrence of the /£ parameter on the command-line defines
the first scan class of the interface; the second occurrence
defines the second scan class, and so on. Pl Points are
associated with a particular scan class via the Location4 Pl
Point attribute. For example, all Pl Points that have Location4
set to 1 will receive input values at the frequency defined by
the first scan class. Similarly, all points that have Location4
set to 2 will receive input values at the frequency specified by

46

(@ os

Parameter

Description

the second scan class, and so on.

Two scan classes are defined in the following example:
/£=00:01:00,00:00:05 /£=00:00:07

or, equivalently:

/£=60,5 /£=7

The first scan class has a scanning frequency of 1 minute
with an offset of 5 seconds, and the second scan class has a
scanning frequency of 7 seconds. When an offset is

specified, the scans occur at discrete moments in time
according to the formula:

scan times = (reference time) + n(frequency) + offset

where n is an integer and the reference time is midnight on
the day that the interface was started. In the above example,
frequency is 60 seconds and offset is 5 seconds for the first
scan class. This means that if the interface was started at
05:06:06, the first scan would be at 05:07:05, the second
scan would be at 05:08:05, and so on. Since no offset is
specified for the second scan class, the absolute scan times
are undefined.

The definition of a scan class does not guarantee that the
associated points will be scanned at the given frequency. If
the interface is under a large load, then some scans may
occur late or be skipped entirely. See the section
“Performance Summaries” in Unilnt Interface User
Manual.doc for more information on skipped or missed scans.

Sub-second Scan Classes

Sub-second scan classes can be defined on the command-
line, such as

/£=0.5/£=00:00:00.1

where the scanning frequency associated with the first scan
class is 0.5 seconds and the scanning frequency associated
with the second scan class is 0.1 of a second.

Similarly, sub-second scan classes with sub-second offsets
can be defined, such as

/£=0.5,0.2 /£f=1,0
Wall Clock Scheduling

Scan classes that strictly adhere to wall clock scheduling are
now possible. This feature is available for interfaces that run
on Windows and/or UNIX. Previously, wall clock scheduling
was possible, but not across daylight saving time. For
example, /£=24:00:00,08:00:00 corresponds to 1
scan a day starting at 8 AM. However, after a Daylight Saving
Time change, the scan would occur either at 7 AM or 9 AM,
depending upon the direction of the time shift. To schedule a
scan once a day at 8 AM (even across daylight saving time),
use /£=24:00:00,00:08:00,L. The , L at the end of
the scan class tells Unilnt to use the new wall clock
scheduling algorithm.

/htmlconfigfile=<UNC
Path>

Required

Use to specify the XML file that contains the information
configured by the Interface-Specific Parameters tab on the PI
ICU. For example,

/htmlconfigfile=d: \pipc\Interfaces\HTML\
htmllconfig.xml

This file is created by the PI ICU, or by the simple PI Interface
for HTML configuration tool.

Pl Interface for HTML

47

Startup Command File

Parameter

Description

/host=host:port

The /host parameter is used to specify the Pl Data

Required Archive node. Host is the IP address of the Pl Data Archive
node or the domain name of the PI Data Archive node. Port
is the port number for TCP/IP communication. The port is
always 5450. It is recommended to explicitly define the host
and port on the command-line with the /host parameter.
Nevertheless, if either the host or port is not specified, the
interface will attempt to use defaults.
Examples:
The interface is running on an interface node, the domain
name of the Pl Data Archive node is Marvin, and the IP
address of Marvin is 206.79.198.30. Valid /host
parameters would be:
/host=marvin
/host=marvin:5450
/host=206.79.198.30
/host=206.79.198.30:5450

/id=x The /id parameter is used to specify the interface identifier.

Highly Recommended

The interface identifier is a string that is no longer than 9
characters in length. Unilnt concatenates this string to the
header that is used to identify error messages as belonging
to a particular interface. See Appendix A Error and
Informational Messages for more information.

Unilnt always uses the /id parameter in the fashion
described above. This interface also uses the /id
parameter to identify a particular interface instance number
that corresponds to an integer value that is assigned to one
of the Location code point attributes, most frequently
Locationl. For this interface, use only numeric characters in
the identifier. For example,

/id=1

/outputhtml=(Y)es/ (N)o
Optional

Used for debugging purposes. If set to yes (or y), the
interface will write out all final HTML pages it receives. This
does not include pages received in the process of getting to
the final HTML page.

The interface writes these pages to the directory of the
interface executable the form

HTML retrieved yyyymmddhhmmss.html.

/parsetimeout=#
Optional

Indicates how long (in seconds) the interface should wait for
your page or pages to be parsed by Internet Explorer before
timing out. The default is 60 seconds. This option is useful if
you see a lot of parse timeout messages in the pipc.log

file. Otherwise, leave the default value.

/plugin=<UNC path>
Optional

Specifies the progid of a plug-in that should be used for
dynamic URL generation and timestamp and value post-
processing. When a plug-in is selected, the plug-in will be
used to help navigation when configuring the HTML locator
script. It will also be used when showing a preview of the data
when configuring data and timestamp markers. If no plug-in is
selected, no plug-in will be used in the configuration or in the
execution of the interface. See section Appendix C on Plug-in
Registration and Categorization.

48

(@ os

Parameter

Description

/ps=x
Required

The /ps parameter specifies the point source for the
interface. X is not case sensitive and can be any
<single/multiple> character string. For example, /ps=P and
/ps=p are equivalent. The length of X is limited to 100
characters by Unilnt. X can contain any character except
and ‘?’.

The point source that is assigned with the /ps parameter
corresponds to the PointSource attribute of individual PI
Points. The interface will attempt to load only those PI points
with the appropriate point source.

If the PI1 API version being used is earlier than 1.6.x or the PI
Data Archive version is earlier than 3.4.370.x, the
PointSource is limited to a single character unless the SDK is
being used.

/replace=(Y)es/ (N)
Optional

Instructs the interface to use archive replace calls instead of
put snapshot calls to send the data to Pl points. This is useful
when the value for a given timestamp may change. The
default value is no.

/stopstat=digstate
or
/stopstat

/stopstat only is equivalent
to

/stopstat="Intf Shut"

Optional

Default = no digital state written
at shutdown.

If /stopstat=digstate is present on the command line,
then the digital state, digstate, will be written to each PI
point when the interface is stopped. For a PI3 Data Archive,
digstate must be in the system digital state table. Unilnt
will use the first occurrence of digstate found in the table.
If the /stopstat parameter is present on the startup
command line, then the digital state Intf Shut will be
written to each PI point when the interface is stopped.

If neither /stopstat nor /stopstat=digstateis
specified on the command line, then no digital states will be
written when the interface is shut down.

Examples:

/stopstat=shutdown

/stopstat="Intf Shut"

The entire digstate value must be enclosed within double
quotes when there is a space in digstate.

/suppresserrors=
(Y)es/(N)o
Optional

Instructs the interface not to send digital state errors to Pl
points. For example, in normal operation, if a marker for a tag
cannot be found on the target HTML page, that tag will
receive a CONFIGURE digital state. With this option set to
yes, a message will be written to the log file, but the digital
state will not be sent to the Pl point. The default value is no.

/useragent=<string>
Optional

Allows the interface to identify itself to the remote web server
as a different web browser. Some web sites will return a
different page for different browsers. A common user-agent
string to use to mimic Internet Explorer 5.5 on Windows 2000
is "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT 5.0)".

Pl Interface for HTML

49

Startup Command File

Sample PIHTML.bat File

The following is an example file:

REM
REM

REM PIHTML.bat

REM

REM Sample startup file for the PI Interface for HTML
REM

REM
REM

REM OSIsoft strongly recommends using PI ICU to modify startup files.
REM

REM Sample command line

REM
\PIHTML.exe 1 *
/htmlconfigfile=.\PIHTMLExampleConfig.xml *
/db=0 *
/dltimeout=60 *
/parsetimeout=60 *
/suppresserrors=N "
/outputhtml=N *
/replace=N *
/PS=HTML *
/ID=1
/host=XXXXXX:5450
/£=00:30:00

REM

REM End of PIHTML.bat File

Converting Older Configuration Files

If you are using an XML configuration file from before version 1.2, you need to convert it to
the new format before you can use the PI Interface for HTML. Use the utility included in the
interface directory called TnterfaceConfigbocConverter.exe. It transforms the XML
configuration document.

Note: Since the proxy server handling is different in the new version of the interface,
all proxy server information will be lost and will need to be recreated.

Use the converter by running it on a command line, passing the path to old file as the first
parameter, and the path to what you want your new file to be called as the second parameter:

InterfaceConfigDocConverter.exe
c:\PIPC\Interfaces\HTML\myoldconfig.xml
c:\PIPC\Interfaces\HTML\mynewconfig.xml

Starting with version 2.3.0.0, the interface encrypts Proxy and HTTP Security passwords. If
you are using an XML configuration file from earlier versions (2.0 or 2.2) and it contains
Proxy or/and HTTP Security passwords, you need to recreate the HTML Locator Script
configuration item and reenter the passwords before you can use Pl Interface for HTML. See
HTML Locator Script section for technical details about Locator Script configuration item.

50

(@ os

fu |

) Security Note: For most protocols, the communications between the interface
and a source web site are visible to a malicious eavesdropper, which can include the
user I1Ds and passwords used to connect to the web sites. If the target website
requires a password, https or VPN should be used to protect the password on the
wire. Also, restrict access using permissions and enable security auditing for all
access to the configuration file.

Pl Interface for HTML

51

Uniint Failover Configuration

chapter9. Unilnt Failover Configuration

Introduction

To minimize data loss during a single point of failure within a system, Unilnt provides two
failover schemes: (1) synchronization through the data source and (2) synchronization
through a shared file. Synchronization through the data source is Phase 1, and
synchronization through a shared file is Phase 2.

Phase 1 Unilnt Failover uses the data source itself to synchronize failover operations and
provides a hot failover, no data loss solution when a single point of failure occurs. For this
option, the data source must be able to communicate with and provide data for two interfaces
simultaneously. Additionally, the failover configuration requires the interface to support
outputs.

Phase 2 Unilnt Failover uses a shared file to synchronize failover operations and provides for
hot, warm, or cold failover. The Phase 2 hot failover configuration provides a no data loss
solution for a single point of failure similar to Phase 1. However, in warm and cold failover
configurations, you can expect a small period of data loss during a single point of failure
transition.

Note: This interface supports only Phase 2 cold failover.

You can also configure Unilnt failover to send data to a High Availability (HA) PI Data
collective. The PI Data collective provides redundant Pl Data Archives to allow for the
uninterrupted collection and presentation of PI time series data. In an HA configuration, Pl
Data Archives can be taken down for maintenance or repair. The HA Pl Data collective is
described in the High Availability Administrator Guide.

When configured for Unilnt failover, the interface routes all Pl point data through a state
machine. The state machine determines whether to queue data or send it directly to a Pl point
depending on the current state of the interface. When the interface is in the active state, data
sent through the interface gets routed directly to a Pl point. In the backup state, data from the
interface gets queued for a short period. Queued data in the backup interface ensures a no-
data loss failover under normal circumstances for Phase 1 and for the hot failover
configuration of Phase 2. The same algorithm of queuing events while in backup is used for
output data.

52 (@ osi

Quick Overview

The Quick Overview below may be used to configure this interface for failover. The failover
configuration requires the two copies of the interface participating in failover be installed on
different nodes. Users should verify non-failover interface operation as discussed in the
Installation Checklist chapter of this manual prior to configuring the interface for failover
operations. If you are not familiar with Unilnt failover configuration, return to this section
after reading the rest of the Unilnt Failover Configuration chapter in detail. If a failure occurs
at any step below, correct the error and start again at the beginning of step 6 Test in the table
below. For the discussion below, the first copy of the interface configured and tested will be
considered the primary interface and the second copy of the interface configured will be the
backup interface.

Configuration
e One Data Source

e Two Interfaces

Prerequisites
e Interface 1 is the primary interface for collection of Pl data from the data source.
o Interface 2 is the backup interface for collection of Pl data from the data source.
e You must setup a shared file if using Phase 2 failover.
e Phase 2: The shared file must store data for five failover tags:
(1) Active ID.
(2) Heartbeat 1.
(3) Heartbeat 2.
(4) Device Status 1.
(5) Device Status 2.

e Each interface must be configured with two required failover command line
parameters: (1) its FailoverID number (/uro_1D); (2) the FailoverID number of its
backup interface (/uro_otherID). You must also specify the name of the PI Data
Archive host for exceptions and Pl tag updates.

e All other configuration parameters for the two interfaces must be identical.

Pl Interface for HTML 53

Unilnt Failover Configuration

Synchronization through a Shared File (Phase 2)

Data register 0
. DataSource

DCS/PLC/Data Server

Data register n

((Process Network 0
FileSvr I
IF-Nodel IF-Node2
Pl-Interface.exe AUFOUntf_PS_1.dat Pl-Interface.exe
[host=PrimaryPI| /host=SecondaryPI
JUFO_ID=1 ’ ’ — [UFO_ID=2
JUFO_OTHERID=2 NS \\\ \\\ JUFO_OTHERID=1
JUFO_TYPE=HOT) 3) JUFO_TYPE=HOT
JUFO_SYNC=\\FileSvi\UFO\Intf_PS_1.dat § 1 § § JUFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat
‘ A M 3 A ‘ *
((Business Network | | 0
‘1
NS NS
o)
N N
Client PrimaryPI SecondaryPI
Process Book Pl Server Pl Server
DataLink Role =1 Role =2

Figure 1: Synchronization through a Shared File (Phase 2) Failover Architecture

The Phase 2 failover architecture is shown in Figure 1 which depicts a typical network setup
including the path to the synchronization file located on a File Server (FileSvr). Other
configurations may be supported and this figure is used only as an example for the following
discussion.

For a more detailed explanation of this synchronization method, see Detailed Explanation of
Synchronization through a Shared File (Phase 2)

54 @@ osi

Configuring Synchronization through a Shared File (Phase 2)

Step

Description

1.

Verify non-failover interface operation as described in the Installation Checklist section of
this manual

Configure the Shared File

Choose a location for the shared file. The file can reside on one of the interface nodes or
on a separate node from the interfaces; however OSlsoft strongly recommends that you
put the file on a Windows Server platform that has the “File Server” role configured. .
Setup a file share and make sure to assign the permissions so that both primary and
backup interfaces have read/write access to the file.

Configure the interface parameters

Use the Failover section of the interface Configuration Utility (ICU) to enable failover and
create two parameters for each interface: (1) a Failover ID number for the interface; and
(2) the Failover ID number for its backup interface.

The Failover ID for each interface must be unique and each interface must know the
Failover ID of its backup interface.

If the interface can perform using either Phase 1 or Phase 2 pick the Phase 2 radio button
in the ICU.

Select the synchronization File Path and File to use for Failover.

Select the type of failover required (Cold, Warm, Hot). The choice depends on what types
of failover the interface supports.

Ensure that the user name assigned in the “Log on as:” parameter in the Service section
of the ICU is a user that has read/write access to the folder where the shared file will
reside.

All other command line parameters for the primary and secondary interfaces must be
identical.

If you use a PI Data collective, you must point the primary and secondary interfaces to
different members of the Pl Data collective by setting the SDK Member under the PI Host
Information section of the ICU.

[Option] Set the update rate for the heartbeat point if you need a value other than the
default of 5000 milliseconds.

Configure the Pl tags

Configure five Pl tags for the interface: the Active ID, Heartbeat 1, Heartbeat2, Device
Status 1 and Device Status 2. You can also configure two state tags for monitoring the
status of the interfaces.

Do not confuse the failover Device status tags with the Unilnt Health Device Status tags.
The information in the two tags is similar, but the failover device status tags are integer
values and the health device status tags are string values.

Tag ExDesc digitalset

ActivelD [UFO2_ACTIVEID]

IF1_Heartbeat

(IF-Node1l) [UFO2_HEARTBEAT: #]

IF2_Heartbeat Unilnt does not

(IF-Node2) [UFO2_HEARTBEAT: #] examine the

IF1 DeviceStatus remaining attributes,

(IF-Node1) [UFO2_DEVICESTAT: #] but the PointSource
- and Locationl must

IF2_DeviceStatus match

(IF-Node2) [UFO2_DEVICESTAT.: #] '

IF1_State

(IF-Node1l) [UFO2_STATE: #] IF_State

IF2_State

(IF-Node2) [UFO2_STATE: #] IF_State

Pl Interface for HTML

55

Uniint Failover Configuration

Step

Description

5.

Test the configuration.

After configuring the shared file and the interface and PI tags, the interface should be
ready to run.

See Troubleshooting Unilnt Failover for help resolving Failover issues.

1.
2.

o A

© ® N o

11.

12.

Start the primary interface interactively without buffering.

Verify a successful interface start by reviewing the pipc. log file. The log file will
contain messages that indicate the failover state of the interface. A successful start
with only a single interface copy running will be indicated by an informational
message stating “UniInt failover: Interface in the “Primary”
state and actively sending data to PI. Backup interface
not available.” If the interface has failed to start, an error message will appear
in the log file. For details relating to informational and error messages, refer to the
Messages section below.

Verify data on the PI Data Archive using available Pl tools.

e The Active ID control tag on the PI Data Archive must be set to the
value of the running copy of the interface as defined by the /UFO_1ID
startup command-line parameter.

e The Heartbeat control tag on the Pl Data Archive must be changing
values at a rate specified by the /UFO_Interval startup command-
line parameter.

Stop the primary interface.

Start the backup interface interactively without buffering. Notice that this copy will
become the primary because the other copy is stopped.

Repeat steps 2, 3, and 4.

Stop the backup interface.

Start buffering.

Start the primary interface interactively.

. Once the primary interface has successfully started and is collecting data, start the

backup interface interactively.
Verify that both copies of the interface are running in a failover configuration.

e Review the pipc. log file for the copy of the interface that was started
first. The log file will contain messages that indicate the failover state of
the interface. The state of this interface must have changed as
indicated with an informational message stating “UniInt failover:
Interface in the “Primary” state and actively sending
data to PI. Backup interface available.” If the interface
has not changed to this state, browse the log file for error messages.
For details relating to informational and error messages, refer to the
Messages section below.

e Review the pipc. log file for the copy of the interface that was started
last. The log file will contain messages that indicate the failover state of
the interface. A successful start of the interface will be indicated by an
informational message stating “UniInt failover: Interface in
the “Backup” state.” If the interface has failed to start, an error
message will appear in the log file. For details relating to informational
and error messages, refer to the Messages section below.

Verify data on the PI Data Archive using available Pl tools.

e The Active ID control tag on the Pl Data Archive must be set to the
value of the running copy of the interface that was started first as
defined by the /UFO_ID startup command-line parameter.

e The Heartbeat control tags for both copies of the interface on the PI

56

(@ os

Step

Description

Data Archive must be changing values at a rate specified by the
/UFO_Interval startup command-line parameter or the scan class
which the points have been built against.

