
 

 iii 

PI Interface for GE iFix  

Version 2.6.2.x 



 

 

OSIsoft, LLC  

777 Davis St., Suite 250 

San Leandro, CA 94577 USA 

Tel: (01) 510-297-5800 

Fax: (01) 510-357-8136 

Web: http://www.osisoft.com 

 

OSIsoft Australia • Perth, Australia 

OSIsoft Europe GmbH • Frankfurt, Germany 

OSIsoft Asia Pte Ltd. • Singapore  

OSIsoft Canada ULC • Montreal & Calgary, Canada 

OSIsoft, LLC Representative Office • Shanghai, People’s Republic of China 

OSIsoft Japan KK • Tokyo, Japan 

OSIsoft Mexico S. De R.L. De C.V. • Mexico City, Mexico 

OSIsoft do Brasil Sistemas Ltda. • Sao Paulo, Brazil 

OSIsoft France EURL • Paris, France 

 

PI Interface for GE iFix 

Copyright: © 1995-2014 OSIsoft, LLC. All rights reserved.  

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
mechanical, photocopying, recording, or otherwise, without the prior written permission of OSIsoft, LLC. 

 

OSIsoft, the OSIsoft logo and logotype, PI Analytics, PI ProcessBook, PI DataLink, ProcessPoint, PI Asset Framework(PI-AF), IT 
Monitor, MCN Health Monitor, PI System, PI ActiveView, PI ACE, PI AlarmView, PI BatchView, PI Coresight, PI Data Services, PI 
Event Frames, PI Manual Logger, PI ProfileView, PI WebParts, ProTRAQ, RLINK, RtAnalytics, RtBaseline, RtPortal, RtPM, 
RtReports and RtWebParts are all trademarks of OSIsoft, LLC. All other trademarks or trade names used herein are the property of 
their respective owners. 

 

U.S. GOVERNMENT RIGHTS 

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the OSIsoft, LLC license agreement and 
as provided in DFARS 227.7202, DFARS 252.227-7013, FAR 12.212, FAR 52.227, as applicable. OSIsoft, LLC. 
 

Published: 11/2014 
 

 

http://www.osisoft.com/


 

PI Interface for GE iFix iii 

Table of Contents 

Chapter 1. Introduction ................................................................................................ 1 

Reference Manuals ............................................................................................. 2 
Supported Operating Systems ............................................................................ 2 
Supported Features............................................................................................. 3 
Diagram of Hardware Connection ....................................................................... 9 
PI API Node ......................................................................................................... 9 
Intellution SCADA Redundancy ........................................................................ 10 
Microsoft Cluster Interface Failover .................................................................. 11 
UniInt Interface Failover .................................................................................... 11 

Chapter 2. Principles of Operation ............................................................................ 13 

Interface Startup ................................................................................................ 13 
Data Updates .................................................................................................... 14 
Alarm/Event Message Data Collection .............................................................. 14 

Point-by-point Alarm/Event Message Data ............................................. 14 
Alarm/Event Message Data to a Single PI String Point .......................... 15 

Preventing Interference with iFIX Startup ......................................................... 15 
Data Redundancy .............................................................................................. 16 

Intellution SCADA Node Redundancy .................................................... 17 
Microsoft Cluster Failover Support ......................................................... 17 
UniInt Failover ......................................................................................... 17 

Chapter 3. Installation Checklist ................................................................................ 19 

Data Collection Steps ........................................................................................ 19 
Interface Diagnostics ......................................................................................... 20 
Advanced Interface Features ............................................................................ 21 

Chapter 4. Interface Installation ................................................................................. 23 

Naming Conventions and Requirements .......................................................... 23 
Interface Directories .......................................................................................... 24 

PIHOME Directory Tree .......................................................................... 24 
Interface Installation Directory ................................................................ 24 

Interface Installation Procedure ........................................................................ 25 
PI Trust for Interface Authentication .................................................................. 25 
Installing Interface as a Windows Service......................................................... 25 
Installing Interface Service with PI Interface Configuration Utility ..................... 26 

Service Configuration ............................................................................. 26 
Installing Interface Service Manually ...................................................... 29 

Chapter 5. Digital States ............................................................................................. 31 

Chapter 6. PointSource .............................................................................................. 33 



Table of Contents 

iv  

Chapter 7. PI Point Configuration .............................................................................. 35 

Point Attributes .................................................................................................. 35 
Tag .......................................................................................................... 35 
PointSource ............................................................................................ 36 
PointType ................................................................................................ 36 
Location1 ................................................................................................ 36 
Location2 ................................................................................................ 36 
Location3 ................................................................................................ 37 
Location4 ................................................................................................ 37 
Location5 ................................................................................................ 38 
InstrumentTag ......................................................................................... 38 
ExDesc .................................................................................................... 40 
Scan ........................................................................................................ 42 
SourceTag .............................................................................................. 42 
Shutdown ................................................................................................ 42 
DataSecurity ........................................................................................... 43 
PtSecurity ................................................................................................ 43 

Output Points ..................................................................................................... 43 
Trigger Method 1 (Recommended)......................................................... 43 
Trigger Method 2..................................................................................... 44 

Chapter 8. Configuring OSI_iFIXmonitor Program ................................................... 45 

Chapter 9. Startup Command File ............................................................................. 49 

Configuring the Interface with PI ICU ................................................................ 49 
Intfix Interface page ................................................................................ 51 

Command-line Parameters ............................................................................... 59 
Sample PI-EDA.bat File .................................................................................... 67 

Chapter 10. UniInt Failover Configuration .............................................................. 69 

Introduction ........................................................................................................ 69 
Quick Overview ....................................................................................... 70 

Synchronization through the Data Source (Phase 1) ........................................ 72 
Configuring Synchronization through the Data Source (Phase 1) .................... 73 
Configuring UniInt Failover through the Data Source (Phase 1) ...................... 76 

Start-Up Parameters ............................................................................... 76 
Data Source Points ................................................................................. 77 
PI Points .................................................................................................. 78 

Detailed Explanation of Synchronization through the Data Source .................. 81 
Steady State Operation .......................................................................... 82 

Synchronization through a Shared File (Phase 2) ............................................ 84 
Configuring Synchronization through a Shared File (Phase 2) ......................... 85 
Configuring UniInt Failover through a Shared File (Phase 2) ........................... 88 