13. Test Failover by stopping the primary interface.

14. Verify the backup interface has assumed the role of primary by searching the
pipc. log file for a message indicating the backup interface has changed to the
“UniInt failover: Interface in the “Primary” state and
actively sending data to PI. Backup interface not
available.” The backup interface is now considered primary and the previous
primary interface is now backup.

15. Verify no loss of data in the PI Data Archive. There may be an overlap of data due to

the queuing of data. For cold failover, there may be a short data loss.

16. Start the backup interface. Once the primary interface detects a backup interface, the

primary interface will now change state indicating “UniInt failover:
Interface in the “Primary” state and actively sending

data to PI. Backup interface available.”inthe pipc.logfile.

17. Verify the backup interface starts and assumes the role of backup. A successful start

of the backup interface will be indicated by an informational message stating

“UniInt failover: Interface in “Backup state.” Since thisis the

initial state of the interface, the informational message will be near the beginning of

the start sequence of the pipc. log file.

18. Test failover with different failure scenarios (e.g. loss of Pl Data Archive connection

for a single interface copy). Unilnt hot failover guarantees no data loss with a single
point of failure; verify no data loss by checking the data in the Pl Data Archive and on

the data source. For warm and cold failover, short data gaps are expected.
19. Stop both copies of the interface, start buffering, start each interface as a service.
20. Verify data as stated above.
21. To designate a specific interface as primary. Set the Active ID point on the Data

Source Server of the desired primary interface as defined by the /UFO_ID startup

command-line parameter.

Pl Interface for HTML

57

Uniint Failover Configuration

Start-Up Parameters

Configuring Unilnt Failover through a Shared File (Phase 2)

Note: The /stopstat parameter is disabled if the interface is running in a Unilnt
failover configuration. Therefore, the digital state, digstate, will not be written to
each PI Point when the interface is stopped. This prevents the digital state being
written to PI Points while a redundant system is also writing data to the same PI
Points. The /stopstat parameter is disabled even if there is only one interface

active in the failover configuration.

The following table lists the start-up parameters used by Unilnt Failover Phase 2. All of the
parameters are required except the /UFO_Interval startup parameter. See the table below

for further explanation.

Parameter Required/ Description Value/Default
Optional
/UFO_ID=# Required Failover ID for IF-Nodel Any positive, non-
This value must be different from | Zero integer /1
the failover ID of IF-Node2.
Required Failover ID for IF-Node2 Any positive, non-
This value must be different from | Zero integer / 2
the failover ID of IF-Nodel.
/UFO_OtherID=# | Required Other Failover ID for IF-Nodel Same value as
The value must be equal to the Failover ID for
Failover ID configured for the IF-Node2 / 2
interface on IF-Node2.
Required Other Failover ID for IF-Node2 Same value as

The value must be equal to the
Failover ID configured for the
interface on IF-Nodel.

Failover ID for
IF-Nodel /1

/UFO_Sync=
path/[filename]

Required for
Phase 2
synchronization

The Failover File Synchronization
file path and optional filename
specify the path to the shared file
used for failover synchronization
and an optional filename used to
specify a user defined filename in
lieu of the default filename.

The path to the shared file
directory can be a fully qualified
machine name and directory, a
mapped drive letter, or a local path
if the shared file is on one of the
interface nodes. The path must be
terminated by a slash (/) or
backslash (\) character. If no
terminating slash is found in the
/UFO_Sync parameter, the
interface interprets the final
character string as an optional
filename.

The optional filename can be any
valid filename. If the file does not

Any valid pathname /
any valid filename

The default filename
is generated as
executablename_

pointsource_
interfacelD.dat

58

(@ os

Parameter

Required/
Optional

Description

Value/Default

exist, the first interface to start
attempts to create the file.

Note: If using the optional
filename, do not supply a
terminating slash or backslash
character.

If there are any spaces in the path
or filename, the entire path and
filename must be enclosed in
guotes.

Note: If you use the backslash
and path separators and enclose
the path in double quotes, the final
backslash must be a double
backslash (\\). Otherwise the
closing double quote becomes
part of the parameter instead of a
parameter separator.

Each node in the failover
configuration must specify the
same path and filename and must
have read, write, and file creation
rights to the shared directory
specified by the path parameter.
The service that the interface runs
against must specify a valid logon
user account under the “Log On”
tab for the service properties.

/UFO_Type=type

Required

The Failover Type indicates which
type of failover configuration the
interface will run. The valid types
for failover are HOT, WARM, and
COLD configurations.

If an interface does not supported
the requested type of failover, the
interface will shutdown and log an
error to the pipc. log file stating
the requested failover type is not
supported.

COLD|WARM|HOT /

COLD

/UFO_Interval=#

Optional

Failover Update Interval

Specifies the heartbeat Update
Interval in milliseconds and must
be the same on both interface
computers.

This is the rate at which Unilnt
updates the Failover Heartbeat
tags as well as how often Unilnt
checks on the status of the other
copy of the interface.

50 — 20000 / 5000

Pl Interface for HTML

59

Uniint Failover Configuration

Required/

parameter depends on the Pl Data
Archive configuration. If the PI
Data Archive is not part of a PI
Data collective, the value of
/Host must be identical on both
interface computers.

If the redundant interfaces are
being configured to send data to a
Pl Data collective, the value of the
/Host parameters on the
different interface nodes should
equal to different members of the
PI Data collective.

This parameter ensures that
outputs continue to be sent to the
data source if one of the Pl Data
Archives becomes unavailable for

Parameter) Description Value/Default
Optional
/Host=server Required Host PI Data Archive for For IF-Nodel
exceptions and PI point updates PrimaryP! / None
The value of the /Host startup For IF-Node2

SecondaryPl / None

any reason.

Failover Control Points

The following table describes the points that are required to manage failover. In Phase 2
Failover, these points are located in a data file shared by the primary and backup interfaces.

OSlsoft recommends that you locate the shared file on a dedicated server that has no other
role in data collection. This avoids potential resource contention and processing degradation
if your system monitors a large number of data points at a high frequency.

Point

Description

Value / Default

ActivelD

Monitored by the interfaces to determine which
interface is currently sending data to the PI Data
Archive. ActivelD must be initialized so that
when the interfaces read it for the first time, it is
not in an error state.

ActivelD can also be used to force failover. For
example, if the current primary is IF-Node 1 and
ActivelD is 1, you can manually change
ActivelD to 2. This causes the interface at IF-
Node?2 to transition to the primary role and the
interface at IF-Nodel to transition to the backup
role.

From 0 to the highest
interface Failover ID
number / None)
Updated by the
redundant interfaces

Can be changed
manually to initiate a
manual failover

Heartbeat 1

Updated periodically by the interface on
IF-Nodel. The interface on IF-Node2 monitors
this value to determine if the interface on
IF-Nodel has become unresponsive.

Values range between
0 and 31/ None

Updated by the
interface on IF-Nodel

Heartbeat 2

Updated periodically by the interface on IF-
Node2. The interface on IF-Nodel monitors this
value to determine if the interface on IF-Node2
has become unresponsive.

Values range between
0 and 31/ None

Updated by the
interface on IF-Node2

60

(@ os

Pl Tags

The following tables list the required Unilnt Failover Control PI tags, the values they will
receive, and descriptions.

Active_ID Tag Configuration

Attributes ActivelD

Tag <Intf>_ActivelD

CompMax 0

ExDesc [UFO2_ActivelD]

Locationl Match #in /id=#

Location5 Optional, Time in min to wait for backup

to collect data before failing over.

PointSource

Match xin /ps=x

PointType Int32
Shutdown 0
Step 1

Heartbeat and Device Status Tag Configuration

Attribute Heartbeat 1 Heartbeat 2 DeviceStatus 1 DeviceStatus 2

Tag <HB1> <HB2> <DS1> <DS2>
[UFO2_Heartbeat: #] [UFO2_Heartbeat: #] | [UFO2_DeviceStat:#] | [UFO2_DeviceStat: #]

ExDesc Match #in Match #in Match #in Match #in
/UFO_ID=# /UFO_OtherID=# /UFO_ID=# /UFO_OtherID=#

Locationl Match #in /id=# '}Afgf## n Match #in /id=# | Match #in /id=#

Location5 | Optional, Time in Optional, Time in Optional, Time in Optional, Time in
min to wait for min to wait for min to wait for min to wait for
backup to collect backup to collect backup to collect backup to collect
data before failing data before failing | data before failing data before failing
over. over. over. over.

zglunrtce Match xin /ps=x | Match xin /ps=x | Match xin /ps=x | Match xin /ps=x

PointType | int32 int32 int32 int32

Shutdown | 0 0 0 0

Step 1 1 1 1

Interface State Tag Configuration

Attribute Primary Backup

Tag <Tagnamel> <Tagname2>

CompMax 0 0

DigitalSet UFO_State UFO_State

ExDesc [UFO2_State: #] [UFO2_State: #]

(Match /UFO_ID=# on primary node) | (Match /UFO_ID=# on backup node)
Locationl Match #in /id=# Same as for primary node
PointSource | Match xin /ps=x Same as for primary node

Pl Interface for HTML

61

Unilnt Failover Configuration

Attribute Primary Backup
PointType digital digital
Shutdown 0 0

Step 1 1

The following table describes the extended descriptor for the above Pl tags in more detail.

Pl Tag ExDesc

Required /
Optional

Description

Value

[UFO2_ACTIVEID]

Required

Active ID tag

The ExDesc must start with the
case sensitive string:
[UFO2_ACTIVEID].

The PointSource must match the
interfaces’ Pointsource.

Locationl must match the ID for the
interfaces.

Location5 is the COLD failover retry
interval in minutes. This can be
used to specify how long before an
interface retries to connect to the
device in a COLD failover
configuration. (See the description
of COLD failover retry interval for a
detailed explanation.)

0 — highest

Interface Failover

ID

Updated by the
redundant
interfaces

[UFO2_HEARTBEAT: #]
(IF-Node1l)

Required

Heartbeat 1 Tag

The ExDesc must start with the
case sensitive string:
[UFO2_HEARTBEAT:#]

The number following the colon (#)
must be the Failover ID for the
interface running on IF-Nodel.
The PointSource must match the
interfaces’ PointSource.

Locationl must match the ID for the
interfaces.

0-31/None

Updated by the
interface on
IF-Nodel

[UFO2_HEARTBEAT: #]
(IF-Node2)

Required

Heartbeat 2 Tag

The ExDesc must start with the
case sensitive string:
[UFO2_HEARTBEAT:#]

The number following the colon (#)
must be the Failover ID for the
interface running on IF-Node2.
The PointSource must match the
interfaces’ Point Source.

Locationl must match the ID for the
interfaces.

0-31/None

Updated by the
interface on
IF-Node2

62

(@ os

Pl Tag ExDesc

Required /
Optional

Description

Value

[UFO2_DEVICESTAT :#]
(IF-Nodel)

Required

Device Status 1 Tag

The ExDesc must start with the
case sensitive string:
[UFO2_DEVICESTAT: #]

The value following the colon (#)
must be the Failover ID for the
interface running on IF-Nodel

The PointSource must match the
interfaces’ PointSource.

Location1 must match the ID for the
interfaces.

A lower value is a better status and
the interface with the lower status
will attempt to become the primary
interface.

The failover 1 device status tag is
very similar to the Unilnt Health
Device Status tag except the data
written to this tag are integer
values. A value of 0 is good and a
value of 99 is OFF. Any value
between these two extremes may
result in a failover. The interface
client code updates these values
when the health device status tag is
updated.

0-99/None

Updated by the
interface on
IF-Nodel

[UFO2_DEVICESTAT :#]
(IF-Node2)

Required

Device Status 2 Tag

The ExDesc must start with the
case sensitive string:
[UFO2_DEVICESTAT:#]

The number following the colon (#)
must be the Failover ID for the
interface running on IF-Node2

The PointSource must match the
interfaces’ PointSource.

Locationl must match the ID for the
interfaces.

A lower value is a better status and
the interface with the lower status
will attempt to become the primary
interface.

0-99/None

Updated by the
interface on
IF-Node2

[UFO2_STATE:#]
(IF-Node1)

Optional

State 1 Tag

The ExDesc must start with the
case sensitive string:
[UFO2_STATE: #]

The number following the colon (#)
must be the Failover ID for the
interface running on IF-Nodel
The failover state tag is
recommended.

The failover state tags are digital
tags assigned to a digital state set
with the following values.

0 = Off: The interface has been
shut down.

1 = Backup No Data Source: The

0-5/None

Normally updated
by the interface
currently in the
primary role.

Pl Interface for HTML

63

Unilnt Failover Configuration

Pl Tag ExDesc

Required /
Optional

Description

Value

interface is running but cannot
communicate with the data source.

2 = Backup No PI Connection: The
interface is running and connected
to the data source but has lost its
communication to the PI Data
Archive.

3 = Backup: The interface is
running and collecting data
normally and is ready to take over
as primary if the primary interface
shuts down or experiences
problems.

4 = Transition: The interface stays
in this state for only a short period
of time. The transition period
prevents thrashing when more than
one interface attempts to assume
the role of primary interface.

5 = Primary: The interface is
running, collecting data and
sending the data to the Pl Data
Archive.

[UFO2_STATE: #]
(IF-Node?2)

Optional

State 2 Tag

The ExDesc must start with the
case sensitive string:
[UFO2_STATE:#]

The number following the colon (#)
must be the Failover ID for the
interface running on IF-Node2

The failover state tag is
recommended.

Normally updated
by the interface
currently in the
Primary state.
Values range
between 0 and 5.
See description of
State 1 tag.

64

(@ os

Detailed Explanation of Synchronization through a Shared File
(Phase 2)

In a shared file failover configuration, there is no direct failover control information passed
between the data source and the interface. This failover scheme uses five PI tags to control
failover operation, and all failover communication between primary and backup interfaces
passes through a shared data file.

Once the interface is configured and running, the ability to read or write to the PI tags is not
required for the proper operation of failover. This solution does not require a connection to
the P1 Data Archive after initial startup because the control point data are set and monitored
in the shared file. However, the PI tag values are sent to the PI Data Archive so that you can
monitor them with standard OSlsoft client tools.

You can force manual failover by changing the ActivelD point on the Pl Data Archive to the
backup failover ID.

Data register 0
DataSource
DCS/PLC/Data Server

Data register n

—_—— — — 1
((Process Network)
FileSvr I
IF-Nodel IF-Node2
Pl-Interface.exe AUFOnt_PS_1.dat Pl-Interface.exe
/host=PrimaryPI| /host=SecondaryPI
/UFO_ID=1 — /UFO_ID=2
JUFO_OTHERID=2 \\\ \\\ \\\ JUFO_OTHERID=1
JUFO_TYPE=HOT 0) 3 JUFO_TYPE=HOT
JUFO_SYNC=\\FileSvn\UFO\Intf_PS_1.dat § 7 § § JUFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

.

'(
A
»

=
|

((Business Network | | 0
|

N X

) o

N N
Client PrimaryPI SecondaryPI
Process Book PI Server Pl Server
DataLink Role=1 Role =2

The figure above shows a typical network setup in the normal or steady state. The solid
magenta lines show the data path from the interface nodes to the shared file used for failover
synchronization. The shared file can be located anywhere in the network as long as both
interface nodes can read, write, and create the necessary file on the shared file machine.
OSlsoft strongly recommends that you put the file on a dedicated file server that has no other
role in the collection of data.

The major difference between synchronizing the interfaces through the data source (Phase 1)
and synchronizing the interfaces through the shared file (Phase 2) is where the control data is
located. When synchronizing through the data source, the control data is acquired directly

Pl Interface for HTML 65

Uniint Failover Configuration

from the data source. We assume that if the primary interface cannot read the failover control
points, then it cannot read any other data. There is no need for a backup communications path
between the control data and the interface.

When synchronizing through a shared file, however, we cannot assume that loss of control
information from the shared file implies that the primary interface is down. We must account
for the possible loss of the path to the shared file itself and provide an alternate control path
to determine the status of the primary interface. For this reason, if the shared file is
unreachable for any reason, the interfaces use the Pl Data Archive as an alternate path to pass
control data.

When the backup interface does not receive updates from the shared file, it cannot tell
definitively why the primary is not updating the file, whether the path to the shared file is
down, whether the path to the data source is down, or whether the interface itself is having
problems. To resolve this uncertainty, the backup interface uses the path to the Pl Data
Archive to determine the status of the primary interface. If the primary interface is still
communicating with the Pl Data Archive, then failover to the backup is not required.
However, if the primary interface is not posting data to the Pl Data Archive, then the backup
must initiate failover operations.

The primary interface also monitors the connection with the shared file to maintain the
integrity of the failover configuration. If the primary interface can read and write to the
shared file with no errors but the backup control information is not changing, then the backup
is experiencing some error condition. To determine exactly where the problem exists, the
primary interface uses the path to the PI Data Archive to establish the status of the backup
interface. For example, if the backup interface information indicates that it has been
shutdown, it may have been restarted and is how experiencing errors reading and writing to
the shared file. Both primary and backup interfaces must always check their status through
the P1 Data Archive to determine if one or the other is not updating the shared file and why.

Steady State Operation

Steady state operation is considered the normal operating condition. In this state, the primary
interface is actively collecting data and sending its data to Pl points. The primary interface is
also updating its heartbeat value; monitoring the heartbeat value for the backup interface,
checking the active ID value, and checking the device status for the backup interface every
failover update interval on the shared file. Likewise, the backup interface is updating its
heartbeat value; monitoring the heartbeat value for the primary interface, checking the active
ID value, and checking the device status for the primary interface every failover update
interval on the shared file. As long as the heartbeat value for the primary interface indicates
that it is operating properly, the ActivelD has not changed, and the device status on the
primary interface is good, the backup interface will continue in this mode of operation.

An interface configured for hot failover will have the backup interface actively collecting and
gueuing data but not sending that data to PI. An interface for warm failover in the backup role
is not actively collecting data from the data source even though it may be configured with PI
tags and may even have a good connection to the data source. An interface configured for
cold failover in the backup role is not connected to the data source and upon initial startup
will not have configured Pl tags.

The interaction between the interface and the shared file is fundamental to failover. The

discussion that follows only refers to the data written to the shared file. However, every value
written to the shared file is echoed to the tags on the PI Data Archive. Updating of the tags on
the PI Data Archive is assumed to take place unless communication with the Pl Data Archive

66

(@ os

is interrupted. The updates to the PI Data Archive will be buffered by bufserv or BufSS in
this case.