Start-Up Parameters ............................................................................... 88 
Failover Control Points ........................................................................... 90 
PI Points .................................................................................................. 91 

Detailed Explanation of Synchronization through a Shared File (Phase 2) ...... 95 
Steady State Operation .......................................................................... 96 

Failover Configuration Using PI ICU ................................................................. 98 
Create the Interface Instance with PI ICU ......................................................... 98 
Configuring the UniInt Failover Startup Parameters with PI ICU ...................... 99 
Creating the Failover State Digital State Set .................................................. 100 



 

PI Interface for GE iFix v 

Using the PI ICU Utility to create Digital State Set ............................... 100 
Using the PI SMT 3 Utility to create Digital State Set ........................... 101 

Creating the UniInt Failover Control and Failover State Points (Phase 1) ...... 104 
Creating the UniInt Failover Control and Failover State Points (Phase 2) ...... 105 
Converting from Phase 1 to Phase 2 Failover ................................................ 106 

Procedure ............................................................................................. 106 

Chapter 11. Interface Node Clock .......................................................................... 107 

Chapter 12. Security ............................................................................................... 109 

Authentication .................................................................................................. 109 
Authorization ................................................................................................... 110 

Chapter 13. Starting / Stopping the Interface ....................................................... 113 

Starting Interface as a Service ........................................................................ 113 
Stopping Interface Running as a Service ........................................................ 113 

Chapter 14. Buffering ............................................................................................. 115 

Which Buffering Application to Use ................................................................. 115 
How Buffering Works....................................................................................... 116 
Buffering and PI Data Archive Security ........................................................... 116 
Enabling Buffering on an Interface Node with the ICU ................................... 117 

Choose Buffer Type .............................................................................. 117 
Buffering Settings.................................................................................. 118 
Buffered Servers ................................................................................... 120 
Installing Buffering as a Service ........................................................... 123 

Chapter 15. Interface Diagnostics Configuration ................................................. 127 

Scan Class Performance Points ..................................................................... 127 
Performance Counters Points ......................................................................... 130 

Performance Counters .......................................................................... 132 
Performance Counters for both (_Total) and (Scan Class x) ............... 132 
Performance Counters for (_Total) only ............................................... 133 
Performance Counters for (Scan Class x) only .................................... 136 

Interface Health Monitoring Points .................................................................. 137 
I/O Rate Point .................................................................................................. 142 
Interface Status Point ...................................................................................... 145 

Appendix A. Error and Informational Messages ................................................... 147 

Message Logs ................................................................................................. 147 
Messages ........................................................................................................ 147 

Interface-specific Troubleshooting ........................................................ 147 
Interface Startup and Point-loading Errors ........................................... 147 
Data Collection Errors ........................................................................... 148 

System Errors and PI Errors ........................................................................... 149 
UniInt Failover Specific Error Messages ......................................................... 150 

Informational ......................................................................................... 150 
Errors (Phase 1 & 2) ............................................................................. 151 
Errors (Phase 1) .................................................................................... 152 
Errors (Phase 2) .................................................................................... 153 



Table of Contents 

vi  

Appendix B. PI SDK Options .................................................................................. 155 

Appendix C. FIXtoPI Configuration Transfer Utility ............................................. 157 

Overview ......................................................................................................... 157 
User Instructions ............................................................................................. 158 

Parameters ........................................................................................... 158 
Sample Command Lines ................................................................................. 159 
Sample FixToPI.scr File .................................................................................. 159 
Sample Output ................................................................................................ 159 

Appendix D. Cluster Failover ................................................................................. 161 

Principles of Operation .................................................................................... 161 
Cluster Failover Configurations ....................................................................... 162 

Configuring APIOnline .......................................................................... 162 
Running Multiple Instances of the Interface ......................................... 163 
Buffering Data on Cluster Nodes .......................................................... 164 

Group and Resource Creation Using Cluster Administrator ........................... 164 
Cluster Group Configuration ................................................................. 164 
Installation of the Resources ................................................................ 167 

Testing Cluster Configuration .......................................................................... 169 

Appendix E. FIX Redundancy and the PI IntFix Interface .................................... 171 

Principles of Operation .................................................................................... 171 
FIX32 Redundancy Setup ............................................................................... 172 

FIX32 View Node .................................................................................. 172 
FIX32 Primary SCADA Node ................................................................ 172 
FIX32 Backup SCADA Node ................................................................ 173 
FIX32 View Node’s Network Status Display ......................................... 174 
FIX32 Node %windir%\system32\drivers\etc Host File ........................ 174 
PI Point Configuration for FIX32 Tag .................................................... 174 

iFIX Redundancy Setup .................................................................................. 175 
iFIX View Node ..................................................................................... 175 
iFIX Primary SCADA Node ................................................................... 176 
iFIX Backup SCADA Node ................................................................... 176 
iFIX Network Status Redundancy Display ............................................ 177 
iFIX Node %windir%\system32\drivers\etc Host File ............................ 177 
PI Point Configuration for iFIX Tag ....................................................... 177 

Appendix F. OSI_iFIXmonitor Program ................................................................. 179 

Introduction ...................................................................................................... 179 
OSI_iFIXmonitor Command-line Parameters ................................................. 180 

Appendix G. Terminology ...................................................................................... 183 

Appendix H. Technical Support and Resources ................................................... 187 

Appendix I. Revision History ................................................................................. 189 



 

PI Interface for GE iFix 1 

Chapter 1. Introduction 

The PI IntFix Interface moves data between Intellution FIX/iFIX software platforms and the 

PI Data Archive. The interface program reads the PI point database to determine which points 

to read. It then queries the local Intellution node for current values and sends exception 

reports to the PI system. The interface can also write values back to the local Intellution 

database(s).   

The interface runs on Windows platforms. It communicates using Intellution’s EDA (Easy 

Data Access) library and can be run on either a View or SCADA node if the eda.dll and 

fixtools.dll are installed. 

Note: Previous versions of this document referred to the interface as the PI-EDA 
Interface. The interface is the same; only the reference has changed to PI IntFix. 

 

Note: The value of [PIHOME] variable for the 32-bit interface will depend on whether the 

interface is being installed on a 32-bit operating system (C:\Program Files\PIPC) or 

a 64-bit operating system (C:\Program Files (x86)\PIPC).  

The value of [PIHOME64] variable for a 64-bit interface will be C:\Program Files\PIPC on 
the 64-bit Operating system. 

In this documentation [PIHOME] will be used to represent the value for either [PIHOME] 
or [PIHOME64].  The value of [PIHOME] is the directory which is the common location for 
PI client applications. 

 

Note: This interface has been built against a UniInt version (4.5.0.59 and later) 
which now writes all its messages to the local PI Message log. 

Please see the document UniInt Interface Message Logging for UniInt 4.5.0.x and 
later Interfaces in the %PIHOME%\Interfaces\UniInt directory for more details on 
how to access these messages. 

 

Note: OSIsoft is revising product documentation and other literature to reflect the 
evolution of the PI Server from a single server to a multi-server architecture. 
Specifically, the original historian core of the PI Server is now referred to as the 
PI Data Archive. 



Introduction 

2  

Originally, the PI Server was a single server that contained the PI Data Archive and other 

subsystems. To add features and improve scalability, the PI Server has evolved from a single 

server to multiple servers. While the PI Data Archive remains a core server of the PI Server 

product, the product name “PI Server” now refers to much more than the PI Data Archive. 

OSIsoft documentation, including this user manual, is changing to use “PI Server” in this 

broader sense and “PI Data Archive” to refer to the historian core. 

Reference Manuals 

OSIsoft 

 PI Data Archive manuals 

 PI API Installation Instructions manual 

(%PIHOME%\bin\API_install.doc) 

 PI Universal Interface (UniInt) User Guide 

(%PIHOME%\Interfaces\UniInt\UniInt Interface User Manual.pdf) 

 UniInt Interface Message Logging for UniInt 4.5.0.x and later Interfaces 

(%PIHOME%\Interfaces\UniInt\UniInt Interface Message Logging.pdf) 

 PI Interface Configuration Utility User Guide 

(%PIHOME%\ICU\PI Interface Configuration Utility.pdf) 

Intellution 

 Intellution Electronic Books 

Supported Operating Systems 

Platforms 32-bit application 64-bit application 

Windows 2003 Server 
32-bit OS Yes No 

64-bit OS Yes (Emulation Mode) No 

Windows Vista 
32-bit OS Yes No 

64-bit OS Yes (Emulation Mode) No 

Windows 2008 32-bit OS Yes No 

Windows 2008 R2 64-bit OS Yes (Emulation Mode) No 

Windows 7 
32-bit OS Yes No 

64-bit OS Yes (Emulation Mode) No 

Windows 8 and 8.1 32-bit OS Yes No 

64-bit OS Yes (Emulation Mode) No 

Windows 2012 Server 64-bit OS Yes (Emulation Mode) No 

The Interface is designed to run on the above-mentioned Microsoft Windows operating 

systems. Because it is dependent on vendor software, newer platforms may not yet be 

supported. 

Certain older versions of Intellution FIX/iFIX have platform restrictions that may prevent it 

from running on all OS listed here. Please refer to the Intellution release notes for your 

version.  



 

PI Interface for GE iFix 3 

Please contact OSIsoft Technical Support for more information. 

Security Note: We recommend installing all available updates from Windows 
Update service. We recommend the newest versions of Windows for latest security 
features. 

Supported Features 

Feature Support 

Interface Part Number PI-IN-INT-FIXD-NTI 

Auto Creates PI Points APS Connector 

Point Builder Utility Yes 

ICU Control Yes 

PI Point Types Float / Integer / Digital / String 

* Sub-second Timestamps Yes 

* Sub-second Scan Classes Yes 

* Automatically Incorporates PI Point 
Attribute Changes 

Yes 

Exception Reporting Yes 

* Inputs to PI Data Archive Scan-based / Unsolicited / Event Tags 

Outputs to data source Yes 

Supports Questionable Bit No 

Supports Multi-character PointSource Yes 

* Maximum Point Count Yes 

Uses PI SDK No 

PINet String Support No 

* Source of Timestamps PI Data Archive or Interface node 

History Recovery No 

* UniInt-based 

 * Disconnected Startup 

 * SetDeviceStatus 

Yes 

Yes 

Yes 

* Failover Microsoft Cluster Failover  

UniInt Failover Phase 1 

UniInt Failover Phase 2 (Cold, Warm and Hot) 

Intellution SCADA Node Redundancy 

* Vendor Software Required on 
Interface Node / PINet Node 

Yes 

* Vendor Software Required on Data 
Source Device 

Yes 

Vendor Hardware Required No 

* Additional PI Software Included with 
Interface 

Yes 

Device Point Types Analog, Digital, and String 

Serial-Based Interface No 

* See paragraphs below for further explanation. 



Introduction 

4  

Uses PI SDK 

The PI SDK and the PI API are bundled together and must be installed on each interface 

node. This Interface does not specifically make PI SDK calls. 

Sub-second Timestamps and Scan Classes 

Data will receive sub-second timestamps only if that point belongs to a scan class configured 

for sub-second scanning.  

Automatically Incorporates PI Point Attribute Changes 

The PI Point Database is checked every 2 minutes for points that are added, edited, and 

deleted. If point updates are detected, the points are loaded (or reloaded) by the interface as 

appropriate.  The 2-minute update interval can be adjusted with the /updateinterval 

command-line parameter discussed in the UniInt Interface User Manual. The interface will 

only process 25 point updates at a time. If more than 25 points are added, edited, or deleted at 

one time, the interface will process the first 25 points, wait 30 seconds (or by the time 

specified by the /updateinterval parameter, whichever is shorter), process the next 25 

points, and so on. After all points have been processed, the interface will resume checking for 

updates every 2 minutes (or by the time specified by the /updateinterval parameter). The 

interface will write the digital state SCAN OFF to any points that are removed from the 

interface while it is running. 

Inputs to PI Data Archive 

Data updates are either scan or event triggered. Scan based updates are collected at a 

frequency specified in the interface startup file. Event based updates mean an update is 

requested when the specified source tag receives an update. Input points can receive either 

scan or event based updates. Output points can only be configured for event based updates.  

Alarm and event data is collected unsolicited. This data is event driven on the SCADA side 

and exposed to the interface as unsolicited.  

Maximum Point Count 

The Intellution EDA library has a tag count limit of 32,768 tags per group. Each interface 

scan class assigns its point list to a single EDA group. The interface therefore limits the 

number of points assigned to a given scan class to be less than 32,768 points. 