In a hot failover configuration, each interface participating in the failover solution will queue
three failover intervals worth of data to prevent any data loss. When a failover occurs, there
may be a period of overlapping data for up to 3 intervals. The exact amount of overlap is
determined by the timing and the cause of the failover and may be different every time. Using
the default update interval of 5 seconds will result in overlapping data between 0 and 15
seconds. The no data loss claim for hot failover is based on a single point of failure. If both
interfaces have trouble collecting data for the same period of time, data will be lost during
that time.

As mentioned above, each interface has its own heartbeat value. In normal operation, the
Heartbeat value on the shared file is incremented by Unilnt from 1 — 15 and then wraps
around to a value of 1 again. Unilnt increments the heartbeat value on the shared file every
failover update interval. The default failover update interval is 5 seconds. Unilnt also reads
the heartbeat value for the other interface copy participating in failover every failover update
interval. If the connection to the Pl Data Archive is lost, the value of the heartbeat will be
incremented from 17 — 31 and then wrap around to a value of 17 again. Once the connection
to the PI Data Archive is restored, the heartbeat values will revert back to the 1 — 15 range.
During a normal shutdown process, the heartbeat value will be set to zero.

During steady state, the ActivelD will equal the value of the failover ID of the primary
interface. This value is set by Unilnt when the interface enters the primary state and is not
updated again by the primary interface until it shuts down gracefully. During shutdown, the
primary interface will set the ActivelD to zero before shutting down. The backup interface
has the ability to assume control as primary even if the current primary is not experiencing
problems. This can be accomplished by setting the ActivelD tag on the Pl Data Archive to
the ActivelD of the desired interface copy.

As previously mentioned, in a hot failover configuration the backup interface actively collects
data but does not send its data to PI points. To eliminate any data loss during a failover, the
backup interface queues data in memory for three failover update intervals. The data in the
gueue is continuously updated to contain the most recent data. Data older than three update
intervals is discarded if the primary interface is in a good status as determined by the backup.
If the backup interface transitions to the primary, it will have data in its queue to send to the
P1 point. This queued data is sent to the PI points using the same function calls that would
have been used had the interface been in a primary state when the function call was received
from Unilnt. If Unilnt receives data without a timestamp, the primary copy uses the current
Pl Data Archive time to timestamp data sent to PI points. Likewise, the backup copy
timestamps data it receives without a timestamp with the current PI Data Archive time before
gueuing its data. This preserves the accuracy of the timestamps.

Pl Interface for HTML 67

Unilnt Failover Configuration

Failover Configuration Using PI ICU

The use of the PI ICU is the recommended and safest method for configuring the interface for
Unilnt failover. With the exception of the notes described in this section, the interface shall
be configured with the Pl ICU as described in the Configuring the Interface with Pl ICU

section of this manual.

Note: With the exception of the /UFO_ID and /UFO_OtherID startup command-
line parameters, the Unilnt failover scheme requires that both copies of the interface
have identical startup command files. This requirement causes the Pl ICU to
produce a message when creating the second copy of the interface stating that the
“PS/ID combo already in use by the interface” as shown in Figure 2 below. Ignore
this message and click the Add button.

Create the Interface Instance with Pl ICU

If the interface does not already exist in the ICU it must first be created. The procedure for
doing this is the same as for non-failover interfaces. When configuring the second instance
for Unilnt Failover the Point Source and Interface ID # boxes will be in yellow and a
message will be displayed saying this is already in use. This should be ignored.

t&u Configure a New Interface E|

Uze the Browse button to zelect a Pl Interface service file [.exe] to configure. The additional
parameters shown may alzo be selected,

1] Browse ta interface executable [required):

|I:: YProgram Filez\PIPCh nterfaces\WinE ventLoghPIWinEventLog. exe Browse...
21 Host Pl Server/Collective [required): Fath:
[MMOORE ~| |MMOORE

3] Optional Settings

Interface name az dizplayed in the ICU [optional):
|F'IWinEventLDg Failower - 2

Fuoint Source: Interface D # Service [D
|winevtlog 1 Suggest 2 -
add | ClearFieids | Close

Figure 2: P1 ICU configuration screen shows that the “PS/ID combo is already in use by
the interface.” The user must ignore the yellow boxes, which indicate errors, and click the
Add button to configure the interface for failover.

68 (@ os

Configuring the Unilnt Failover Startup Parameters with Pl ICU

There are three interface startup parameters that control Unilnt failover: /uro_1p,
/UFO_OtherID, and /UFO_Interval. The Uro stands for Uniint Failover. The /urFo_ID

and /UFO_OtherID

parameters are required for the interface to operate in a failover

configuration, but the /UFO_Interval is optional. Each of these parameters is described in
detail in Configuring Unilnt Failover through a Shared File (Phase 2) section and Start-Up

Parameters
#u PI Interface Configuration Utility - PIHTML1 * 1ol x|
Interface Tools Help
DEX|EH > "o [BR|E e |
Interface: |F'IHTML1 [FIHTHL1] > OLEKSANDRPC j Rename |
Type: Ihtml "I ‘wieb-bazed Interface using HTML Pl Server Connection Status——
Diescription: I ’.? DLEKSANDRFC
. o Wiiteable
Wersions: [PIHTML exe version 2.3.0.0 {Unilnt version 45.5.22
General r Unilnt Failover
Unllnt [V Enable Urnilnt Failover € Phase 1 {% Phase 2
PISDK Faiover ID#forthisinstance: [T [WOLEKSANDRPC\PIHTMLT
Dizconnected Startup
i Debug Failover |D# of the other instance: |2]\\OLEKS&NDHF‘C\PIHTMLZ xl Browse |
i Failawver

- Performance Points
Performance Counters
. Health Paints

bkl

Service

10 Rate

Interface Status

™ Do Mot Failover when both interfaces loose connection to P
[~ Failover control tags are unsolicited {not scan based)

Rate at which the heartbeat point is updated./checked: I 000 milliseconds Reset |

UFO Type: Synchronization File Path:

ICOLD |C “PIPChInterfaces\HTML\PIHTML_HTML_1.dat
Status | Tag | Exdesc | PoirrtSourceI Location | Pc‘l
Mot Created PIHTML'I_UFOZ_Mi\reID [UFO2_ActivelD] HTML_NET 1 I
Mot Created PIHTML1_UFO2_Heartbeat_1 [UFOZ2_Heartbeat:1] HTML_NET 1 Int
NT Created PIHTML1 UFO2 Heartbeat 2 | IUFOZ2 Heartbeat:21 HTML MET 1 Int=.

4 3
=
Cloge | Apply |

| Fieady

| Service Uninstalled

[PIHTMLA - Mat Installed

Figure 3: The figure above illustrates the Pl ICU failover configuration screen showing
the Unilnt failover startup parameters (Phase 2). This copy of the interface defines its
Failover ID as 2 (/uro_1D=2) and the other Interfaces Failover ID as 1

(/UFo_otherID=1)

(/uFo_1D=1)

and the other Interface Failover ID as 2 (/UFO_OtherID=2

. The other failover interface copy must define its Failover ID as 1
) inits ICU

failover configuration screen. It also defines the location and name of the
synchronization file as well as the type of failover as COLD.

Creating the Failover State Digital State Set

The UFQO_State digital state set is used in conjunction with the failover state digital tag. If
the UFO_State digital state set has not been created yet, it can be created using either the
Failover page of the ICU (1.4.1.0 or later) or the Digital States plug-in in the SMT 3 Utility

(3.0.0.7 or later).

Pl Interface for HTML

69

Unilnt Failover Configuration

Using the PI ICU Utility to create Digital State Set

To use the Unilnt Failover page to create the UFO_State digital state set, right-click on any
of the failover tags in the tag list and then click the Create UFO_State Digital Set on Pl Data
Archive XXXXXX... command, where XXXXXX is the Pl Data Archive where the points will
be or are created.

o BIHTHCT i ol
Not Crested PIHTML1_UFO2 Heart Create UFD_State Digital Set on Server OLEKSANDRPC. ..

NT Created PIHTML1 UFO2 Heart
A

Create all points (UFQ Phase 2)

Delete all peints (UFD Phase Z
The active ID value is located on the s B) ‘)
The primary interface active |D value is teorrect &l patsIlURe Fhiase 2
primary. The value of n must be a positive integer. The value of the active D point is referred to as the LI

This command will be unavailable if the UFO_State digital state set already exists on the
XXXXXX Pl Data Archive.

Using the PI SMT 3 Utility to create Digital State Set

Optionally the Export UFO_State Digital Set (.csv) command on the shortcut menu can be
selected to create a comma-separated file to be imported via the System Management Tools
(SMT3) (version 3.0.0.7 or later) or use the

UniInt Failover DigitalSet UFO State.csv file included in the installation Kit.

The procedure below outlines the steps necessary to create a digital set on a Pl Data Archive
using the Import from File command found in the SMT3 application. The procedure assumes
the user has a basic understanding of the SMT3 application.

1. Open the SMT3 application.

2. Select the appropriate PI Data Archive from the Pl Data Archives window. If the
desired Pl Data Archive is not listed, add it using the Pl Connection Manager. A
view of the SMT application is shown in Figure 4 below.

3. From the System Management Plug-Ins window, expand Points then select
Digital States. A list of available digital state sets will be displayed in the main
window for the selected Pl Data Archive. Refer to Figure 4 below.

4. In the main window, right-click on the desired PI Data Archive and select the Import
from File command. Refer to Figure 4 below.

70 (@ osi

2 | System Management Tools - Active Plug-In: Digital States

File Tools Help
/ L B2 Mumber of states:
BELLE = locgleed Stake Mumber State Mame
cantel= Add set Chrlth
driddell |
| localhost
riddell-deszktop
zav-entergyll
Saw-Entergul2
Expart ko File
Import From File
Search ChrHF
Refresh F5
Syztem Management Plug-ns Collapse Al Chrl+M
Batch - DIEIES S
Data pialarmcontrol
Interfaces pizqcalarm
IT Pairts SYSTEM
Operation
[=I- Points
Digital States
Performance Equations
Paint Builder
Paint Claszes
Point Source Table
Stale and Bad Paints
Totalizers
[+ S ecurity us

Figure 4: PI SMT application configured to import a digital state set file. The Pl Data
Archives window shows the “localhost” Pl Data Archive selected along with the System
Management Plug-Ins window showing the Digital States Plug-In as being selected. The
digital state set file can now be imported by selecting the Import from File command.

5. Navigate to and select the UniInt Failover DigitalSet UFO State.csv file
for import using the Browse icon on the display. Select the desired Overwrite
Options. Refer to Figure 5 below.

o Import Digital Set(s)

Comma delimited file with zetz and states:
|s'~.lntetface Failwer\UniInt_FaiIDver_DigitalSet_LlFD_State.csv| =

Server Options

(%) Impart get(z] to server: | localhost “ |

Owenarite Optionz

) Do not overwrite existing sets

(%) Prompt before ovenwriting existing sets
) Automatically overwite existing zets

I (] 8][Canicel l

Figure 5: PI SMT application Import Digital Set(s) window. This view shows the
UniInt Failover DigitalSet UFO State.csv file as being selected for import.
Select the desired Overwrite Options by choosing the appropriate option button.

6. Click on the OK button. Refer to Figure 5 above.

7. Theuro state digital set is created as shown in Figure 6 below.

Pl Interface for HTML 71

Unilnt Failover Configuration

File:

L

Tools Help

BELLE

cartels
driddell
loc:alhost
niddell-desktop
zav-entergpl
Sav-Entergul2

- B BB - B -

=]

Batch

Data

Interfaces

IT Points

Operation

Paints
Digital States
Performance Equations
Faint Builder
Faint Clazzes
Fairt Source Table
Stale and Bad Points
Totalzers

S ecurity

W

¥ PI System Management Tools - Active Plug-In: Digital States

DEeXE L &

@ MNumber of states: &

=] localhost

Batchact

CSMP_Quality
CSMP_Statuz

Digital State Set
DMP_AnaloglnputStatus
DMP_AnalogOutputStatus
DMP_BinarlnputStatus
DHP_CounterStatus
DHP_FreezeCodesz
DHP_OutputStatus
Interfacestatus

Modes

FPhazes

pialarm33

pialarmcontrol
pizgcalarm

SYSTEM

Stake Mumber

State Mame
CFf

Backup_MNo_Data

Backup_Mo_PI

Backup

Transition

DL - P N P et

Primary

PI-DSE> Set 'Digital State Set’ sucessiully updated on server lozalhost (Import)
PI-DSE> Set 'UF0_State' sucessfully imported to server localhoszt (Import)

Figure 6: The PI SMT application showing the uro_state digital set created on the

“localhost” Pl Data Archive.

72

(@ os

Creating the Unilint Failover Control and Failover State Tags (Phase 2)

The ICU can be used to create the Unilnt Failover Control and State Tags.

To use the ICU Failover page to create these tags simply right-click any of the failover tags
in the tag list and click the Create all points (UFO Phase 2) command.

If this menu choice is unavailable, it is because the UFO_State digital state set has not been
created on the PI Data Archive yet. Create UFO_State Digital Set on PI Data Archive
xxxxxxx... on the shortcut menu can be used to create that digital state set. After this has been
done then the Create all points (UFO Phase2) command should be available.

General r Unilnt Failover
Unilnt ¥ Enable Unilnt Failover " Phase1 = Phase 2
FI SDK Failover |D# for this instance: [[\OLEKSANDRPC\PIHTMLI
Disconnected Startup
Debug Failover |D# of the other instance: |2 [\WOLEKSANDRPC\PIHTML2 ><| Browse |
o] . ™ Do Mot Failover when both interfaces loose connection to Pl
Performance Points [™ Failover control tags are unsolicited (not scan based)
ﬁzzlct';]m;g;?scwmem Rate at which the heartbeat point is updated/checked: IE: 00 miliseconds Feset |
bt UFD Type: Synchronization File Path:
Service ICOLD j |C:\F‘IF‘C\Irrterfaces\HTML\F‘lHTM L_HTML_1.dat Browse

10 Rate
Interface Status

ver GLERSAMNDRPE, .

Mot Created PIHTMLT L Int=

A Create all points (UFO Phase 2) 3
m Delete &l |:|Din.ts (R Ehase 2) m
The primary interface activ ~ Correct &l points (LUFC Phase 2) forthe

primary. The value of n must be a postive integer. The valle of the active 10 point s refermed 1o as the hd
Cloge | Appl I

| Feady | Service Urinstalled [PIHTHLI - Mat Installed 4

Once the failover control and failover state tags have been created the Failover page of the
ICU should look similar to the illustration below.

Status | Tag | Exdesc | Point Source | Location | F'cﬂ
Created PIHTML1_UFDZ_ActivelD [UFD2_ActivelD] HTML_MET 1 e
Created PIHTML1_UFDZ_Heartbeat_1 [UFD2_Heartbeat:1] HTML_MET 1 It

Erleated PIHTML1 UFQZ Hearbesat 2 | [UFD2 Heartbest:2l HTML MET 1 L hd

The active |D value is located on the shared file and idertifies which copy of the inteface is primary. 3
The primary inteface active |0 value is set by the /UFD_|D=n startup command line parameter for the
primary. The value of n must be a positive integer. The value of the active 1D point is refered to as the j

Pl Interface for HTML 73

Interface Node Clock

chapter 10. INterface Node Clock

Make sure that the time and time zone settings on the computer are correct. To confirm, run
the Date/Time applet located in the Windows Control Panel. If the locale where the interface
node resides observes Daylight Saving Time, check the Automatically adjust clock for
daylight saving changes box. For example,

Date and Time Properties

Cate & Time | Time Zone

[GMT-05:00) Pacific Time (L ada); Tijuana

Butamatically adjust clock Far daylight saving changes

[(04 H Cancel][apply]

In addition, make sure that the TZ environment variable is not defined. All of the currently
defined environment variables can be viewed by opening a Command Prompt window and

typing set. That is,
C:> set

Confirm that TZ is not in the resulting list. If it is, run the System applet of the Control
Panel, click the Environment Variables button under the Advanced tab, and remove TZ from

the list of environment variables.

“ (@ osi

Chapter 11. S€CUrItY

The PI Firewall Database and the Pl Trust Database must be configured so that the interface
is allowed to write data to the Pl Data Archive.

The Trust Database, which is maintained by the Base Subsystem, replaces the Proxy
Database used prior to Pl Data Archive version 3.3. The Pl Trust Database maintains all the
functionality of the proxy mechanism while being more secure.

See “Trust Login Security” in the chapter “Managing Security” of the Pl Data Archive
System Management Guide.

If the interface cannot write data to the Pl Data Archive because it has insufficient privileges,
a-10401 error will be reported in the pipc. 1og file. If the interface cannot send data to a
P12 Data Archive, it writes a -999 error. See the section Appendix A: Error and Informational
Messages for additional information on error messaging.

Authentication

Interface instances are usually configured to run as Windows services. Since a service runs in
a non-interactive context, a Pl Trust is required to authenticate the interface service to the Pl
Data Archive.

Pl Data Archive v3.3 and Higher

Security configuration using piconfig

For PI Data Archive v3.3 and higher, the following example demonstrates how to edit the PI
Trust table:

C:\PI\adm> piconfig

@table pitrust

@mode create

@istr Trust, IPAddr,NetMask, PIUser

a_trust name,192.168.100.11,255.255.255.255,piadmins
@quit

For the above,

Trust: An arbitrary name for the trust table entry; in the above example,
a trust name

IPAddr: the IP Address of the computer running the interface; in the above example,
192.168.100.11

NetMask: the network mask; 255.255.255.255 specifies an exact match with 1paddr

pIUser: the Pl identify, user, or group the interface is entrusted as

Security Configuring using Trust Editor

The Trust Editor plug-in for Pl System Management Tools 3.x may also be used to edit the PI
Trust table.

Pl Interface for HTML 75

Security

See the PI System Management chapter in the Pl Data Archive manual for more details on
security configuration.

Pl Data Archive v3.2

For PI Data Archive v3.2, the following example demonstrates how to edit the Pl Proxy table:

C:\PI\adm> piconfig
@table pi gen,piproxy
@mode create

@istr host,proxyaccount
piapimachine,piadmin
@quit

In place of piapimachine, put the name of the interface node as it is seen by the Pl Data
Archive.

Authorization

For an interface instance to start and write data to PI points, the following permissions must
be granted to the Pl identity, user, or group in the PI Trust that authenticates the interface
instance.

Database Security Permission Notes
PIPOINT r
Point Database Permission Notes
PtSecurity r
DataSecurity r,w Unbuffered
r Buffered (the buffering application
requires r,w for the interface points)

The permissions in the preceding table must be granted for every PI point that is configured
for the interface instance. Observe that buffering on the interface node is significant to Pl
point permissions.

When the interface instance is running on an unbuffered interface node, the interface instance
sends Pl point updates directly to the PI Data Archive. Therefore, DataSecurity write access
must be granted to the Pl identity, user, or group in the PI Trust that authenticates the
interface instance.