If users need more than 32,768 points at a specific scan rate, multiple scan classes must be 

defined. The user will then need to distribute points among the scan classes to keep to total 

number of points per scan class less to than the 32,768 point count limit. 

Source of Timestamps 

Data is time stamped by the interface as it is received from the local Intellution node. The 

default behavior is that the PI Data Archive system time is used for data timestamps. Users 

also have the option of using the local Intellution node system time. This is configured 

through the interface startup file.   

UniInt-based 

UniInt stands for Universal Interface. UniInt is not a separate product or file; it is an 

OSIsoft-developed template used by developers and is integrated into many interfaces, 

including this interface. The purpose of UniInt is to keep a consistent feature set and behavior 

across as many of OSIsoft’s interfaces as possible. It also allows for the very rapid 



 

PI Interface for GE iFix 5 

development of new interfaces. In any UniInt-based interface, the interface uses some of the 

UniInt-supplied configuration parameters and some interface-specific parameters. UniInt is 

constantly being upgraded with new options and features. 

The Universal Interface (UniInt) User Guide is a supplement to this manual. 

Disconnected Start-Up 

The PI IntFix interface is built with a version of UniInt that supports disconnected start-up. 

Disconnected start-up is the ability to start the interface without a connection to the 

PI Data Archive. This functionality is enabled by adding /cachemode to the list of start-up 

parameters or by enabling disconnected startup using the ICU. Refer to the PI Universal 

Interface (UniInt) User Guide for more details on UniInt Disconnect startup. 

SetDeviceStatus 

A device status point is a type of interface Heath point. Specifically, it is a PI Data Archive 

point that is updated by the interface to indicate the current interface working state. For 

example, if a device status point exists, the interface will send an update when it establishes 

or loses communication with Intellution. In this way, users can monitor the device status 

point to track the health of the interface without referring to log files. 

A device status point must be a string point and the first characters in its ExDesc attribute 

must be [UI_DEVSTAT]. Refer to the UniInt Interface User Manual for more information on 

configuring interface Health points. 

The following events can be written to the device status point: 

 “1 | Starting” – UniInt writes this string to the Device Status point when the interface 

starts. The snapshot for the Device Status point will contain this value until either 

communication is established with Intellution on the local node or the interface shuts 

down. 

 Digital state Good – the interface writes this event to the Device Status point when it 

establishes communication with Intellution on the local node. 

 If the interface loses communication with the Intellution on the local node, the 

interface writes one of the following strings to the Device Status point: 

o "3 | 1 device(s) in error | Local Intellution stopped; interface shutting down."  

o "3 | 1 device(s) in error | Local Intellution stopped; interface will continue."  

 If the interface is unable to collect alarm & event data it will write one of the 

following updates to the Device Status point; 

o “3 | 1 device(s) in error | Unable to collect alarm & event data.” 

o “3 | 1 device(s) in error | Service library not loaded.” 

 “4 | Intf Shutdown” – UniInt writes this string to the Device Status point when the 

interface stops. 

Failover 

 Microsoft Cluster Failover Support 

The interface supports failover through Microsoft cluster services. As with UniInt 

failover support, this is also a no data loss solution for bi-directional data transfer. 



Introduction 

6  

The significant difference is this solution requires Microsoft Cluster. See Appendix 

D: Cluster Failover for a complete discussion on how this works.  

 Intellution SCADA Node Redundancy 
SCADA-node redundancy can be enabled through configuration of Intellution View 

nodes. In this configuration, the interface runs on a View node that connects to 

redundant SCADA nodes. See Appendix E: FIX Redundancy and the PI IntFix 

Interface for a complete discussion. 

 UniInt Failover Support 

UniInt Phase 1 Failover provides support for a hot failover configuration which 

results in a no data loss solution for bi-directional data transfer between the 

PI Data Archive and the data source given a single point of failure in the system 

architecture.  This failover solution requires that two copies of the interface be 

installed on different interface nodes collecting data simultaneously from a single 

data source.  Phase 1 Failover requires that the interface support output points to the 

Foreign System. Failover operation is automatic and operates with no user 

interaction. Each interface participating in failover has the ability to monitor and 

determine liveliness and failover status. To assist in administering system operations, 

the ability to manually trigger failover to a desired interface is also supported by the 

failover scheme. 

The failover scheme is described in detail in the UniInt Interface User Manual, 

which is a supplement to this manual. Details for configuring this Interface to use 

failover are described in the UniInt Failover Configuration section of this manual. 

UniInt Phase 2 Failover provides support for cold, warm, or hot failover 

configurations. The Phase 2 hot failover results in a no data loss solution for bi-

directional data transfer between the PI Data Archive and the data source given a 

single point of failure in the system architecture similar to Phase 1. However, in 

warm and cold failover configurations, you can expect a small period of data loss 

during a single point of failure transition.  This failover solution requires that two 

copies of the interface be installed on different interface nodes collecting data 

simultaneously from a single data source.  Phase 2 Failover requires each interface 

have access to a shared data file. Failover operation is automatic and operates with no 

user interaction. Each interface participating in failover has the ability to monitor and 

determine liveliness and failover status. To assist in administering system operations, 

the ability to manually trigger failover to a desired interface is also supported by the 

failover scheme. 

The failover scheme is described in detail in the UniInt Interface User Manual, 

which is a supplement to this manual. Details for configuring this Interface to use 

failover are described in the UniInt Failover Configuration section of this manual. 



 

PI Interface for GE iFix 7 

Vendor Software Required 

The interface can run on either an Intellution View or SCADA node if the eda.dll and 

fixtools.dll are installed.  

It is compatible with FIX 6.15 and greater, and iFIX 2.1 and greater. The following table lists 

those that have been tested internally: 

** Intellution Software Compatibility Testing 

FIX 6.15 

FIX 7.0 

iFIX 2.1 

iFIX 2.21 

iFIX 2.6 

iFIX 3.0 

iFIX 3.5 

iFIX 4.0 

iFIX 4.5 

iFIX 5.0 

iFIX 5.1 

iFIX 5.5 

** OSIsoft will continue to test new releases of 
iFIX as they become available. 

An issue has been discovered that prevents the PI IntFix interface from collecting 
data when run as a Windows service on Vista, Windows 7 and Windows Server 
2008.  This only occurs if the iFIX server is run interactively and not as a service. 
This is caused by a change in session partitioning of services and applications on 
the above platforms, and is described in a Microsoft white paper: 
http://msdn.microsoft.com/en-us/windows/hardware/gg463353.aspx. 

The solution is to run the iFIX server as a service, which has been supported since 
iFIX 4.0. Note however that support for running as a service for Vista started with 
iFIX 4.5 and for Windows 7/Windows Server 2008 with iFIX 5.1 SP1A. Therefore, 
this issue and solution only applies to the above iFIX versions on the corresponding 
platforms. For supported operating systems for iFIX, please refer to the following GE 
KB article:  http://support.ge-ip.com/support/index?page=kbchannel&id=S:KB2651. 

Additional PI Software 

This interface comes with the FixToPI Configuration Transfer Utility for extracting the FIX 

database in a format ready for exporting to PI. See Appendix C: FIXtoPI Configuration 

Transfer Utility for a complete discussion on this topic 

The API Online (APIOnline.exe) program is also distributed along with a sample 

configuration file (apionline.bat_new). API Online is required for MS Cluster failover 

support. See Appendix D: Cluster Failover for a complete discussion on this topic. 

The interface installation kit also includes the OSI_iFIXmonitor program. This program 

serves several purposes related to coordinating the execution of PI IntFix interface instances 

(and PI AutoPointSync) with iFIX. Due to the design of the Intellution EDA library, a client 

program (like this interface) can prevent iFIX from starting. By using OSI_iFIXmonitor in 

conjunction with appropriate interface options, the interface can operate in a way that will not 

http://msdn.microsoft.com/en-us/windows/hardware/gg463353.aspx
http://support.ge-ip.com/support/index?page=kbchannel&id=S:KB2651


Introduction 

8  

interfere with iFIX startup. See section OSI_iFixMonitor for a complete discussion on this 

topic. 

Device Point Types 

The interface can read analog, digital and string data types. Each Intellution tag has a block 

type which contains several fields. Each field name begins with a prefix that represents the 

type of data for the field. For example, Analog Input block types have a F_CV field that 

contains the current value. The “F_” prefix indicates that this field contains a floating point 

number. A complete listing of the different fields associated with each block can be found in 

the Intellution Database Manger Online Help file, Block Field Reference section. 



 

PI Interface for GE iFix 9 

Diagram of Hardware Connection 

PI API Node 

 



Introduction 

10  

Intellution SCADA Redundancy 

 



 

PI Interface for GE iFix 11 

Microsoft Cluster Interface Failover 

 

UniInt Interface Failover 

 

 





 

PI Interface for GE iFix 13 

Chapter 2. Principles of Operation 

The interface uses Intellution’s EDA (Easy Data Access) library to acquire data. The EDA 

library is common to both FIX and iFIX making this interface compatible with both 

platforms. The interface must run on a SCADA or View node where the eda.dll and 

fixtools.dll are present. 

The PI IntFix interface establishes the initial connection to the PI Data Archive and 

reconnects in the event that the connection is lost. If the interface is started while the 

PI Data Archive is down, the interface will periodically try to establish a connection until 

successful. 

When the Interface starts, the interface searches the PI Point Database for points that belong 

to the Interface and a point list is created for the interface.  

After startup is complete, the Interface enters the processing loop, which includes: 

 Servicing scheduled input points.  Each Scan Class is processed in turn. 

 Servicing output points as events arrive. 

 Servicing triggered input points as events arrive. 

 The PI Point Database is checked every 2 minutes for points that are added, edited, 

and deleted. If point updates are detected, the points are loaded (or reloaded) by the 

Interface as appropriate.  The 2-minute update interval can be adjusted with the 

/updateinterval command-line parameter discussed in the UniInt Interface User 

Manual. The Interface will only process 25 point updates at a time. If more than 25 

points are added, edited, or deleted at one time, the Interface will process the first 25 

points, wait 30 seconds (or by the time specified by the /updateinterval 

parameter, whichever is lower), process the next 25 points, and so on. After all points 

have been processed, the Interface will resume checking for updates every 2 minutes 

(or by the time specified by the /updateinterval parameter). The Interface will 

write the digital state SCAN OFF to any points that are removed from the Interface 

while it is running. 

Interface Startup 

The interface reads the PI point database using the point source (/ps=char) and instance 

number (/id=#) to identify the interface points.  It then processes the PI Data Archive point 

definition to identify which Intellution point it references using the “node-tag-field” (NTF) 

identifier. The node references the Intellution node name which reads data for the specified 

tag. Tag is the name of a block within the specified node, and field identifies a specific data 

value (and its type) in the block. The interface then groups these points according to scan 

class, with one EDA group defined for each scan class. In addition, if output points are 

defined, they will be placed in a separate group.  



Principles of Operation 

14  

Data Updates 

Data updates are either scan or event triggered. Scan based updates are collected at a 

frequency specified in the interface startup file. Event based updates mean an update is 

requested when the specified source tag receives an update. Input points can receive either 

scan or event based updates. Output points can only be configured for event based updates. 

Alarm and Event data is collected by the interface in an unsolicited manner. This data is event 

driven on the SCADA side and exposed to the interface unsolicited. 

To optimize performance, points belonging to a particular node should be grouped into the 

same scan classes for more efficient polling. By keeping all points for individual nodes within 

the same group, EDA does not have to poll multiple nodes in order to read values for a single 

scan. Note that event-triggered points take much longer to process since a separate group is 

defined for each event point, which is less efficient than scan-based updates.  

Alarm/Event Message Data Collection 

The interface can also collect alarm/event message data from the Intellution WUSERQ 

application. In order to enable this functionality, either WUSERQ1.exe or WUSERQ2.exe must 

be added as a start-up task for the Intellution View or SCADA node. These tasks are 

responsible for making alarm/event message data available to clients. OSIsoft recommends 

running a separate copy of the interface specifically for alarm/event message data collection 

to maximize performance. 

Note the latest release of the interface has been updated to prevent alarm data loss for out of 

order data. Alarm data is reported with a timestamp generated by Intellution. It’s possible for 

these Alarm events to arrive at the interface out of order. The PI Data Archive may reject out 

of order data if a value already exists at that time. The interface has been updated to send out 

of order data in ‘append’ mode to prevent alarm event data loss.  

Point-by-point Alarm/Event Message Data 

If enabled, the interface uses scan class one to group all PI Data Archive points that will 

receive alarm/event message data on a point-by-point basis.  