When the interface instance is running on a buffered interface node, the interface instance
sends PI point updates to the local buffering application, which relays the Pl point updates to
the PI Data Archive. The buffering application is a separate client to the Pl Data Archive and,
therefore, authenticates independently of the interface instances. DataSecurity write access
must be granted to the PI identity, user, or group in the P1 Trust that authenticates the
buffering application.

76

(@ os

chapter 12. Starting / Stopping the Interface

This section describes starting and stopping the interface once it has been installed as a
service. See the Unilnt Interface User Manual to run the interface interactively.

= ™ 0 DGR e

Starting Interface as a Service

If the interface was installed as service, it can be started from PI ICU, the Services control
panel or with the command:

PIHTML.exe /start

To start the interface service with PI ICU, use the v button on the PI ICU toolbar.

A message will inform the user of the status of the interface service. Even if the message
indicates that the service has started successfully, double check through the Services control
panel applet. Services may terminate immediately after startup for a variety of reasons, and
one typical reason is that the service is not able to find the command-line parameters in the
associated .bat file. Verify that the root name of the .bat file and the .exe file are the same,
and that the .bat file and the .exe file are in the same directory. Further troubleshooting of
services might require consulting the pipc. log file, Windows Event Viewer, or other
sources of log messages. See the section Appendix A: Error and Informational Messages for
additional information.

Stopping Interface Running as a Service

If the interface was installed as service, it can be stopped at any time from PI ICU, the
Services control panel or with the command:

PIHTML.exe /stop
The service can be removed by:
PIHTML.exe /remove

L

To stop the interface service with Pl ICU, use the button on the PI ICU toolbar.

Pl Interface for HTML 77

Buffering

chapter 13. Buffering

Buffering refers to an interface node’s ability to temporarily store the data that interfaces
collect and to forward these data to the appropriate Pl Data Archives. OSlsoft strongly
recommends that you enable buffering on your interface nodes. Otherwise, if the interface
node stops communicating with the Pl Data Archive, you lose the data that your interfaces
collect.

The PI SDK installation kit installs two buffering applications: the Pl Buffer Subsystem
(PIBufss) and the PI API Buffer Server (Bufserv). PIBufss and Bufserv are mutually
exclusive; that is, on a particular computer, you can run only one of them at any given time.

If you have PI Data Archives that are part of a Pl Data collective, PIBufss supports n-way
buffering. N-way buffering refers to the ability of a buffering application to send the same
data to each of the PI Data Archives in a Pl Data collective. (Bufserv also supports n-way
buffering, but OSlsoft recommends that you run PIBufss instead.)

Which Buffering Application to Use

You should use PIBufss whenever possible because it offers better throughput than Bufserv.
In addition, if the interfaces on an interface node are sending data to a Pl Data collective,
PIBufss guarantees identical data in the archive records of all the Pl Data Archives that are
part of that Pl Data collective.

You can use PIBufss only under the following conditions:
e the PI Data Archive version is at least 3.4.375.x; and

o all of the interfaces running on the interface node send data to the same Pl Data
Archive or to the same PI Data collective.

If any of the following scenarios apply, you must use Bufserv:
e the Pl Data Archive version is earlier than 3.4.375.x; or

o the interface node runs multiple interfaces, and these interfaces send data to multiple
Pl Data Archives that are not part of a single Pl Data collective.

If an interface node runs multiple interfaces, and these interfaces send data to two or more Pl
Data collectives, then neither PIBufss nor Bufserv is appropriate. The reason is that PIBufss
and Bufserv can buffer data only to a single Pl Data collective. If you need to buffer to more
than one Pl Data collective, you need to use two or more interface nodes to run your
interfaces.

It is technically possible to run Bufserv on the Pl Data Archive Node. However, OSlsoft does
not recommend this configuration.

How Buffering Works
A complete technical description of PIBufss and Bufserv is beyond the scope of this

document. However, the following paragraphs provide some insights on how buffering
works.

78 (@ osi

When an interface node has buffering enabled, the buffering application (P1Bufss or Bufserv)
connects to the Pl Data Archive. It also creates shared memory storage.

When an interface program makes a Pl API function call that writes data to the Pl Data
Archive (for example, pisn_ sendexceptiongx ()), the PI API checks whether buffering is
enabled. If it is, these data writing functions do not send the interface data to the Pl Data
Archive. Instead, they write the data to the shared memory storage that the buffering
application created.

The buffering application (either Bufserv or PIBufss) in turn
e reads the data in shared memory, and

e if a connection to the Pl Data Archive exists, sends the data to the Pl Data Archive;
or

e if there is no connection to the Pl Data Archive, continues to store the data in shared
memory (if shared memory storage is available) or writes the data to disk (if shared
memory storage is full).

When the buffering application re-establishes connection to the Pl Data Archive, it writes to
the PI Data Archive the interface data contained in both shared memory storage and disk.

(Before sending data to the Pl Data Archive, PIBufss performs further tasks such as data
validation and data compression, but the description of these tasks is beyond the scope of this
document.)

When PIBufss writes interface data to disk, it writes to multiple files. The names of these
buffering files are PIBUFQ *.DAT.

When Bufserv writes interface data to disk, it writes to a single file. The name of its buffering
file is APTBUF. DAT.

As a previous paragraph indicates, PIBufss and Bufserv create shared memory storage at
startup. These memory buffers must be large enough to accommodate the data that an
interface collects during a single scan. Otherwise, the interface may fail to write all its
collected data to the memory buffers, resulting in data loss. The buffering configuration
section of this chapter provides guidelines for sizing these memory buffers.

When buffering is enabled, it affects the entire interface node. That is, you do not have a
scenario whereby the buffering application buffers data for one interface running on an
interface node but not for another interface running on the same interface node.

Buffering and Pl Data Archive Security

After you enable buffering, it is the buffering application — and not the interface program —
that writes data to the Pl Data Archive. If the Pl Data Archive’s trust table contains a trust
entry that allows all applications on an interface node to write data, then the buffering
application is able to write data to the Pl Data Archive.

However, if the Pl Data Archive contains an interface-specific Pl Trust entry that allows a
particular interface program to write data, you must have a P1 Trust entry specific to
buffering. The following are the appropriate entries for the Application Name field of a Pl
Trust entry:

Buffering Application | Application Name field for PI Trust

PI Buffer Subsystem PIBufss.exe

Pl Interface for HTML 79

Buffering

Buffering Application Application Name field for Pl Trust

P1 API Buffer Server APIBE (if the PI APl is using 4 character process
names)
APIBUF (if the PI APl is using 8 character process
names)

To use a process hame greater than 4 characters in length for a trust application name, use the
LONGAPPNAME=1 in the PIClient.ini file.

See the Security chapter for additional information.

Enabling Buffering on an Interface Node with the ICU

The ICU allows you to select either PIBufss or Bufserv as the buffering application for your
interface node. Run the ICU and select Tools > Buffering.

Choose Buffer Type

veu Bufferi ng g|

Tools

Buffering allows continuous collection of data on an AP| Mode regardiess of the status of the Pl server
Buffering Settings or the nebwork. link, to the server.

Buffered Servers + Digable buffering
P Buffer Subspstem Service

Parameter D etails " Enable !Juffering with Pl Buffer Subsystem @
AP Buffer Server Service Service status: Stopped

Startup type: Digabled

Mumber of dependent zervices; 1

Mumber of running dependent services: 0

" Enable buffering with &P Buffer Server
Service ztatus: Stopped
Startup type: Dizabled
Mumber of dependent services: 0
Mumber of running dependent services: 0

Current Configuration: Good

ak | Cancel | |

To select PIBufss as the buffering application, choose Enable buffering with Pl Buffer
Subsystem.

To select Bufserv as the buffering application, choose Enable buffering with API Buffer
Server.

80

(@ osi

If a warning message such as the following appears, click Yes.

Pl-Interface Configuration Utility

Changing the buffer type will cause any running interfaces with a dependency on
'PI Buffer Subsystem' or 'API Buffer Server' ko be stopped and restarted,

Are you sure vou want bo change from ‘Mo Buffering' to 'PI Buffer Subswstem's

Buffering Settings

There are a number of settings that affect the operation of PIBufss and Bufserv. The
Buffering Settings section allows you to set these parameters. If you do not enter values for
these parameters, PIBufss and Bufserv use default values.

PIBufss

For PIBufss, the paragraphs below describe the settings that may require user intervention.
Please contact OSlsoft Technical Support for assistance in further optimizing these and all
remaining settings.

2w Bufferi ng §|
Tools —
hDE Bff Type Bulfering Settings will use default values unless other values are specified.
TCP/P Pot |
Pl Bulfer Subsystem Service Maximum buffer file size (KB |
Parameter Details
AP Buffer Server Service Primary memary butfer size [Bytes): |
Secondary memory buffer size (Bytes): |
Send rate [millizecondz); |
|
Retry rate [zeconds): |
M amimum trangfer objects: |
M axirnum thearetical send rate: |5EIDU
Ewvent queue file size [MBytez]: |
Event queue path: | J
Pausze time when buffers are empty [milizeconds): |
M awirium data rate per server connection [events/sec): |
Ok, | Cancel | |

Primary and Secondary Memory Buffer Size (Bytes)

This is a key parameter for buffering performance. The sum of these two memory buffer sizes
must be large enough to accommodate the data that an interface collects during a single scan.
A typical event with a Float32 point type requires about 25 bytes. If an interface writes data
to 5,000 points, it can potentially send 125,000 bytes (25 * 5000) of data in one scan. As a
result, the size of each memory buffer should be 62,500 bytes.

The default value of these memory buffers is 32,768 bytes. OSlsoft recommends that these
two memory buffer sizes should be increased to the maximum of 2000000 for the best
buffering performance.

Pl Interface for HTML 81

Buffering

Send rate (milliseconds)

Send rate is the time in milliseconds that PIBufss waits between sending up to the Maximum
transfer objects (described below) to the Pl Data Archive. The default value is 100. The valid
range is 0 to 2,000,000.

Maximum transfer objects
Maximum transfer objects is the maximum number of events that PIBufss sends between
each Send rate pause. The default value is 500. The valid range is 1 to 2,000,000.

Event Queue File Size (Mbytes)

This is the size of the event queue files. PIBufss stores the buffered data to these files. The
default value is 32. The range is 8 to 131072 (8 to 128 Ghytes). Please see the section entitled
“Queue File Sizing” in the PIBufss.chm file for details on how to appropriately size the event
gueue files.

Event Queue Path

This is the location of the event queue file. The default value is [PTHOME] \DAT.

For optimal performance and reliability, OSlsoft recommends that you place the PIBufss
event queue files on a different drive/controller from the system drive and the drive with the
Windows paging file. (By default, these two drives are the same.)

Bufserv

For Bufserv, the paragraphs below describe the settings that may require user intervention.
Please contact OSlsoft Technical Support for assistance in further optimizing these and all
remaining settings.

ieu Bufferi ng E|
Tools
Choose Buffer Type Buffering Settings will use default values unless other values are specified.
‘Buffering Settings
Buffered Servers TER/PR Port: |
Pl Buffer Subspstem Service M aximum buffer file size [KB]: |
Paramneter Details))
AP Buffer Server Service Prirary memmory buffer zize [Bytes): |
Secondary memomny buffer size [Bytes): |
Send rate [millizecondz); |
Pause rate [zeconds] [API Buffer Server]: |
Retry rate [seconds): |
M aximum transfer objects: |
b awimum theoretical zend rate: |EDDD
Ok, | Cancel

82

(@ osi

Maximum buffer file size (KB)

This is the maximum size of the buffer file ([PTHOME] \DAT\APIBUF.DAT). When Bufserv
cannot communicate with the Pl Data Archive, it writes and appends data to this file. When
the buffer file reaches this maximum size, Bufserv discards data.

The default value is 2,000,000 KB, which is about 2 GB. The range is from 1 to 2,000,000.

Primary and Secondary Memory Buffer Size (Bytes)

This is a key parameter for buffering performance. The sum of these two memory buffer sizes
must be large enough to accommodate the data that an interface collects during a single scan.
A typical event with a Float32 point type requires about 25 bytes. If an interface writes data
to 5,000 points, it can potentially send 125,000 bytes (25 * 5000) of data in one scan. As a
result, the size of each memory buffer should be 62,500 bytes.

The default value of these memory buffers is 32,768 bytes. OSlIsoft recommends that these
two memory buffer sizes should be increased to the maximum of 2000000 for the best
buffering performance.

Send rate (milliseconds)

Send rate is the time in milliseconds that Bufserv waits between sending up to the Maximum
transfer objects (described below) to the Pl Data Archive. The default value is 100. The valid
range is 0 to 2,000,000.

Maximum transfer objects

Max transfer objects is the maximum number of events that Bufserv sends between each
Send rate pause. The default value is 500. The valid range is 1 to 2,000,000.

Buffered Servers

The Buffered Servers section allows you to define the PI Data Archives or Pl Data collective
that the buffering application writes data.

PIBufss

PIBufss buffers data only to a single Pl Data Archive or a Pl Data collective. Select the PI
Data Archive or the PI Data collective from the Buffering to Pl Data collective/archive drop
down list box.

The following screen shows that PIBufss is configured to write data to a standalone Pl Data
Archive named starlight. Notice that the Replicate data to all PI Data collective member
nodes check box is disabled because this Pl Data Archive is not part of a Pl Data collective.
(PIBufss automatically detects whether a Pl Data Archive is part of a Pl Data collective.)

Pl Interface for HTML 83

84

Buffering

v Buffering

Tools

Choose Buffer Type

Buffering Settings

Buffered Servers

Pl Buffer Subsystem Service
Parameter D etails

AP Buffer Server Service

X]

Buffering to collective server; |starlight j
rd
Buffered Server Mames
{* Path " Mame " IP Address
Server | Collective | Mermber Type
starlight Mon-replicated
Cancel | Apply |

The following screen shows that PIBufss is configured to write data to a Pl Data collective

named admiral. By default, PIBufss replicates data to all Pl Data collective members. That
is, it provides n-way buffering.

You can override this option by not checking the Replicate data to all Pl Data collective
member nodes check box. Then, uncheck (or check) the PI Data collective members as

desired.

vty Buffering

Tools

Choose Buffer Type

Buffering Settings

Buffered Servers

Pl Buffer Subspstem Service
Parameter D etails

API Buffer Server Service

X

Buffering to collectives server: |adrnira| j

[v Replicate data to all collective member nodes

Buffered Server Hames

(¢ Path " Mame " IP Address

Seryver Collective | Member Type
admiral osisoft.int - admiral Primary
kemal osizoft.int admiral Secondany

CUHETT Cancel Apply

(@ osi

Bufserv

Bufserv buffers data to a standalone PI Data Archive, or to multiple standalone P1 Data
Archives. (If you want to buffer to multiple Pl Data Archives that are part of a Pl Data
collective, you should use PIBufss.)

If the Pl Data Archive to which you want Bufserv to buffer data is not in the Server list, enter
its name in the Add a server box and click the Add Server button. This Pl Data Archive name
must be identical to the APl Hostname entry:

General General Pl Host Information
Unilnt - . I -
Pl SOK Paint Sourcels): |E ﬂ Server/Collective: |etamp390 j
Dizconnected Startup J User: |piadmin
Debug SDK Member:
Failorver | J
Performance Paints Interface ID: 1 [.QF'I Hostname: | J]
Performance Counters . :
Type: Harreplicated - PI3
Health Points Sean Classes | E
madbusE w4 $ Wersion: |F1 3.4.575.38
Servi —_— s
IDBIF\;:Z Scan Frequency | Scan Class # | Drescription: |
Interface Status Bl ! Part: |545EI

The following screen shows that Bufserv is configured to write to a standalone PI Data
Archive named etamp390. You use this configuration when all the interfaces on the interface
node write data to etamp390.

v Bufferi ng E|
Tools

Chaose Buffer Tupe Buffer and Replicate using the following configuration:

Buffering Settings) . .

Buffered Servers Click once in the Buffered or Replicated column to toggle between On and OFf.

Pl Buffer Subsystem Service sdd & zerver |

Parameter D etails

&P Buffer Server Service Server | Buffered | Replicated
etamp3d] Yes Mo
starlight Ma Mo

Cancel | Lpply |

The following screen shows that Bufserv is configured to write to two standalone Pl Data
Archives, one named etamp390 and the other one named starlight. You use this
configuration when some of the interfaces on the interface node write data to etamp390 and
some write t0 starlight.

Pl Interface for HTML 85

86

Buffering

v Buffering

Tools

X]

Choose Buffer Type
Buffering Settings
Buffered Servers
Pl Buffer Subsystem Service Add a server |starlight

Parameter D etails
&P Buffer Server Service Server | Buffered | Replicated

etamp3d0 Yes Mo
starlight ez Mo

Buffer and Replicate uzing the following configuration:

Click once in the Buffered or Replicated column to toggle between On and OFf.

Cancel Apply

Installing Buffering as a Service

Both the PIBufss and Bufserv applications run as a Service.

Pl Buffer Subsystem Service

Use the PI Buffer Subsystem Service page to configure PIBufss as a Service. This page also
allows you to start and stop the PIBufss service.

PIBufss does not require the logon rights of the local administrator account. It is sufficient to

use the LocalSystem account instead. Although the screen below shows asterisks for the
LocalSystem password, this account does not have a password.

(@ osi

v Buffering

Tools

Choose Buffer Type
Buffering Settings

PI Buffer Subspstem version; 3.4.375.28

X]

Cemvi) |PIB i Start / Stop
Buffered Servers EVICE Name: urss b
Pl Buter Subspstem Service Display narne: |F'| Buffer Subsystem J J
Parameter Details Stopped
&P Buffer Server Service Logan as: |L°C‘3|S5'Stem
Password: R R Startup Type:
Confitm passward: [————— v Auta
2 i
Dependencies: pinetrgr e
("~ Dizabled
Dependent services:
Create / Remove
Remaove
Ok | Cancel | |
%y Buffering EJ
Tools
ghgos:e B;HET Typs zection] paranneter] type | Lirit] it | ma | defaul J dezcription
SR APIBUFFER MEXTRANSFERDEJS it evenis 50 2000000 5000 Mawimum
Butered Servers _ APIBUFFER BUF2SIZE it bytes 64 2000000 722768 Secondar
Pl Buffer Subsystem Service APIBUFFER BUF1SIZE int butes E4 2000000 327E8 Frimary 4F
[M arameter Details APIBUFFER M&xFILESIZE int KB 1 2000000 2000000 M asimum
AP Buffer Server Service APIBUFFER RETRYRATE ik f2= 1] 2000000 120 Pauze tim
APIBUFFER PALISERATEMS int mzec 1] 2000000 10 Fausge tim
APIBUFFER SEMDRATE int mzec 1] 2000000 100 Pausge tim
APIBUFFER BUFFERING boal a 1 a Turnz an
TCP/F PORT int 1 B5R35 B4A0 Diefault T(
FIEUFSS MULTISERVER bool 1] a a Suppart fo
FIBUFSS MAXPOSTRATE int events/sec 500 20000000 0 b airnum
FIEUFSS GUEUESIZE int 4B E 131072 32 MNominal d
FIBUFSS QUEUEPATH string Directony |
FIBUFSS AUTOCOMFIG boal 1] 1 1 Replicate:
FIEUFSS BUFFERING boal 1] 1 1 Turnz ans
& 2

(] 4 | Cancel

APl Buffer Server Service

Use the API Buffer Server Service page to configure Bufserv as a Service. This page also

allows you to start and stop the Bufserv Service

Bufserv version 1.6 and later does not require the logon rights of the local administrator

account. It is sufficient to use the LocalSystem account instead. Although the screen below

shows asterisks for the LocalSystem password, this account does not have a password.