Note: It is critical that when alarm/event message data collection is enabled, only 
points intended for collection of alarm/event data belong to scan class one.  

In this configuration, the interface receives an alarm/event message string. This alarm string 

also contains the name of the Intellution source tag name. If a PI Data Archive point that 

belongs to scan class 1 is configured for this Intellution tag, the interface attempts to extract 

the data value from the string message and send it to this PI Data Archive point. The interface 

startup file contains parameters for defining the string position for the data within the 

alarm/event message (see section Startup Command File for details). 



 

PI Interface for GE iFix 15 

Alarm/Event Message Data to a Single PI String Point 

The interface can also be configured to send all alarm/event messages to a single PI string 

point. The entire alarm/event message string for all events pulled from the WUSERQ are sent 

to a PI string point.  

Warning: New configuration requirement for all alarm/event message point. Previously 

users specified this point name in the interface startup file. For UniInt Phase 2 failover 

support, this point now requires new configurations as specified in the table below. If 

users do not update their configuration for this point it will be rejected on startup and 

will not receive data. 

This point must have the following configuration: 

Point Attribute Configuration 

Location1 Interface ID as specified in PI-EDA.bat 

Location2 2 

Location4 1 

PointSource Point source as specified in PI-EDA.bat. 

PointType String 

Preventing Interference with iFIX Startup 

Any program that uses the Intellution EDA library for iFIX, like this interface, can prevent 

iFIX itself from starting. This hazard is inherent in the implementation of the EDA library 

and the interface provides options to co-ordinate with iFIX to avoid the problem.  

Note: The default options for the interface do not co-ordinate with iFIX and will 
prevent iFIX from starting if the interface is running when iFIX is launched. 

The fundamental issue is that, once a program loads the EDA library and calls it, the EDA 

library acquires resources whose existence will prevent iFIX from starting if iFIX is not 

already running. Once acquired, the resources held by the EDA library cannot be released 

programmatically and are only released when the program terminates. If iFIX stops while any 

programs that have called the EDA library are running, iFIX will refuse to restart until these 

EDA client programs terminate and consequently release the EDA library resources. The 

implication is that the EDA library expects EDA client programs to start after iFIX starts and 

stop when iFIX indicates that it is stopping. This is contrary to the typical installation of most 

PI interfaces, which are configured as services that start automatically with Windows and run 

continuously. 

To avoid the situations that prevent iFIX from starting, the PI IntFix interface must 1) wait 

until iFIX is known to be running before the EDA library is loaded or called, and 2) terminate 

if it detects that iFIX has shut down after the EDA library has been called.  



Principles of Operation 

16  

In order for the PI IntFix interface to start before iFIX and not prevent iFIX from 

subsequently starting, the interface must verify that iFIX is running before the EDA library is 

loaded or called. Therefore, the EDA library cannot be called to determine whether iFIX is 

running, and the interface must use some other method. When the PI IntFix interface is 

configured to wait until iFIX is running before dynamically loading the EDA library 

(/DelayLoadEDA parameter), the interface looks for a running copy of the OSI_iFIXmonitor 

program (which is included in the interface installation kit) as an indication that iFIX is 

running. To accurately reflect the running or stopped state of iFIX, OSI_iFIXmonitor must be 

configured in iFIX as a task that iFIX starts and stops. Thus, OSI_iFIXmonitor starts after 

iFIX is running and terminates prior to iFIX itself stopping. (Instructons for configuring 

OSI_iFIXmonitor are in section Configuring OSI_iFIXmonitor Program. Additional 

information on the OSI_iFIXmonitor program is in Appendix F: OSI_iFIXmonitor Program) 

As noted earlier, once a program loads and calls the EDA library, the EDA library acquires 

and holds resources for the life of the process. If iFIX stops, it will not restart until all EDA 

client programs terminate and consequently release the iFIX resources they hold. The PI 

IntFix interface provides an option to terminate when it detects that iFIX has stopped 

(/StopWithFIX parameter). With this option, the interface terminates when iFIX stops, 

which releases the resources held by the EDA library so that the interface does not prevent 

iFIX from restarting. However, after the interface stops, data collection will not resume when 

iFIX restarts. The /StopWithFIX parameter is primarily intended for use with copies of the 

PI IntFix interface that are not configured as Windows services. 

For a typical PI interface installation, the interface is configured as a Windows service so that 

it runs continuously and collects data whenever its data source is active. Since the constraints 

of the EDA library require the PI IntFix interface to terminate when iFIX stops, an external 

agent is needed to restart the interface service. To meet these needs, OSI_iFIXmonitor 

provides options to start, stop, and optionally restart the interface service in coordination with 

iFIX starting and stopping. When OSI_iFIXmonitor manages a PI IntFix interface service, 

the /StopWithFIX parameter is not necessary. 

Data Redundancy 

There are two distinct types of data redundancy: interface level failover and SCADA node 

level failover. The Intellution View/SCADA node environment supports running in a failover 

configuration. SCADA node failover provides the interface with two paths to PLC process 

data. Interface level failover ensures that PI IntFix is running in order to collect this PLC 

process data. PI IntFix interface failover is implemented in one of two ways: through OSIsoft 

UniInt Phase 1 or Phase 2 failover or by running the interface in a Microsoft Cluster 

environment.  



 

PI Interface for GE iFix 17 

Intellution SCADA Node Redundancy 

SCADA node redundancy provides the interface with two paths to PLC data. In this 

configuration, the interface runs on a View node which is connected to redundant SCADA 

failover nodes. Both FIX32 and iFIX support SCADA node failover (starting from FIX32 

version 6.15 and iFIX Dynamics version 2.0). A View node can look at a pair of SCADA 

nodes that have identical databases (and thus are connected to the same PLC) and obtain data 

from the active node. More information on failover can be found in Intellution’s 

documentation for FIX32 or iFIX. Although FIX32 allows a backup SCADA configuration 

that involves two SCADA servers without the use of a View node, the interface does not 

support this configuration.  A complete discussion of SCADA-node failover, including 

configuration procedures, can be found in Appendix E: FIX Redundancy and the PI IntFix 

Interface. 

Microsoft Cluster Failover Support 

The interface supports hot failover when running in a Microsoft Cluster environment. Hot 

failover is a no data loss solution. A cluster is composed of two or more member nodes. Each 

member node of the cluster has a copy of the interface installed and running, with only one 

node sending data to PI at any given time. A complete discussion of cluster failover operation 

and configuration can be found in Appendix D: Cluster Failover. 

UniInt Failover 

This interface supports UniInt failover.  Refer to the UniInt Failover Configuration section of 

this document for configuring the interface for failover. 

 



Principles of Operation 

18  

UniInt Phase 1 Failover 

UniInt Phase 1 failover is a hot failover solution. When enabled both copies of the interface 

collect data in parallel with only the active interface sending data to PI. Each interface 

instance will update an output tag on the Intellution system which acts as a heartbeat 

indicator. By monitoring each other’s heartbeat point the interfaces are able to determine if it 

should be active or not. The biggest difference between UniInt Phase 1 failover and UniInt 

Phase 2 failover is UniInt Phase 2 failover does not require output points on the Intellution 

system. Instead UniInt Phase 2 failover uses a shared file for communicating heartbeat and 

status information to determine interface health. Also UniInt Phase 2 failover supports hot 

and warm failover. Warm failover means the standby interface does not collect real-time 

input data which reduces loading on the SCADA system. However warm failover is not a no-

data loss solution.  

UniInt Phase 2 Failover 

UniInt Phase 2 failover supports both warm and hot failover modes. When enabled both 

copies of the interface will communicate with each other through a shared file. This shared 

file can reside on one of the interface nodes or on a separate machine.  

Hot failover means that both interfaces actively collect data with only the active interface 

sending its data to PI. Hot failover is a no-data loss solution. 

Warm failover means that both interfaces load their point list. The standby interface will not 

update its point list for real-time inputs. It will however collect alarm and event data but not 

send it to PI unless it becomes the active interface. Warm failover should be used to minimize 

the impact of interface failover on the SCADA node and network loading. However warm 

failover is not a no-data loss solution. 

 



 

PI Interface for GE iFix 19 

Chapter 3. Installation Checklist 

If you are familiar with running PI data collection interface programs, this checklist helps you 

get the Interface running. If you are not familiar with PI interfaces, return to this section after 

reading the rest of the manual in detail. 

This checklist summarizes the steps for installing this Interface. You need not perform a 

given task if you have already done so as part of the installation of another interface. For 

example, you only have to configure one instance of Buffering for every interface node 

regardless of how many interfaces run on that node. 

The Data Collection Steps below are required. Interface Diagnostics and Advanced Interface 

Features are optional. 

Data Collection Steps 

1. Confirm that you can use PI SMT to configure the PI Data Archive. You need not run 

PI SMT on the same computer on which you run this Interface. 

2. If you are running the Interface on an interface node, edit the PI Data Archive’s Trust 

Table to allow the Interface to read attributes and point data.  If a buffering 

application is not running on the interface node, the PI trust must allow the interface 

to write data. 

3. Run the installation kit for the PI Interface Configuration Utility (ICU) on the 

interface node if the ICU will be used to configure the interface. This kit runs the 

PI SDK installation kit, which installs both the PI API and the PI SDK.  

4. Run the installation kit for this Interface. This kit also runs the PI SDK installation kit 

which installs both the PI API and the PI SDK if necessary. 

5. If you are running the Interface on an interface node, check the computer’s time zone 

properties. An improper time zone configuration can cause the PI Data Archive to 

reject the data that this Interface writes. 

6. If the interface is installed on an Intellution iFIX node, configure iFIX to start 

OSI_iFIXmonitor. 

7. Run the ICU and configure a new instance of this Interface. Essential startup 

parameters for this Interface are: 

Point Source (/PS=x) 

Interface ID (/ID=#) 

PI Data Archive (/Host=host:port)  

Scan Class(/F=##:##:##,offset) 

8. If you will use digital points, define the appropriate digital state sets. 



Installation Checklist 

20  

9. Build input points and, if desired, output points for this Interface. Important point 

attributes and their purposes are: 

Location1 specifies the interface instance as specified in the startup file (/id=#). 

Location2 specifies the I/O type (Input=0, Output=1, All Alarm & Event Tag=2). 

Location3 is not used. 

Location4 specifies the scan class. Event-based and output points should have 

Location4=0. Alarm/event-message points must have Location4=1. 

Location5 is not used. 

ExDesc specifies a ‘trigger tag’. It takes the format event=trigger tag. 

InstrumentTag specifies the NTF address (Node-Tag-Field). For example: 

LocalNode,TagX,F_CV. 

PtSecurity must permit read access for the PI identity, group, or user configured in 

the PI trust that is used by the interface. 

DataSecurity must permit read access (buffering enabled) or read/write access 

(unbuffered) for the PI identity, group, or user configured in the PI trust that is used 

by the interface. 

Security Note: When buffering is configured, the DataSecurity attribute must 
permit write access for the buffering application’s PI trust or mapping. 
DataSecurity write permission for the interface’s PI trust is required only when 
buffering is not configured. 

10. Start the Interface interactively and confirm its successful connection to the 

PI Data Archive without buffering. (The DataSecurity attribute for interface points 

must permit write access for the interface’s PI trust.) 

11. Confirm that the Interface collects data successfully. 

12. Stop the Interface and configure a buffering application (either Bufserv or PIBufss).  

When configuring buffering use the ICU menu item Tools  Buffering…  

Buffering Settings to make a change to the default value (32678) for the Primary and 

Secondary Memory Buffer Size (Bytes) to 2000000. This will optimize the 

throughput for buffering and is recommended by OSIsoft. 

13. Start the buffering application and the Interface. Confirm that the Interface works 

together with the buffering application by either physically removing the connection 

between the interface node and the PI Data Archive node. (The DataSecurity attribute 

for interface points must permit write access for the buffering application’s PI trust or 

mapping. The interface’s PI trust does not require DataSecurity write permission.) 

14. Configure the Interface to run as a Service. Confirm that the Interface runs properly 

as a Service. 

15. Restart the interface node and confirm that the Interface and the buffering application 

restart. 

Interface Diagnostics 

1. Configure Scan Class Performance points. 

2. Install the PI Performance Monitor Interface (Full Version only) on the interface 

node. 



 

PI Interface for GE iFix 21 

3. Configure Performance Counter points. 

4. Configure UniInt Health Monitoring points 

5. Configure the I/O Rate point. 

6. Install and configure the Interface Status Utility on the PI Data Archive node. 

7. Configure the Interface Status point. 

Advanced Interface Features 

1. Configure the interface for Disconnected Startup. Refer to the PI Universal Interface 

(UniInt) User Guide for more details on UniInt Disconnect startup. 