Pl Interface for HTML

87

Buffering

v Buffering

Tools

Choose Buffer Type

Buffering Settings

Buffered Servers

Pl Buffer Subsystem Service
Parameter D etails

APl Buffer Server Service

AP Buffer Server version: 1.6.1.10

Service name:
Dizplay narme:
Log on as:
Password:
Confirm password:

Dependencies

Dependent services:

|Eufserv

|F'I-Buffer Server

|L0c:a|8ystem

B —

[——

tepip

Start / Stop

=

Fiunning

Startup Type
(s Autg

™ Marual

("~ Dizabled

Create / Remove

=
[

X]

Ok

Cancel

88

(@ os

chapter 14. INterface Diagnostics Configuration

The PI Point Configuration chapter provides information on building P1 points for collecting
data from the device. This chapter describes the configuration of points related to interface
diagnostics.

Note: The procedure for configuring interface diagnostics is not specific to this
interface. Thus, for simplicity, the instructions and screenshots that follow refer to an
interface named ModbusE.

Some of the points that follow refer to a “performance summary interval”. This interval is 8
hours by default. You can change this parameter via the Scan performance summary box in
the Uniint — Debug parameter category page:

itu/Pl-Interface Configuration Utility - ModbusE1

Intetface Tools Help
0= X b 3 7
Irterface: [ModbusET (ModbusE 1] > ETAMP390 v| FRename
Type: modbusE ~ | Modbus Ethernet PLC Pl Server Conneclion Status
Description; | ; # ETAMP330
. ¥ Wiriteable
Wersions |MUdbusE.exE wversion 3.28.0.0 |Uni|nl wersion 4.3.0.31
General Debug Levels
Unilrt I~ Iritialization [~ 10 Rate poirts
Disconnected Startup
r I” Services
Fallorver ™ Esit handler [Timestamps
Performance Points
Performanca Counters I Sending datato Pl I”" Perf Counters
Health Poirts ™ Main control loop [~ PI-5DE
modbusE
Service [Paint list creation [Digital zet caching
10 Rate I~ Puoint edis I~ Maximum Level |0 Fieset
Interface Status Q
Debugging Optiohs
[Scan performance summary: |8 hnurs] Reset
[~ Log all values & tmestamps for:

Scan Class Performance Points

A Scan Class Performance Point measures the amount of time (in seconds) that this interface
takes to complete a scan. The interface writes this scan completion time to millisecond
resolution. Scan completion times close to 0 indicate that the interface is performing
optimally. Conversely, long scan completion times indicate an increased risk of missed or
skipped scans. To prevent missed or skipped scans, you should distribute the data collection
points among several scan classes.

You configure one Scan Class Performance Point for each scan class in this interface. From
the ICU, select this interface from the Interface drop-down list and click Unilnt-Performance
Points in the parameter category pane:

Pl Interface for HTML 89

Interface Diagnostics Configuration

T Pl-Interface Configuration Utility - ModbusE1

Right-click the row for a particular Scan

tu Pl-Interface Configuration Utility - ModbusE1 *

Interface Tools Help
D= = g BR e
l:nteﬂac:e: |ModbusE ModbusE1] - ETAMP3AD ﬂ] Rename |
Type: modbusE | Modbus Ethemnet PLC Pl Server Connection Status
Description: | # ETAMP3S0
. W Wikeable
Wersions: |ModbusE.exe werzion 3.28.0.0 |L|ni|nt wvergion 4.3.0.31
General Performance Pointz
Uriilet Statusz Scan Class # | T agname PS Location] | Exdesc
Dizconnected Startup Mot Created 1 gy sbetamp330 ModbusEl sc1 MODBUSE 1 FERFORMANCE_POI
Mot Created 2 ay st etamp 390 ModbuzEl 202 MODBUSE 1 PERFORMAMNCE_POI
Mot Created 3 gy, ztetamp390 ModbuzEl. 203 MODBUSE 1 PERFORMANCE_POI
Health Points

Class # to open the shortcut menu:

B=Es

Interface Tools Help

NE X || B G| [E @

Interface: |ModbusE1 [ModbusE1] -» mkelylaptop j Rename

Type: modbusE | Modbuz Ethernet PLC Pl Server Connection Status

D escriptior; | 5 mkellylaptop
) W wiiteable

Yersions: |MDdbusE.exe wersion 3.28.0.0 |Uni|nt wergion 4,3.0.31

General Performance Paints

Uil Status Scan Clas: # | Tagname PS Location] | Exdesc Shapshot
FI DK C [1 Creat 31ISE [1 FERFORMANC. [|
Disconmectsd Statup | | Mot Created 2 reate MODBUSE 1 FERFORMANC. .
Debug Mot Created 3 Create Al MODBUSE 1 PERFORMANC, .
Failaver
Perfarmance Points
Performance Counters
Health Points

modbusE
. Rename

Service

10 Rate

Interface Status

You need not restart the interface for it to write values to the Scan Class Performance Points.

To see the current values (snapshots) of the Scan Class Performance Points, right-click and

select Refresh Snapshots.

Create / Create All

To create a Performance Point, right-click the line belonging to the tag to be created, and
select Create. Click Create All to create all the Scan Class Performance Points.

Delete

To delete a Performance Point, right-click the line belonging to the tag to be deleted, and

select Delete.

Correct / Correct All

If the “Status” of a point is marked “Incorrect”, the point configuration can be automatically
corrected by ICU by right-clicking on the line belonging to the tag to be corrected, and
selecting Correct. The Performance Points are created with the following Pl attribute values.

90

(@ osi

If ICU detects that a Performance Point is not defined with the following, it will be marked
Incorrect: To correct all points, click Correct All.

The Performance Points are created with the following PI attribute values:

Attribute Details
Tag Tag name that appears in the list box
Point Source Point Source for tags for this interface, as specified on the first tab
Compressing Off
Excmax 0
Descriptor Interface name + “ Scan Class # Performance Point”
Rename

Right-click the line belonging to the tag and select Rename to rename the Performance Point.

Column descriptions

Status

The Status column in the Performance Points table indicates whether the Performance Point
exists for the scan class in the Scan Class # column.

Created — Indicates that the Performance Point does exist
Not Created — Indicates that the Performance Point does not exist
Deleted — Indicates that a Performance Point existed, but was just deleted by the user

Scan Class #

The Scan Class column indicates which scan class the Performance Point in the Tagname
column belongs to. There will be one scan class in the Scan Class column for each scan class
listed in the Scan Classes box on the General page.

Tagname

The Tagname column holds the Performance Point tag name.

PS
This is the point source used for these performance points and the interface.

Locationl

This is the value used by the interface for the /1D=# point attribute.

ExDesc

This is the used to tell the interface that these are performance points and the value is used to
corresponds to the /ID=# command line parameter if multiple copies of the same interface
are running on the interface node.

Pl Interface for HTML 91

Interface Diagnostics Configuration

Snapshot

The Snapshot column holds the snapshot value of each Performance Point that exists in PI.
The Snapshot column is updated when the Performance Points page is selected, and when the
interface is first loaded. You may have to scroll to the right to see the snapshots.

Performance Counters Points

When running as a Service or interactively, this interface exposes performance data via
Windows Performance Counters. Such data include items like:

¢ the amount of time that the interface has been running;
¢ the number of points the interface has added to its point list;
¢ the number of tags that are currently updating among others

There are two types or instances of Performance Counters that can be collected and stored in
Pl Points. The first is (_Total) which is a total for the Performance Counter since the
interface instance was started. The other is for individual scan classes (Scan Class x) where x
is a particular scan class defined for the interface instance that is being monitored.

OSIsoft’s PI Performance Monitor interface is capable of reading these performance values
and writing them to PI points. Please see the Performance Monitor Interface for more
information.

If there is no Pl Performance Monitor Interface registered with the ICU in the Module
Database for the PI Data Archive the interface is sending its data to, you cannot use the ICU
to create any interface instance’s Performance Counters Points:

i&u|Pl-Interface Configuration Utility - ModbusE1

Interface Tools Help
NE X 4 G e
Enterface: [ModbusE (ModbusE1] > ETAMP330 jj Fename |
Type: |modbusE ﬂ Modbus Ethenet PLC Fl Server Connection Statuz
Description: | _.? ETAMP330
. ¥ Wiriteable
‘ersions: |ModbusE.eHe version 32800 Urilnt version 4.3.0.31
General
Unilnt Status T agnarme | PS [Snapshot | Perform.
Disconnected Startup
Diebug
Failover
Petformance Poin
Health Paints
modbusE
Service
10 Rate
Interface Status
£ >
HSBIV\CB piperfmon is nat installed on this machineJ
Ready Stopped ModbusEl - Installed

After installing the P1 Performance Monitor Interface as a service, select this interface
instance from the Interface drop-down list, then click Performance Counters in the parameter
categories pane, and right-click on the row containing the Performance Counters Point you
wish to create. This will open the shortcut menu:

92

(@ osi

itu|Pl-Interface Configuration Utility - ModbusE1

Interface Tools Help
[> 6 | @
[ntarfaca: [ModbusET (MadbusET) - ETAMP330 jJ _ Rename |
Tupe: |mndbusE j Modbusz Ethernst PLC Pl Server Connection Status
Description: | _-"‘ ETamP3a0
. w ‘wiiteable
Wersions: |MDdbusE.eke werzion 3.28.0.0 |Uni|nl wversion 4.3.0.31
General Performance Counter Points [Collected by Pl-Performance Monitor [nterface)
Unilrk Status Tagname 5| Snapshot
Dizconnected Startup 2 o up
Debug X dbusE'ILTola\] io_rates
Failaver Mot Created sy perf etamp330.ModbusE 1_Total] .point_count Create Al et
. Mot Created sy perf.etamp330. ModbusE1[_Total] .sched_scan: et
Parf Paint P P 1
Mot Created sy perf.etamp330.ModbusE1[_Tatal] sched_scans | Sheb
- Mot Created sy, perf. etamp390.ModbusE1[_Total] .sched_scans | \het.
Health Foints Mot Created sy perf etamp330 ModbusE 1[_Tatal] log_file_msag s ety
modbusE Mot Created sy, perf. etamp330.ModbusE1[_Tatal] .pts_edited_in, et
Service Mot Created sy.perf. etamp390.ModbusE1[_Total] .pts_added_te| Sheh
|0 Rate Mot Created sy, perf. etamp390.ModbusE1[_Total] .pts_removed | et
Irterface Status Mot Created . perf.etamp390.ModbusE 1[Scan Class 1).point_g1 ~ Rename “het,
Mot Created sy, perf. etamp330.ModbusE 1[Scan Class 1).zcan_tin et
Mot Created sp.perf.etamp330.ModbusE 1[Scan Class 1).sched Lssarssamsseu———g—r- Sheh
Mot Created sy, perf stamp330.ModbusE 115 can Class 11.sched scans *skipped # et ¥
£ >
Yhetamp390NPl-MadbusE 1[_Total)snterface uptime [seconds)
To create, delete, comect. of rename a Performance Monitor Interface Point, use right mouse button,
Ready Stopped ModbusE 1 - Ingtalled

Click Create to create the Performance Counters Point for that particular row. Click Create
All to create all the Performance Counters Points listed which have a status of Not Created.

To see the current values (snapshots) of the created Performance Counters Points, right-click

on any row and sel

ect Refresh Snapshots.

Note: The PI Performance Monitor Interface — and not this interface —
for updating the values for the Performance Counters Points in Pl. So, make sure
that the PI Performance Monitor Interface is running correctly.

is responsible

Performance Counters

In the following lists of Performance Counters the naming convention used will be:

“PerformanceCounterName” (.PerformanceCounterPointSuffix)

The tagname created by the ICU for each Performance Counter point is based on the setting
found under the Tools =» Options =» Naming Conventions =» Performance Counter Points.
The default for this is “sy.perf.[machine].[if service] followed by the Performance Counter

Point suffix.

Performance Counters for both (_Total) and (Scan Class x)

“Point Count” (.point_count)

A .point_count Performance Counters Point is available for each scan class of this interface
as well as an ““(_Total)” for the interface instance.

The .point_count Performance Counters Point indicates the number of PI Points per scan
class or the total number for the interface instance. This point is similar to the Health Point
[UI_SCPOINTCOUNT] for scan classes and [Ul_POINTCOUNT] for totals.

Pl Interface for HTML

93

Interface Diagnostics Configuration

The ICU uses a haming convention such that the tag containing “(Scan Class 1)” (for
example, “sy.perf.etamp390.E1 (Scan Class 1).point count”) refersto scan
class 1, “(Scan Class 2)” refers to scan class 2, and so on. The tag containing “(_Total)”
refers to the sum of all scan classes.

“Scheduled Scans: % Missed” (.sched_scans_%missed)

A .sched_scans_%missed Performance Counters Point is available for each scan class of this
interface as well as an ““(_Total)” for the interface instance.

The .sched_scans_%missed Performance Counters Point indicates the percentage of scans the
interface missed per scan class or the total number missed for all scan classes since startup. A
missed scan occurs if the interface performs the scan one second later than scheduled.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for
exwﬂpm,“sy.perf.etamp390.El(Scan Class 1) .sched scans %missed”) refers
to scan class 1, “(Scan Class 2)” refers to scan class 2, and so on. The tag containing
“(_Total)” refers to the sum of all scan classes.

“Scheduled Scans: % Skipped” (.sched_scans_%skipped)

A .sched scans_%skipped Performance Counters Point is available for each scan class of this
interface as well as an “(_Total)” for the interface instance.

The .sched_scans_%skipped Performance Counters Point indicates the percentage of scans
the interface skipped per scan class or the total number skipped for all scan classes since
startup. A skipped scan is a scan that occurs at least one scan period after its scheduled time.
This point is similar to the [UI_SCSKIPPED] Health Point.

The ICU uses a haming convention such that the tag containing “(Scan Class 1)” (for
exmnpm,“sy.perf.etamp390.E1(Scan Class 1) .sched scans_%skipped”)
refers to scan class 1, “(Scan Class 2)” refers to scan class 2, and so on. The tag containing
“(_Total)” refers to the sum of all scan classes.

“Scheduled Scans: Scan count this interval” (.sched_scans_this_interval)

A .sched scans_this_interval Performance Counters Point is available for each scan class of
this interface as well as an “(_Total)” for the interface instance.

The .sched_scans_this_interval Performance Counters Point indicates the number of scans
that the interface performed per performance summary interval for the scan class or the total
number of scans performed for all scan classes during the summary interval. This point is
similar to the [UI_SCSCANCOUNT] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for
exmﬂpm,“sy.perf.etamp390.El(Scan Class 1).sched scans this interval”
refers to scan class 1, “(Scan Class 2)” refers to scan class 2, and so on. The tag containing
“(_Total)” refers to the sum of all scan classes.

o4 (@ os

Performance Counters for (_Total) only

“Device Actual Connections” (.Device_Actual_Connections)

The .Device_Actual_Connections Performance Counters Point stores the actual number of
foreign devices currently connected and working properly out of the expected number of
foreign device connections to the interface. This value will always be less than or equal to the
Device Expected Connections counter.

“Device Expected Connections” (.Device_Expected_Connections)

The .Device_Expected_Connections Performance Counters Point stores the total number of
foreign device connections for the interface. This is the expected number of foreign device
connections configured that should be working properly at runtime. If the interface can only
communicate with 1 foreign device then the value of this counter will always be one. If the
interface can support multiple foreign device connections then this is the total number of
expected working connections configured for this interface.

“Device Status” (.Device_Status)

The .Device_Status Performance Counters Point stores communication information about the
interface and the connection to the foreign device(s). The value of this counter is based on the
expected connections, actual connections and value of the /PercentUp command line
option. If the device status is good then the value is ‘0’. If the device status is bad then the
value is ‘1”. If the interface only supports connecting to 1 foreign device then the
/PercentUp command line value does not change the results of the calculation. If for
example the interface can connect to 10 devices and 5 are currently working then the value of
the /PercentUp command line parameter is applied to determine the Device Status. If the
value of the /PercentUp command line parameter is set to 50 and at least 5 devices are
working then the DeviceStatus will remain good (that is, have a value of zero).

“Failover Status” (.Failover_Status)

The .Failover_Status Performance Counters Point stores the failover state of the interface
when configured for Unilnt failover. The value of the counter will be ‘0” when the interface is
running as the primary interface in the failover configuration. If the interface is running in
backup mode then the value of the counter will be <1°.

“Interface up-time (seconds)” (.up_time)

The .up_time Performance Counters Point indicates the amount of time (in seconds) that this
interface has been running. At startup the value of the counter is zero. The value will continue
to increment until it reaches the maximum value for an unsigned integer. Once it reaches this
value then it will start back over at zero.

“lO Rate (events/second)” (.io_rates)

The .io_rates Performance Counters Point indicates the rate (in event per second) at which
this interface writes data to its input tags. (As of Unilnt 4.5.0.x and later this performance
counters point will no longer be available.)

Pl Interface for HTML 95

Interface Diagnostics Configuration

“Log file message count” (.log_file_msg_count)

The .log_file_msg_count Performance Counters Point indicates the number of messages that
the interface has written to the log file. This point is similar to the [UI_MSGCOUNT] Health
Point.

“PI Status” (Pl_Status)

The .PI_Status Performance Counters Point stores communication information about the
interface and the connection to the Pl Data Archive. If the interface is properly
communicating with the Pl Data Archive then the value of the counter is ‘0’. If the
communication to the Pl Data Archive goes down for any reason then the value of the
counter will be “1°. Once the interface is properly communicating with the PI Data Archive
again then the value will change back to 0’.

“Points added to the interface” (.pts_added_to_interface)

The .pts_added_to_interface Performance Counter Point indicates the number of points the
interface has added to its point list. This does not include the number of points configured at
startup. This is the number of points added to the interface after the interface has finished a
successful startup.

“Points edited in the interface”(.pts_edited_in_interface)

The .pts_edited_in_interface Performance Counters Point indicates the number of point edits
the interface has detected. The interface detects edits for those points whose PointSource
attribute matches the /ps= parameter and whose Locationl attribute matches the /id=
parameter of the interface.

“Points Good” (.Points_Good)

The .Points_Good Performance Counters Point is the number of points that have sent a good
current value to PI. A good value is defined as any value that is not a system digital state
value. A point can either be Good, In Error, or Stale. The total of Points Good, Points In
Error, and Points State will equal the Point Count. There is one exception to this rule. At
startup of an interface, the Stale timeout must elapse before the point will be added to the
Stale Counter. Therefore the interface must be up and running for at least 10 minutes for all
tags to belong to a particular Counter.

“Points In Error” (.Points_In_Error)

The .Points_In_Error Performance Counters Point indicates the number of points that have
sent a current value to PI that is a system digital state value. Once a point is in the In Error
count it will remain in the In Error count until the point receives a new, good value. Points in
Error do not transition to the Stale Counter. Only good points become stale.

“Points removed from the interface” (.pts_removed_from_interface)

The .pts_removed_from_interface Performance Counters Point indicates the number of points
that have been removed from the interface configuration. A point can be removed from the
interface when one of the point attributes is updated and the point is no longer a part of the
interface configuration. For example, changing the PointSource, Locationl, or Scan attribute
can cause the tag to no longer be a part of the interface configuration.

96

(@ os

“Points Stale 10(min)” (.Points_Stale_10min)

The .Points_Stale_10min Performance Counters Point indicates the number of good points
that have not received a new value in the last 10 minutes. If a point is Good, then it will
remain in the good list until the Stale timeout elapses. At this time if the point has not
received a new value within the Stale Period then the point will move from the Good count to
the Stale count. Only points that are Good can become Stale. If the point is in the In Error
count then it will remain in the In Error count until the error clears. As stated above, the total
count of Points Good, Points In Error, and Points Stale will match the Point Count for the
interface.

“Points Stale 30(min)” (.Points_Stale_30min)

The .Points_Stale_30min Performance Counters Point indicates the number of points that
have not received a new value in the last 30 minutes. For a point to be in the Stale 30 minute
count it must also be a part of the Stale 10 minute count.

“Points Stale 60(min)” (.Points_Stale_60min)

The .Points_Stale_60min Performance Counters Point indicates the number of points that
have not received a new value in the last 60 minutes. For a point to be in the Stale 60 minute
count it must also be a part of the Stale 10 minute and 30 minute count.

“Points Stale 240(min)” (.Points_Stale_240min)

The .Points_Stale_240min Performance Counters Point indicates the number of points that
have not received a new value in the last 240 minutes. For a point to be in the Stale 240
minute count it must also be a part of the Stale 10 minute, 30 minute and 60 minute count.

Performance Counters for (Scan Class x) only

“Device Scan Time (milliseconds)” (.Device_Scan_Time)

A .Device_Scan_Time Performance Counter Point is available for each scan class of this
interface.

The .Device_Scan_Time Performance Counters Point indicates the number of milliseconds
the interface takes to read the data from the foreign device and package the data to send to PI.
This counter does not include the amount of time to send the data to PI. This point is similar
to the [Ul_SCINDEVSCANTIME] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for
example, “sy.perf.etamp390.E1 (Scan Class 1).device scan time”) refersto
scan class 1, “(Scan Class 2) refers to scan class 2, and so on.

Pl Interface for HTML 97

Interface Diagnostics Configuration

“Scan Time (milliseconds)” (.scan_time)
A .scan_time Performance Counter Point is available for each scan class of this interface.

The .scan_time Performance Counter Point indicates the number of milliseconds the interface
takes to both read the data from the device and send the data to PI. This point is similar to the
[UI_SCINSCANTIME] Health Point.

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for
example, “sy.perf.etamp390.E1 (Scan Class 1).scan time”) refersto scan class
1, “(Scan Class 2)” refers to scan class 2, and so on.

98 (@ osi

Interface Health Monitoring Points

Interface Health Monitoring Points provide information about the health of this interface. To
use the ICU to configure these points, select this interface from the Interface drop-down list

and click Health Points from the parameter category pane:

ity Pl-Interface Configuration Utility - ModbusE1

Interface Tools Help
0= a0 36 & e
[Interface: [MadbusE (ModbusE1] -> ETAMP3S0 j Rename
Type: modbsE w | Modbus Ethernat PLC Fl Server Connection Status
Description: | ﬁ ETAMP330
. ¢ Wiiteable
Yersions: |MDdbusE.exe version 3.28.0.0 Unilnt wersion 4.3.0.31
Gereral Urilnt Interface Health Manitoring Points
Unilnt Status Taghame | Tvpe |5
Dizconnected Startup Mot Created Interfaces_Information [UI_IF_INFO]]
Debug Mot Created zy.st.etamp390. ModbusE 1. Heartbeat [UI_HEARTBEAT] 0
Failower Mot Created sy st.etamp330.ModbusE 1. Device Status [UI_DEWSTAT]]
Parf Paint Mot Created zy.st.etamp390.ModbusE1.5can Class Information [UI_SCIMFO] 0
EroImanse Emﬂs Mot Created sy st etamp380 ModbusE 1 10 Rate [IORATE] 0
Mot Created zy.st.etamp390.ModbusE 1. Meszage Count [UI_MSGCOLUNT] 0
Mot Created sy st.etamp390.ModbusE 1. Output R ate [UI_OUTPUTRATE] 1]
'jm L5 Mot Created zy.st.etamp330.ModbusE 1. Output Bad Y alue Rate [U_OUTPUTEBVRATE] 0

Right click the row for a particular Health Point to display the shortcut menu:

it/ PI-Interface Configuration Utility - ModbusE1

Interface Tools Help
Rl o B5R #E e
Interface: |ModbusE1 (ModbusE) > ETAMP330 | Rename
Type: modbusE w | Modbus Ethemet PLC Pl Server Connection Status
D escription: | f ETAMP330
. v Wiiteable
Wersions: |ModhusE.exe werzion 3.28.0.0 |Unilnt wvergion 4.3.0.31
General Unilnt Interface Health Monitoring Points
Unilnt Status T agharne Type 5
Dizconnected Startup i Irfarmation Ul IF IMNFO] [0
Diebug Mot Created sy st etamp330 ModbusE1 He Create [UI_HEARTBEAT] i}
F ailawer Mot Created sy st.etamp390.ModbusE1.De Create All [UI_DEWSTAT] 1}
- Mot Created sy st.etamp330.ModbusEl.5c [UI_SCIMFO] i}
Pt Pt
Pe'fmmame C”'” f Mot Created sy st etamp290 ModbusET 10 [UIORATE] 0
SNOMMANse Lo | | Mot Created sy st etamp390 ModbusE 1 Me [UI_MSGCOUNT] i
Health Points Mot Created sy st etamp390 ModbusE .00 [U_QUTPUTRATE] 0
modbusk Mot Created s, st.etamp390.ModbusE .00 [U_OUTPUTBVRATE] O
Service Mot Created sy, st.etarnp390.MadbusE1 . T [UI_TRIGGERRATE] i}
10 Rate Mot Created sy, st.etamp290.ModbusEl. Th [U_TRIGGEREVRATE] i}
Irterface Status Mot Created zy.stetamp390.ModbusEl S Rename [UI_SCIORATE] a
Mot Created gy, st.etamp290 ModbusE1.5¢ [UI_SCEVRATE] i}
Mot Created 2y, st.etarmp390.MadbusEl . Sc - [UI_SCSCAMCOUMT] i}
Mot Created sy, st.etamp330.ModbusE1.5can Class Scans Skipped.scO Ul SESKIPPED] 0™
< ¥
The Interfaces Information point applies to all interfaces writing to thiz server, and cannot be deleted by [CLL
To create, delete, comect, or rename a Unilnt Interface Health Point, uze right mouse button.

Click Create to create the Health Point for that particular row. Click Create All to create all

the Health Points.

To see the current values (snapshots) of the Health Points, right-click and select Refresh

Snapshots.

Pl Interface for HTML

99

Interface Diagnostics Configuration

For some of the Health Points described subsequently, the interface updates their values at
each performance summary interval (typically, 8 hours).

[Ul_HEARTBEAT]

The [UI_HEARTBEAT] Health Point indicates whether the interface is currently running.
The value of this point is an integer that increments continuously from 1 to 15. After reaching
15, the value resets to 1.

The fastest scan class frequency determines the frequency at which the interface updates this

point:
Fastest Scan Frequency | Update frequency
Less than 1 second 1 second
Between 1 and 60 Scan frequency

seconds, inclusive

More than 60 seconds 60 seconds

If the value of the [UI_HEARTBEAT] Health Point is not changing, then this interface is in
an unresponsive state.

[Ul_DEVSTAT]

For a Health Tag with an Extended Descriptor attribute that contains [Ul_DEVSTAT], the
interface writes the following values:

e “1]|Could not read web page.” — If the interface cannot connect to the web site this
message is written to the Health tag.

Refer to the uniInt Interface User Manual.doc file for more information about how
to configure Health Tags.

[Ul_SCINFO]

The [UI_SCINFO] Health Point provides scan class information. The value of this point is a
string that indicates

e the number of scan classes;
¢ the update frequency of the [Ul_ HEARTBEAT] Health Point; and
e the scan class frequencies

An example value for the [Ul_SCINFQ] Health Point is:

3151 5] 60| 120

The interface updates the value of this point at startup and at each performance summary
interval.

100 (@ os:

[UL_IORATE]
The [UI_IORATE] Health Point indicates the sum of

1. the number of scan-based input values the interface collects before it performs
exception reporting; and

2. the number of event-based input values the interface collects before it performs
exception reporting; and

3. the number of values that the interface writes to output tags that have a SourceTag.

The interface updates this point at the same frequency as the [Ul_ HEARTBEAT] point. The
value of this [UI_IORATE] Health Point may be zero. A stale timestamp for this point
indicates that this interface has stopped collecting data.

[Ul_MSGCOUNT]

The [UI_MSGCOUNT] Health Point tracks the number of messages that the interface has
written to the log file since start-up. In general, a large number for this point indicates that
the interface is encountering problems. You should investigate the cause of these problems by
looking in log messages.

The interface updates the value of this point every 60 seconds. While the interface is running,
the value of this point never decreases.

[Ul_POINTCOUNT]

The [UI_POINTCOUNT] Health Point counts number of PI tags loaded by the interface. This
count includes all input, output, and triggered input tags. This count does NOT include any
Interface Health tags or performance points.

The interface updates the value of this point at startup, on change, and at shutdown.

[Ul_OUTPUTRATE]

After performing an output to the device, this interface writes the output value to the output
tag if the tag has a SourceTag. The [Ul_OUTPUTRATE] Health Point tracks the number of
these values. If there are no output tags for this interface, it writes the System Digital State No
Result to this Health Point.

The interface updates this point at the same frequency as the [Ul_HEARTBEAT] point. The
interface resets the value of this point to zero at each performance summary interval.

[Ul_OUTPUTBVRATE]

The [UI_OUTPUTBVRATE] Health Point tracks the number of System Digital State values
that the interface writes to output tags that have a SourceTag. If there are no output tags for
this interface, it writes the System Digital State No Result to this Health Point.

The interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The
interface resets the value of this point to zero at each performance summary interval.

Pl Interface for HTML 101

Interface Diagnostics Configuration

[U_TRIGGERRATE]

The [UI_TRIGGERRATE] Health Point tracks the number of values that the interface writes
to event-based input tags. If there are no event-based input tags for this interface, it writes the
System Digital State No Result to this Health Point.

The interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The
interface resets the value of this point to zero at each performance summary interval.

[UI_TRIGGERBVRATE]

The [UI_TRIGGERBVRATE] Health Point tracks the number of System Digital State values
that the interface writes to event-based input tags. If there are no event-based input tags for
this interface, it writes the System Digital State No Result to this Health Point.

The interface updates this point at the same frequency as the [Ul_ HEARTBEAT] point. The
interface resets the value of this point to zero at each performance summary interval.

[Ul_SCIORATE]

You can create a [Ul_SCIORATE] Health Point for each scan class in this interface. The ICU
uses a tag naming convention such that the suffix “.sc1” (for example,
Ssy.st.etamp390.El.Scan Class IO Rate.scl) referstoscan class 1, “.sc2” refers to
scan class 2, and so on.

A particular scan class’s [Ul_SCIORATE] point indicates the number of values that the
interface has collected. If the current value of this point is between zero and the
corresponding [UI_SCPOINTCOUNT] point, inclusive, then the interface executed the scan
successfully. If a [UI_SCIORATE] point stops updating, then this condition indicates that an
error has occurred and the tags for the scan class are no longer receiving new data.

The interface updates the value of a [UI_SCIORATE] point after the completion of the
associated scan.

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not
applicable to this interface.

[Ul_SCBVRATE]

You can create a [Ul_SCBVRATE] Health Point for each scan class in this interface. The
ICU uses a tag naming convention such that the suffix “.sc1” (for example,
Ssy.st.etamp390.El.Scan Class Bad Value Rate.scl) refersto scan class 1, “.sc2”
refers to scan class 2, and so on.

A particular scan class’s [UL_ SCBVRATE] point indicates the number System Digital State
values that the interface has collected.

The interface updates the value of a [UI_SCBVRATE] point after the completion of the
associated scan.

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not
applicable to this interface.

102

(@ os

[UI_SCSCANCOUNT]

You can create a [Ul_SCSCANCOUNT] Health Point for each scan class in this interface.
The ICU uses a tag naming convention such that the suffix “.sc1” (for example,
Sy.st.etamp390.El.Scan Class Scan Count.scl) refers to scan class 1, “.sc2”
refers to scan class 2, and so on.

A particular scan class’s [Ul_ SCSCANCOUNT] point tracks the number of scans that the
interface has performed.

The interface updates the value of this point at the completion of the associated scan. The
interface resets the value to zero at each performance summary interval.

Although there is no “Scan Class 07, the ICU allows you to create the point with the suffix
“.5¢c0”. This point indicates the total number of scans the interface has performed for all of its
Scan Classes.

[Ul_SCSKIPPED]

You can create a [Ul_SCSKIPPED] Health Point for each scan class in this interface. The
ICU uses a tag naming convention such that the suffix “.sc1” (for example,
Sy.st.etamp390.El.Scan Class Scans Skipped.scl) refersto scan class 1, “.sc2”
refers to scan class 2, and so on.

A particular scan class’s [UIl_SCSKIPPED] point tracks the number of scans that the
interface was not able to perform before the scan time elapsed and before the interface
performed the next scheduled scan.

The interface updates the value of this point each time it skips a scan. The value represents
the total number of skipped scans since the previous performance summary interval. The
interface resets the value of this point to zero at each performance summary interval.

Although there is no “Scan Class 0, the ICU allows you to create the point with the suffix
““.5¢c0”. This point monitors the total skipped scans for all of the interface’s Scan Classes.

[Ul_SCPOINTCOUNT]

You can create a [Ul_SCPOINTCOUNT] Health Point for each scan class in this interface.
The ICU uses a tag haming convention such that the suffix “.sc1” (for example,
sy.st.etamp390.El.Scan Class Point Count.scl) refers to scan class 1, “.sc2”
refers to scan class 2, and so on.

This Health Point monitors the number of tags in a scan class.

The interface updates a [Ul_SCPOINTCOUNT] Health Point when it performs the associated
scan.

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not
applicable to this interface.

[UI_SCINSCANTIME]

You can create a [UI_SCINSCANTIME] Health Point for each scan class in this interface.
The ICU uses a tag naming convention such that the suffix “.sc1” (for example,
sy.st.etamp390.El1.Scan Class Scan Time.scl) refersto scan class 1, “.sc2” refers
to scan class 2, and so on.

Pl Interface for HTML 103

Interface Diagnostics Configuration

A particular scan class’s [Ul_ SCINSCANTIME] point represents the amount of time (in
milliseconds) the interface takes to read data from the device, fill in the values for the tags,
and send the values to the PI Data Archive.

The interface updates the value of this point at the completion of the associated scan.

[UI_SCINDEVSCANTIME]

You can create a [UI_SCINDEVSCANTIME] Health Point for each scan class in this
interface. The ICU uses a tag naming convention such that the suffix ““.sc1” (for example,
Ssy.st.etamp390.El.Scan Class Device Scan Time.scl) refersto scan class 1,
«.sc2” refers to scan class 2, and so on.

A particular scan class’s [Ul_ SCINDEVSCANTIME] point represents the amount of time
(in milliseconds) the interface takes to read data from the device and fill in the values for the
tags.

The value of a [Ul_ SCINDEVSCANTIME] point is a fraction of the corresponding
[UI_SCINSCANTIME] point value. You can use these numbers to determine the percentage
of time the interface spends communicating with the device compared with the percentage of
time communicating with the Pl Data Archive.

If the [Ul_SCSKIPPED] value is increasing, the [Ul_SCINDEVSCANTIME] points along
with the [UI_SCINSCANTIME] points can help identify where the delay is occurring:
whether the reason is communication with the device, communication with the Pl Data
Archive, or elsewhere.

The interface updates the value of this point at the completion of the associated scan.

I/0 Rate Point

An 1/O Rate point measures the rate at which the interface writes data to its input tags. The
value of an I/O Rate point represents a 10-minute average of the total number of values per
minute that the interface sends to the Pl Data Archive.

When the interface starts, it writes 0 to the I/O Rate point. After running for ten minutes, the
interface writes the 1/O Rate value. The interface continues to write a value every 10 minutes.
When the interface stops, it writes 0.

The ICU allows you to create one 1/0 Rate point for each copy of this interface. Select this
interface from the Interface drop-down list, click 10 Rate in the parameter category pane, and
check Enable IORates for this interface.

104 7@ osi

t%u Pl:Interface Configuration Utility - ModbusE1 *

Interface Tools Help

i l=; = 056 e

Enterface: [ModbusE1 (ModbusE 1] -> ETAMP330 j] Fiename
Type: | modbusE ¥ | Modbus Ethemet PLC Pl Server Connection Status
D ezcription; | ,.? ETAMP330

) ¢ ‘wiiteable
Wersiohs: |ModbusE.e:-:e version 3.28.0.0 |L|ni|nt wersion 4.3.0.31
General Input I0Rates Tag
Unilrt (IV Enable 10Rates for this interfaceﬁ]

Digconnected Startup

Debug =)

Failawver Save Reset

Perfarmance Paints

Performance Counters Event Counter: |3

Health Points Tagname; |s_|,l. io.etamp330.MadbusE @
modbusE
Cemvice Tag Status: Mot Created
I0 Rate) In File: No
Interface Status

Shapshot: | [#

As the preceding picture shows, the ICU suggests an Event Counter number and a Tagname
for the 1/0 Rate Point. Click the Save button to save the settings and create the 1/0O Rate point.
Click the Apply button to apply the changes to this copy of the interface.

You need to restart the interface in order for it to write a value to the newly created I/0 Rate
point. Restart the interface by clicking the Restart button:

X d) i@k & @
(The reason you need to restart the interface is that the PointSource attribute of an /0 Rate
point is Lab.)

To confirm that the interface recognizes the 1/0 Rate Point, look in the pipc.log for a
message such as:

PI-ModBus 1> IORATE: tag sy.io.etamp390.ModbusEl configured.

To see the I/0 Rate point’s current value (snapshot), click the Refresh snapshot button:

Input IORates Tag

W Enable IURates for thig nterface

=)
Save Rezet
Ewent Counter: |3
Tagname: |s_|,|. io.etarmp390 MaodbusE1 @

Tag Status: Mot Created
Ir File: MNa

Snapshat: |
|

E

Enable IORates for this Interface

The Enable 10Rates for this interface check box enables or disables I/O Rates for the current
interface. To disable 1/0 Rates for the selected interface, uncheck this box. To enable 1/0
Rates for the selected interface, check this box.

Pl Interface for HTML

105

Interface Diagnostics Configuration

Event Counter

The Event Counter correlates a tag specified in the iorates.dat file with this copy of the
interface. The command-line equivalent is /ec=x, where x is the same number that is
assigned to a tag name in the iorates.dat file.

Tagname

The tag name listed in the Tagname box is the name of the 1/O Rate tag.

Tag Status
The Tag Status box indicates whether the 1/0 Rate tag exists in Pl. The possible states are:
e Created — This status indicates that the tag exist in Pl
¢ Not Created — This status indicates that the tag does not yet exist in Pl
o Deleted — This status indicates that the tag has just been deleted
e Unknown — This status indicates that the Pl ICU is not able to access the Pl Data
Archive
In File

The In File box indicates whether the 1/0 Rate tag listed in the tag name and the event
counter is in the IORates.dat file. The possible states are:

e Yes — This status indicates that the tag name and event counter are in the IORates.dat
file

e No — This status indicates that the tag name and event counter are not in the
IORates.dat file

Snapshot
The Snapshot column holds the snapshot value of the I/O Rate tag, if the I/O Rate tag exists
in P1. The Snapshot box is updated when the IORate page is selected, and when the interface
is first loaded.
Create/Save
Create the suggested I/O Rate tag with the tag name indicated in the Tagname box. Or Save
any changes for the tag name indicated in the Tagname box.
Delete
Delete the I/0 Rate tag listed in the Tagname box.

Rename

Allow the user to specify a new name for the 1/0 Rate tag listed in the Tagname box.

Add to File
Add the tag to the IORates.dat file with the event counter listed in the Event Counter box.

Search
Allow the user to search the Pl Data Archive for a previously defined 1/0 Rate tag.

106

(@ os

Interface Status Point

The PI Interface Status Utility (ISU) alerts you when an interface is not currently writing data
to the P1 Data Archive. This situation commonly occurs if

¢ the monitored interface is running on an interface node, but the interface node cannot
communicate with the Pl Data Archive; or

¢ the monitored interface is not running, but it failed to write at shutdown a system
state such as Intf Shut.

The ISU works by periodically looking at the timestamp of a Watchdog Tag. The Watchdog
Tag is a tag whose value a monitored interface (such as this interface) frequently updates.
The Watchdog Tag has its ExcDev, ExcMin, and ExcMax point attributes set to 0. So, a non-

changing timestamp for the Watchdog Tag indicates that the monitored interface is not
writing data.

Please see the Interface Status Utility Interface for complete information on using the ISU. PI
Interface Status Utility Interface runs only on a PI Data Archive Node.

If you have used the ICU to configure the Pl Interface Status Utility Interface on the Pl Data
Archive Node, the ICU allows you to create the appropriate ISU point. Select this interface
from the Interface drop-down list and click Interface Status in the parameter category pane.
Right-click on the ISU tag definition window to open the shortcut menu:

%y Pl:Interface Configuration Utility - ModbusE1

Interface Tools Help
NE X b B || @
Interface: [ModbusE T [MadbusE 1) > ETAMP330 v| FRename
Tupe: modbusE w | Modbus Ethernet FLC Pl Server Connection Status
[rescription: | '_? ETAMP330
_ W wiriteable
Wersions: |M0dbusE.exe version 3.28.0.0 Unilnt version 4.3.0.31
General Interface Status Utility Instance |nfomation for Server ETAMP330
Unilrt Ingtance: Fllr#Status1
Hozt Mode: etamp290
PI. 5DK Digital Set: InterfaceStatus
Disconnected Statup | PointS ource: INTSTATUIS
Debug Scan Classes: B0, 120
Failower
geliormance Eo'ntf Interface Status Uhlity Tag Definition
erformance Counters - - -
Health Points 15U tag does not exist, Create the |SU tag below with the right-mouse menu.
modbusE
Service Tag Status | Tagname Snapshat | PS | DigitalSet
10 Fiate: Mot Created sy is.etamp330.ModbusE 1
Interface Status
Rename
Suggest Tagname
Taq Search Clase |
[= PR Y Chamm—d e | lemmb=llm A

Click Create to create the ISU tag.

Use the Tag Search button to select a Watchdog Tag. (Recall that the Watchdog Tag is one of
the points for which this interface collects data.)

Pl Interface for HTML 107

Interface Diagnostics Configuration

Select a Scan frequency from the drop-down list box. This Scan frequency is the interval at
which the ISU monitors the Watchdog Tag. For optimal performance, choose a Scan
frequency that is less frequent than the majority of the scan rates for this interface’s points.
For example, if this interface scans most of its points every 30 seconds, choose a Scan
frequency of 60 seconds. If this interface scans most of its points every second, choose a Scan
frequency of 10 seconds.

If the Tag Status indicates that the ISU tag is Incorrect, right-click to open the shortcut
menu and select Correct.

Note: The PI Interface Status Utility Interface — and not this interface — is responsible
for updating the ISU tag. So, make sure that the PI Interface Status Utility Interface is
running correctly.

108

(@ os

appendix A. Error and Informational Messages

A string Name ID is pre-pended to error messages written to the message log. Nvame is a
non-configurable identifier that is no longer than 9 characters. ID is a configurable identifier
that is no longer than 9 characters and is specified using the /id parameter on the startup
command-line.

Troubleshooting Differences Between the ICU Setup and the Interface

For some web pages during marker setup, the ICU will show one thing in the preview tab and
another thing in the Validate Markers window. This is due to differences in how the ICU gets
and parses web pages and how the interface gets and parses pages. In order to maintain ease
of configuration, the ICU and the interface use slightly different methods to get and parse
their web pages.

Check the Proxy and HTTP Authentication Settings

When configuring the HTML interface using the ICU, sometimes you will come across pages
where an authentication screen will appear. The ICU cannot automatically record this. Make
sure that if a proxy server, username, and password are required, that they are specified in the
first box that appears after you click Record New.

Also, make sure that if a web site requires authentication for a page, that those credentials are
entered in the Locator Script Details window described in Steps for Creating a New HTML
Locator Script of section html Interface Page.

Connecting to an FTP

A webpage that is being stored on an FTP site can be configured for anonymous login access
only. The interface does not currently support connections to an FTP which requires
authentication. There is an additional step required in setting up a connection to an FTP site
with anonymous login. Record a new locator script. After the Record Locator Script page is
successfully loaded, click Path to Current Location in the box on the upper right corner of
the page. Although the page is allowing anonymous access, the interface still requires that a
login be entered in the HTTP Username and Password section.

Pl Interface for HTML 109

Error and Informational Messages

After entering the information:

@ Locator Script Details
Go to URL: http: /ftechsupport. osisoft, com/techsupport/nantemplates PIMon,
aspx

From URL: [Mone]

Post? |
Http Username: anonymous

Http Password: pass|

Close the Locator Script Details dialog box, and then click OK on the Record Locator
Script, and save the changes.

View the HTML Source Externally

Sometimes the HTML source code that is downloaded when editing the markers may be
different from the source code downloaded using the Curl library, which is what is used when
validating the markers and when the interface itself is running. Click Validate Markers, and
then click See HTML to see the HTML source code. Save that source code to a file, and then
open that file in Internet Explorer. This is what the interface will see when it is parsing the
page. There is no single answer as to why the HTML may be different.

Look For JavaScript Include Directives

Because of the major change in how the interface downloads and parses HTML pages,
JavaScript include directives do not work correctly. Many times, JavaScript code that is
common to multiple web pages is placed in a single file and referenced by multiple web
pages. Versions of the HTML interface prior to 2.0 were able to fetch these JavaScript
include files automatically, just as images on a page are fetched automatically when a page is
loaded in Internet Explorer. Since version 2.0, however, the interface is not able to fetch these
pages automatically. Some critical JavaScript code may be missing from the target page and
the data on the page may not show up properly.

To see if this is a problem, view the source code for the page by clicking VValidate Markers.
If there is a section on the page that includes the following code, it is trying to include an
external JavaScript source file:

<SCRIPT LANGUAGE="JavaScript” SRC="somefile.js”></SCRIPT>

The important point is that there is a SRC="somefile.js” in the declaration.

Message Logs

The location of the message log depends upon the platform on which the interface is running.
See the Unilnt Interface User Manual for more information.

110 (@ osi

Messages are written to [PTHOME] \dat\pipc.log at the following times.

o When the interface starts many informational messages are written to the log. These
include the version of the interface, the version of Unilnt, the command-line
parameters used, and the number of points.

e Asthe interface loads points, messages are sent to the log if there are any problems
with the configuration of the points.

e Ifthe Unilnt /dbuniInt parameter is found in the command-line, then various
informational messages are written to the log file.

Messages

Message No interface configuration file specified, exiting

Meaning There was no XML configuration file specified (using /htmlconfigfile) inthe
interface startup file.

Message Warning: No interface ID was specified, all points with
pointsource X will be used

Meaning When a non-numeric interface ID or no interface ID is specified, all points with the
corresponding pointsource will be treated as belonging to this interface.

Message Tag X (D) has an invalid instrumenttag (), point rejected.

Meaning There must be an instrumenttag specified for all points, and the instrumenttag must
either be in the list of data markers or must be a semi-colon delimited list of data
markers.

Message Tag X (D) has a data marker (someinstrumenttag) that does
not exist in the XML configuration doc, point rejected.

Meaning The instrumenttag must either be in the list of data markers or must be a semi-colon
delimited list of data markers.

Message Tag X (D) has multiple data markers defined, so digital
state errors will not be reported for this tag.

Meaning For points with multiple data markers defined, it is assumed that there will be multiple
timestamps for the values. Therefore it is impossible to determine what timestamp to
use when sending a digital state error to PI.

Message HTML parsing error (parser errors will not be logged until
a successful parse): Some error.

Meaning There was a problem parsing the HTML page. Errors are logged only once until the
parser is working again.

Message Error: Timestamp|Data marker <marker> for tag <tag> could
not be read from page, errors will not be repeated for
this tag until the tag is read successfully.

Meaning The data or timestamp marker was not found on the page. Check the marker definitions
using the PI ICU to make sure the page has not changed.

Pl Interface for HTML

111

Error and Informational Messages

Message

Error: Error executing search and replace for
timestamp|data marker <marker> for tag <tag>, errors will
not be repeated for this tag until the tag is read
successfully.

Meaning

There some kind of problem using the RegExp engine. Check the search and replace
settings in the marker definitions.

Message

‘value’ could not be converted to <data type> for
timestamp|data marker <marker> for tag <tag>, errors will
not be repeated for this tag until the tag is read
successfully.

Meaning

There was an error converting a value read from the page to the desired data type. For
timestamp markers, this is the date data type. For data markers, this is the pointtype of
the target point.

Message

Downloading HTML from <URL> timed out, scan skipped.

Meaning

The download timeout has been passed when downloading the HTML page from its
source.

Message

Error navigating to <URL> on attempt D (<Error>), trying
again|no more retries.

Meaning

Navigating to the page failed. The interface will try to navigate to a page up to 3 times
before finally concluding that it has failed. Check the proxy settings, http authentication
settings, and the URL.

Message

At least one point for Pointsource H was found where
Locationl does not match with /ID=x.

Meaning

This is not an error. It just means that there are points that match this interface’s
pointsource, but the location1 does not match the id, meaning that there are several
copies of this interface that need to run at the same time.

System Errors and Pl Errors

System errors are associated with positive error numbers. Errors related to Pl are associated
with negative error numbers.

Error Descriptions

Descriptions of system and Pl errors can be obtained with the pidiag utility:

\PI\adm\pidiag /e error number

112

(@ os

Appendix B. Pl SDK Options

To access the Pl SDK settings for this interface, select this interface from the Interface drop-
down list and click Unilnt — Pl SDK in the parameter category pane.

General FI-5DK
Unilrt Determine whether the interface may use the PI-SDE
Pl SDK i
Dizconmected Startup £ Disable PI SDK
[ebug & A1z the Interface’s default seting
;a"fo‘fe' i " Enable Pl SDK
erformance Points
Performance Counters In 4
Health Paints I

-

Disable Pl SDK

Select Disable Pl SDK to tell the interface not to use the Pl SDK. If you want to run the
interface in disconnected startup mode, you must choose this option.

The command line equivalent for this option is /pisdk=0.

Use the Interface’s default setting

This selection has no effect on whether the interface uses the PI SDK. However, you must not
choose this option if you want to run the interface in disconnected startup mode.

Enable Pl SDK

Select Enable P1 SDK to tell the interface to use the PI SDK. Choose this option if the PI
Data Archive version is earlier than 3.4.370.x or the Pl APl is earlier than 1.6.0.2, and you
want to use extended lengths for the Tag, Descriptor, ExDesc, InstrumentTag, or PointSource
point attributes. The maximum lengths for these attributes are:

Attribute Enable the Interface to use | Pl Data Archive earlier than 3.4.370.x

the Pl SDK or Pl API earlier than 1.6.0.2, without
the use of the Pl SDK

Tag 1023 255

Descriptor 1023 26

ExDesc 1023 80

InstrumentTag 1023 32

PointSource 1023 1

However, if you want to run the interface in disconnected startup mode, you must not choose
this option.

The command line equivalent for this option is /pisdk=1.

Pl Interface for HTML 113

Plug-in Architecture

appendix c. Plug-in Architecture

The PI Interface for HTML supports COM plug-ins in order to customize its functionality.
There are four main customizable actions that can be taken by plug-ins. They are:

e Dynamic URL generation
e Timestamp generation

e Value generation

e HTML modification

COM is used as the mechanism to activate plug-ins. This makes it very simple to use
Microsoft Visual Basic to create plug-ins. It’s as simple as adding “implements
PIHTMLPlugin” to the top of a project’s code page. There is also a Visual Basic sample in
the PIPC\interfaces\HTML\Plugins\Samples\ directories.

Dynamic URL Generation

Dynamic URL generation is useful when there is a page you are trying to read on a regular
basis, whose URL changes every so often. For example, if there is a page that has today’s
weather, and the date is part of the URL, a dynamic URL will need to be generated. So, if the
URL for that page looks like:
http://www.yourfavoriteweathersite.com/OAK 08 12 2002.html

this will obviously be different for each day the weather needs to be read from the site.

With dynamic URL generation, the plug-in is given a “dummy” URL that the user specifies
in the HTML locator script, which is configured using the Pl ICU or the simpler PI Interface
for HTML configuration tool. Continuing the weather example, this URL could be:
http://www.yourfavoriteweathersite.com/OAK [month] [day] [year].html.
The plug-in would then be responsible for making any text substitutions in this URL. So the
plug-in could look for [month] and replace it with the current month, and so on.

Timestamp and Value Generation

Timestamp and value generation are two separate features, but are almost identical, so they
will be covered simultaneously.

Many times, the timestamps on the HTML page are not exactly what you want to be sending
to PI. For example, there may be a site that lists some alternate representation for hours.
Instead of showing 12:00 am, 1:00 am, 2:00 am, etc., the site may have a table with a column
heading “hour”, and the column will list O (for 12:00 am), 1 (for 1:00 am), etc. The plug-in
would receive this old value and do the appropriate math on this and return an actual
timestamp to the interface.

There may also be sites where the values themselves are not exactly how you want to send
them to PI. There may need to be some mathematical transformation performed on the data.
For example, there may be raw data on a web site from some system that is meant to be taken

114

(@ os

as the exponent for the exponential function (ex). The plug-in would receive this raw value,
perform the transformation on the value, and send the new value back to the interface.

HTML Modification

HTML Modification is a new feature added to version 2.0 of the HTML interface. This
feature allows the HTML downloaded from the web page to be modified before being sent to
the parser. This feature is only accessible through the IPIHTMLPIlugins2 COM interface.

There are several reasons someone might want to modify the HTML before the interface
parses the page. The HTML might be malformed, and thus might need to be modified in
order for it to be parsed. For example, a page may use the wrong order to close HTML tags,
like in the following malformed snippet:

Text in here

HTML requires that tags be closed in the reverse order that they were opened. So a plug-in

might be coded to search for this particular section of the page and re-write it this way:
Text in here.

Another reason to modify the page is to deal with text files. Some web pages are plain text
files with no HTML markup at all. To tell if a page is just plain text, open the page in a web
browser and view its source. If there is no HTML markup in the page, it is plain text. Putting
<PRE> before the text and </PRE> after the text makes it a little easier to use regular
expressions to search the text, because the parser replaces all returns, tabs, and multiple
spaces with a single space when parsing if the text is not enclosed in <PRE> tags.

Receiving Pre-Transformed Information from the Interface

As stated above, the plug-in receives pre-transformed information from the interface. This is
done using the interface’s HTML Locator script functionality, for dynamic URL generation,
and the interface’s timestamp and data marker functionality, for timestamp and value
generation. So, if you want the pre-transformed URL to look like
http://www.yourfavoriteweathersite.com/OAK [month] [day] [year].html,
you need to set that as the URL when you are configuring the locator script. If this is set as
the target URL before a plug-in is selected in the configuration utility, the interface will try to
actually navigate to this page as it is written above. Of course, this page will likely not exist.
So be sure to have the plug-in selected in the Misc dialog box before testing.

The timestamp and data markers are used to determine the pre-transformed timestamp and
value information. Whatever is on the HTML page at the locations pointed to by the
timestamp and data markers is what the plug-in will receive. The plug-in is then responsible
for performing the transformation, and returning a modified timestamp or value.

The COM Interfaces

The following is the IDL for the COM interface used as the bridge between the interface and
any plug-in.
interface IPIHTMLPlugin : Idispatch

{
[id(1), helpstring(,method SetDocument"“)] HRESULT

SetDocument ([in] IHTMLDocument2 * newVal);

Pl Interface for HTML 115

Plug-in Architecture

[1id(2), helpstring(,method GetURL"“)] HRESULT GetURL ([in] BSTR
BSTRO1ld, [in,out] BSTR * BSTRURL, [in,out] VARIANT BOOL * vbUsingPost) ;
[id(3), helpstring(,method ProcessTimestamp“)] HRESULT

ProcessTimestamp ([in] BSTR BSTRTimestampMarker, [in] BSTR
BSTROldTimestamp, [out, retval] VARIANT * varNewTimestamp) ;

[id(4), helpstring(,method ProcessData"“)] HRESULT
ProcessData([in] BSTR BSTRDataMarker, [in] BSTR BSTROldData, [out, retval]
VARIANT * varNewData) ;

[1d(5), helpstring(,method ReleaseDocument™)] HRESULT
ReleaseDocument () ;

}i
interface IPIHTMLPlugin2 : Idispatch
{

[id(1), helpstring(,method ProcessDownloadedHTML")] HRESULT
ProcessDownloadedHTML ([in] BSTR BSTROIdHTML, [in, out] BSTR *
BSTRNewHTML) ;

}i

The following is a skeleton of what the interface methods would look like when implemented
in VB.

Implements IPIHTMLPlugin

Implements IPIHTMLPlugin2 ‘Optional

Private Sub IPIHTMLPlugin SetDocument (ByVal newVal As MSHTML.IHTMLDocument2)
End Sub

Private Sub IPIHTMLPlugin GetURL(ByVal BSTROld As String, BSTRURL As String,
vbUsingPost As Boolean)

End Sub

Private Function IPIHTMLPlugin ProcessTimestamp (ByVal BSTRTimestampMarker As
String, ByVal BSTROldTimestamp As String) As Variant

End Function

Private Function IPIHTMLPlugin ProcessData (ByVal BSTRDataMarker As String,
ByVal BSTROldData As String) As Variant

End Function

Private Sub IPIHTMLPlugin ReleaseDocument ()

End Sub

‘Only required if Implements IPIHTMLPlugins2 is used

Private Sub IPIHTMLPlugin2 ProcessDownloadedHTML (ByVal BSTRO1dHTML As
String, BSTRNewHTML As String)

End Sub

There are five required and one optional function that need to be implemented by a plug-in.
Therequ"edonesaﬁéSetDocument,GetURL,ProcessTimestamp,ProcessData,and
ReleaseDocument. The optional one is ProcessDownloadedHTML.

Implementing the IPIHTMLPIugin COM interface is required for a plug-in, even if none of
its functionality is required. Implementing the IPIHTMLPIlugin2 COM interface is optional.

SetDocument, ReleaseDocument

SetDocument and ReleaseDocument are currently not called by the interface. They are
included in the COM interface as a future enhancement in case a future plug-in developer
decides that he needs to store a reference to the IHTMLDocument2 object used by the
interface.

GetURL

GetURL is called after the locator script is read but before the navigation to the URL is
handled. BsTrO1d is the original URL stored in the locator script. This may be used by the

116 (@ osi

plug-in developer, or it may be ignored. BSTRURL is the buffer for the new URL. This should
be set by the plug-in developer before returning from GeturL. Even if there is no change
desired, BSTRURL should at least be set to mirror the original URL, which is passed in
BSTRO1d. So at a minimum, this function should contain logic that sets the value of BSTRURL
to BsTrRO1d. If there are any query parameters for a POST or a GET query, they should be
appended to the end of the URL as if it were a GET query (even if it is a POST query).
VbUsingPost should be set to True if the request is meant to be a posT request. Otherwise,
it should be set to False for a GET query.

ProcessTimestamp

ProcessTimestamp i$ called after a timestamp marker has been read off the HTML page by
the interface but before the timezone offset is applied and before the timestamp/value pair is
sent to PI. The original contents of the timestamp marker are passed to this interface method,
and it is up to the plug-in developer to transform and return the new timestamp.
BSTRTimestampMarker iS the name of the timestamp marker being sent to the plug-in. This
is useful for identifying which timestamp is being currently processed, if there is more than
one. BSTRO1dTimestamp iS the timestamp as read off the HTML page. The return value is
set as the transformed timestamp.

ProcessData

ProcessData is called after a data marker has been read off the HTML page by the interface
but before the timestamp/value pair is sent to PIl. The original contents of the data marker are
passed to this interface method, and it is up to the plug-in developer to transform and return
the new value. BsTRDataMarker iS the name of the data marker being sent to the plug-in.
This is useful for identifying which piece of data is being currently processed, if there is more
than one. BSTRO1dData is the value as read off the HTML page. The return value is set as
the transformed value.

ProcessDownloadedHTML

ProcessDownloadedHTML is called after the page has been downloaded but before it is
parsed. This gives the user a chance to change the downloaded HTML for whatever reason.

Plug-in Registration and Categorization

A plug-in needs to be registered and categorized before it can be used by the PI Interface for
HTML. Registration is the process by which any COM server (in this case, a plug-in) is
registered with Windows so it can be called by an application (in this case, the Pl Interface
for HTML). Categorization is the process by which a COM server (plug-in) is registered as
belonging to a certain category. Categorization is normally not required for COM servers, but
for the PI Interface for HTML, it is required. This is so the configuration utility can more
easily find all plug-ins that are actually valid PI Interface for HTML plug-ins.

COM server (plug-in) registration is done by starting up a Command Prompt from Windows.
The command to register a COM server (plug-in) DLL is regsvr32 <path to plug-in>.
The command to unregister a COM server (plug-in) DLL is regsvr32 -u <path to
plug-in>. However, this step can be ignored if you use the configuration utility (either the

Pl Interface for HTML 117

Plug-in Architecture

P1 ICU or the simpler configuration utility provided with the interface) to browse for the
plug-in.

Quick Registration and Categorization

Because Visual Basic does not allow access to D11RegisterServer, the configuration
utility can register and categorize any plug-ins. After installing the plug-in anywhere on the
system, open the configuration utility, click Misc, and find the plug-in section in the dialog
box. Click the Browse button and browse for the plug-in DLL. After selecting it and clicking
OK, it will be registered and categorized.

If a plug-in is not registered and categorized, it cannot be used by the PI Interface for HTML.

118 (@ osi

Creating a Visual Basic Plug-in

Creating a plug-in is extremely simple using Visual Basic. To create a plug-in, start Visual

Basic. Create a new ActiveX DLL.

1. On the Project/References menu option, click the checkbox next to
PIHTMLPIlugins 1.2 Type Library and Microsoft HTML Object Library.

References - www_met_ie.vbp

Available References:

| Visual Basic For Applications

| Visual Basic runtime objects and procedures
| Visual Basic objects and procedures

v| OLE Automation

(][

IAS Helper COM Component 1.0 Type Library
IAS RADIUS Protocol 1.0 Type Library
Acrobat Access 2.0 Type Library
Acrobat Access 3.0 Type Library
AcrolEHelper 1.0 Type Library
actions 1.0 Type Library
ActionTec 1.0 Type Library
Artive NS 115 Fytension N
< | >

£

Microsoft HTML Chject Library

Location: C:\WINDOWS\system32\MSHTML, TLE
Language: Standard

Cancel
Browse. ..
|
Priarity Help

2. Click OK. Then add the line Implements IPIHTMLPlugin to the top of your
code, and you’re ready to start filling in the interface methods.

3. Select the IPIHTMLPIugin item from the left drop-down menu.

i, Project1 - Microsoft ¥isual Basic [design]

File Edit Wew Project Format Debug Rum Query Diagram Tools Add-Ins Window Help

[-ty-BH @t s o =], | o ¥ EERE D e
B3

General |
&4, Project1 - Class1 (Code)

I(General} d I(Declarations}

IPIHTMLPlugin

=10/ x]
|

Pl Interface for HTML

119

Plug-in Architecture

4. Select each of the items in the right drop-down menu, until all TPTHTMLP1ugin
methods have been added to the code page.

‘#g, Project1 - Microsoft Yisual Basic [design]

File Edit “iew Project Format Debug Run Query Diagram Tools Add-Ins Window Help

|B-5-Fed =edo o], | | HESETRED e cn
x|

General
84, Projectl - Class1 {Code)
IIPIHTMLPIugin j SetDocument

(GetURL
ProcessData
ProcessTimestamp
Releasebocument
SetDocument

Tmplements IPTIHTMLPlugin

Private Sub IPIHTHMLPlugin SetDog

End Sub

At a minimum, IPTHTMLPlugin GetURL, IPIHTMLPlugin_ProcessData, and
IPIHTMLPlugin ProcessTimestamp Should contain this code:

Private Sub IPIHTMLPlugin GetURL (ByVal BSTROld As String, BSTRURL As String,
vbUsingPost As Boolean)

BSTRURL = BSTROld
End Sub
Private Function IPIHTMLPlugin ProcessData (ByVal BSTRDataMarker As String,
ByVal BSTROldData As String) As Variant

IPIHTMLPlugin ProcessData = BSTROldData
End Function
Private Function IPIHTMLPlugin ProcessTimestamp (ByVal BSTRTimestampMarker As
String, ByVal BSTROldTimestamp As String) As Variant

IPIHTMLPlugin ProcessTimestamp = BSTROldTimestamp
End Function
Private Sub IPIHTMLPlugin ReleaseDocument ()
End Sub
Private Sub IPIHTMLPlugin SetDocument (ByVal newVal As MSHTML.IHTMLDocument2)
End Sub
To also implement the ProcessDownloadedHTML routine, add “Implements
IPIHTMLPlugin2” to the top of the code page, and add the subroutine shown
below:
Private Sub IPIHTMLPlugin2 ProcessDownloadedHTML (ByVal BSTRO1dHTML As
String, BSTRNewHTML As String)

BSTRNewHTML = BSTRO1dHTML
End Sub

5. Make the DLL using the File menu option Make <pluginname>.dIl, and the dll is
ready to be registered and categorized with the configuration utility.

120 @@ osi

Appendix D. Terminology

To understand this interface manual, you should be familiar with the terminology used in this
document.

Buffering

Buffering refers to an interface node’s ability to store temporarily the data that interfaces
collect and to forward these data to the appropriate Pl Data Archives.

N-Way Buffering

If you have PI Data Archives that are part of a PI Data collective, PIBufss supports n-way
buffering. N-way buffering refers to the ability of a buffering application to send the same
data to each of the Pl Data Archives in a Pl Data collective. (Bufserv also supports n-way
buffering to multiple P1 Data Archives in a Pl Data collective however it does not guarantee
identical archive records since point compressions attributes could be different between PI
Data Archives. With this in mind, OSlsoft recommends that you run PIBufss instead.)

ICU

ICU refers to the Pl Interface Configuration Utility. The ICU is the primary application that
you use to configure Pl interface programs. You must install the ICU on the same computer
on which an interface runs. A single copy of the ICU manages all of the interfaces on a
particular computer.

You can configure an interface by editing a startup command file. However, OSlsoft
discourages this approach. Instead, OSlsoft strongly recommends that you use the ICU for
interface management tasks.

ICU Control

An ICU Control is a plug-in to the ICU. Whereas the ICU handles functionality common to
all interfaces, an ICU Control implements interface-specific behavior. Most Pl interfaces
have an associated ICU Control.
Interface Node
An interface node is a computer on which

o the PI APl and/or Pl SDK are installed, and

e Pl Data Archive programs are not installed.

Pl API

The PI APl is a library of functions that allow applications to communicate and exchange
data with the PI Data Archive. All Pl interfaces use the Pl API.

Pl Data collective

A PI Data collective is two or more replicated Pl Data Archives that collect data
concurrently. Pl Data collectives are part of the High Availability environment. When the
primary P1 Data Archive in a Pl Data collective becomes unavailable, a secondary Pl Data

Pl Interface for HTML 121

Terminology

collective member node seamlessly continues to collect and provide data access to your Pl

clients.

PIHOME

prHoME refers to the directory that is the common location for PI 32-bit client applications.

A typical pTHOME on a 32-bit operating system iS C: \Program Files\PIPC.

A typical pTHOME on a 64-bit operating systemis C:\Program Files (x86)\PIPC.

Pl 32-bit interfaces reside in a subdirectory of the Interfaces directory under PTHOME.

For example, files for the 32-bit Modbus Ethernet Interface are in
[PTHOME]\PIPC\Interfaces\ModbusE.

This document uses [PTHOME] as an abbreviation for the complete PTHOME or PTHOME 64

directory path. For example, ICU files in [PTHOME] \ICU.

PIHOMEG64

PIHOME 64 is found only on a 64-bit operating system and refers to the directory that is the
common location for Pl 64-bit client applications.

A typical PTHOME64 iS C:\Program Files\PIPC.
Pl 64-bit interfaces reside in a subdirectory of the Interfaces directory under PTHOME64.
For example, files for a 64-bit Modbus Ethernet Interface would be found in

C:\Program Files\PIPC\Interfaces\ModbusE.
This document uses [PTHOME] as an abbreviation for the complete PTHOME Or PTHOME 64
directory path. For example, ICU files in [PTHOME] \ICU.
Pl Message Log

The PI message log is the file to which OSlsoft interfaces based on Unilnt 4.5.0.x and later
write informational, debug and error messages. When a PI interface runs, it writes to the
local Pl message log. This message file can only be viewed using the PIGetMsg utility. See
the Unilnt Interface Message Logging.docx file for more information on how to access these
messages.

Pl SDK

The PI SDK is a library of functions that allow applications to communicate and exchange
data with the PI Data Archive. Some Pl interfaces, in addition to using the Pl API, require the
use of the Pl SDK.

Pl Data Archive Node

A Pl Data Archive Node is a computer on which Pl Data Archive programs are installed. The
Pl Data Archive runs on the PI Data Archive Node.

PI SMT

Pl SMT refers to Pl System Management Tools. PI SMT is the program that you use for
configuring Pl Data Archives. A single copy of PI SMT manages multiple Pl Data Archives.
Pl SMT runs on either a Pl Data Archive Node or a interface node.

122

(@ os

Pipc.log

The pipc.1log file is the file to which OSlsoft applications write informational and error
messages. When a Pl interface runs, it writes to the pipc. 1og file. The ICU allows easy
access to the pipc. log.

Point

The PI point is the basic building block for controlling data flow to and from the PI Data
Archive. For a given timestamp, a Pl point holds a single value.

A PI point does not necessarily correspond to a “point” on the foreign device. For example, a
single “point” on the foreign device can consist of a set point, a process value, an alarm limit,
and a discrete value. These four pieces of information require four separate Pl points.

Service

A Service is a Windows program that runs without user interaction. A Service continues to
run after you have logged off from Windows. It has the ability to start up when the computer
itself starts up.

The ICU allows you to configure a Pl interface to run as a Service.

Tag (Input Tag and Output Tag)

The tag attribute of a PI point is the name of the PI point. There is a one-to-one
correspondence between the name of a point and the point itself. Because of this relationship,
Pl System documentation uses the terms “tag” and “point” interchangeably.

Interfaces read values from a device and write these values to an Input Tag. Interfaces use an
Output Tag to write a value to the device.

Pl Interface for HTML 123

Technical Support and Resources

appendix E. Technical Support and Resources

For technical assistance, contact OSlsoft Technical Support at +1 510-297-5828 or
techsupport@osisoft.com. The OSlsoft Technical Support website offers additional contact
options for customers outside of the United States.

When you contact OSlsoft Technical Support, be prepared to provide this information:

Product name, version, and build numbers

Computer platform (CPU type, operating system, and version number)
Time that the difficulty started

Log files at that time

Details of any environment changes prior to the start of the issue

Summary of the issue, including any relevant log files during the time the issue
occurred

The OSlsoft Virtual Campus (vCampus) website has subscription-based resources to help you

with the programming and integration of OSlsoft products.

124

(@ os

http://support.osisoft.com/
http://vcampus.osisoft.com/

appendix F. Revision History

Date

Author

Comments

03-May-2001

LNG

Restarted manual using Skeleton version 1.08

23-May-2001

CG

Skeleton 1.09; removed Program Files from
directory paths; added a more complete sample
.bat file; fixed headers & footers; fixed page
numbering

01-Nov-2001

LNG

Updated manual for 1.0.3 release.

04-Feb-2002

LNG

Updated for 1.0.5 release.

10-Jul-2002

LNG

Updated for 1.1.0 release.

29-Sep-2004

LNG

Updated for 1.1.3 release. Added XP DCOM
config, and added more interface options. Added
Appendix C.

22-Oct-2004

Mkelly

Fixed headers & footers. Added section on
Configuring Buffering with PI ICU. Made manual
FINAL.

25-Feb-2005

LNG

Updated for 1.2.0.0 release. Added section about
converting XML configuration file. Added section
about the new CURL library used to download
pages. Updated screenshots for the new Pl ICU
control.

29-Mar-2005

LNG

Updated for 1.2.0.4 release. Added
ProcessDownloadedHTML section. Added note
about allowable timestamp formats to the
introduction.

2-May-2005

Mkelly

Fixed installation directory references. Included
missing support feature items from latest skeleton
manual. Fixed headers/footers and TOC.
Accepted all changes and made Final.

12-Jul-2005

LNG

Updated for version 2.0 release. Added section
about the Validate Markers button. Added
troubleshooting for differences between ICU and
interface operation.

22-Apr-2008

LNG

Updated for version 2.2.0.63 release. Added
location2 description. Added file:// URL format
requirement. Updated system requirements.
Removed /maxiescans option.

22-Apr-2008

BIM

Using Interface Manual Skeleton 2.5.2. Including
section on FTP connections. Including revised
section on example and setup instructions.

10-Sep-2008

Mkelly

Version 2.2.0.63, Revision A; Updated all cross
references to hyperlinks, removed all references to
Unilnt End User Document and replaced with
Unilnt Interface User Manual, remove all “PI-* and
replaced with just Pl and a space. Fixed size of
screenshots. Removed all NT4 and UNIX
references. Fixed headers and footers.

08-Oct-2008

Mkelly

Version 2.2.0.63, Revision B; Updated to skeleton
3.0.4, fixed all hyperlinks and references.

03-Sep-2012

Sbranscomb

Version 2.2.0.63 Revision C: Updated to Skeleton

Pl Interface for HTML

125

Revision History

Date Author Comments
Version 3.0.35

19-Feb-2013 Mkelly Version 2.2.0.63 Revision D: Update to Skeleton
Version 3.0.36

26-Feb-2013 | OPopivshchyi | Version 2.3.0.x: Addressed interface name change;

16-Dec-2013 | LDaley Updated references to .Net Framework v2.0 to

MHruzik v4.0; Added statements regarding passwords

encryption; Added Phase 2 failover sections;
Removed reference to obsolete plugin projects
samples. Added new security content. Update to
Skeleton Version 3.0.38.

02-Apr-2014 MHruzik Updated terms for Pl Data Archive and Pl Data
collective

02-Apr-2014 ZRyska Finished name change and small corrections

126

(@ os