2. Configure UniInt failover; see the UniInt Failover Configuration chapter in this 

document for details related to configuring the interface for failover. 

 





 

PI Interface for GE iFix 23 

Chapter 4. Interface Installation 

OSIsoft recommends that interfaces be installed on interface nodes instead of directly on the 

PI Data Archive node. An interface node is any node other than the PI Data Archive node 

where the PI Application Programming Interface (PI API) is installed (see the 

PI API manual). With this approach, the PI Data Archive need not compete with interfaces 

for the machine’s resources. The primary function of the PI Data Archive is to archive data 

and to service clients that request data.  

After the interface has been installed and tested, Buffering should be enabled on the interface 

node.  Buffering refers to either PI API Buffer Server (Bufserv) or the PI Buffer Subsystem 

(PIBufss). For more information about Buffering see the Buffering section of this manual. 

In most cases, interfaces on interface nodes should be installed as automatic services. 

Services keep running after the user logs off. Automatic services automatically restart when 

the computer is restarted, which is useful in the event of a power failure. 

The guidelines are different if an interface is installed on the PI Data Archive node. In this 

case, the typical procedure is to install the PI Data Archive as an automatic service and install 

the interface as an automatic service that depends on the PI Update Manager and PI Network 

Manager services. This typical scenario assumes that Buffering is not enabled on the 

PI Data Archive node. Bufserv or PIBufss can be enabled on the PI Data Archive node so that 

interfaces on the PI Data Archive node do not need to be started and stopped in conjunction 

with the PI Data Archive, but it is not standard practice to enable buffering on the 

PI Data Archive node. The PI Buffer Subsystem can also be installed on the PI Data Archive. 

See the PI Universal Interface (UniInt) User Guide for special procedural information. 

Naming Conventions and Requirements 

In the installation procedure below, it is assumed that the name of the interface executable is 

PI-EDA.exe and that the startup command file is called PI-EDA.bat.  

When Configuring the Interface Manually 

It is customary for the user to rename the executable and the startup command file when 

multiple copies of the interface are run. For example, PI-EDA1.exe and PI-EDA1.bat 

would typically be used for interface number 1, PI-EDA2.exe and PI-EDA2.bat for 

interface number 2, and so on. When an interface is run as a service, the executable and the 

command file must have the same root name because the service looks for its command-line 

parameters in a file that has the same root name. 



Interface Installation 

24  

Interface Directories 

PIHOME Directory Tree 

32-bit Interfaces 

The [PIHOME] directory tree is defined by the PIHOME entry in the pipc.ini configuration 

file. This pipc.ini file is an ASCII text file, which is located in the %windir% directory.  

For 32-bit operating systems, a typical pipc.ini file contains the following lines: 

[PIPC] 

PIHOME=C:\Program Files\PIPC 

For 64-bit operating systems, a typical pipc.ini file contains the following lines: 

[PIPC] 

PIHOME=C:\Program Files (X86)\PIPC 

The above lines define the root of the PIHOME directory on the C: drive. The PIHOME 

directory does not need to be on the C: drive.  OSIsoft recommends using the paths shown 

above as the root PIHOME directory name.  

Security Note: Restrict the Windows accounts that can create or write files in 
the %PIHOME% folder and subfolders. 

Interface Installation Directory 

The interface install kit will automatically install the interface to: 

PIHOME\Interfaces\pi-eda\ 

PIHOME is defined in the pipc.ini file. 



 

PI Interface for GE iFix 25 

Interface Installation Procedure 

The IntFix Interface setup program uses the services of the Microsoft Windows Installer. 

Windows Installer is a standard part of Windows 2000 and later operating systems. When 

running on Windows NT 4.0 systems, the PI IntFix setup program will install the Windows 

Installer itself if necessary. To install, run the appropriate installation kit.  

IntFix_#.#.#.#_.exe  

PI Trust for Interface Authentication 

A PI Interface usually runs on an interface node as a Windows service, which is a non-

interactive environment. In order for an interface to authenticate itself to a PI Data Archive 

and obtain the access permissions for proper operation, the PI Data Archive must have a 

PI trust that matches the connection credentials of the interface. Determine if a suitable 

PI trust for the interface exists on the PI Data Archive. If a suitable PI trust does not exist, see 

the Security chapter for instructions on creating a new PI trust. 

Installing Interface as a Windows Service 

The PI IntFix Interface service can be created, preferably, with the 

PI Interface Configuration Utility, or can be created manually. 

Security Note: We recommend running the interface service under a non-
administrative account, such as a Windows built-in service virtual account, the 
built-in Network Service account, or a non-administrative account that you create.  

The advantage of running the interface service under an account with least privileges is 

improved security.  

The disadvantage of running the interface service with least privileges is that, depending on 

the account, the interface service may not be able to create performance counters. Since 

UniInt health points provide essentially the same information, you may not need performance 

counters. 

If performance counters are required, extra administrative actions are needed to create and 

maintain the performance counters. Since performance counters are associated with each scan 

class, performance counters for the interface instance must be created or deleted after adding 

or removing scan classes. Run the interface instance, at least for a short time, from an account 

that has sufficient privileges to create or delete performance counters. 



Interface Installation 

26  

Installing Interface Service with PI Interface Configuration Utility 

The PI Interface Configuration Utility provides a user interface for creating, editing, and 

deleting the interface service: 

 

Service Configuration 

Service name 

The Service name box shows the name of the current interface service. This service name is 

obtained from the interface executable. 

ID 

This is the service id used to distinguish multiple instances of the same interface using the 

same executable.  

Display name 

The Display Name text box shows the current Display Name of the interface service.  If there 

is currently no service for the selected interface, the default Display Name is the service name 

with a “PI-” prefix. Users may specify a different Display Name. OSIsoft suggests that the 

prefix “PI-” be appended to the beginning of the interface to indicate that the service is part of 

the OSIsoft suite of products. 



 

PI Interface for GE iFix 27 

Log on as 

The Log on as box shows the current “Log on as” Windows account of the interface service.  

If the service is configured to use the Local System account, the Log on as text box will show 

“LocalSystem.” Users may specify a different Windows account for the service to use. 

Security Note: For best security, we recommend running this interface service 
under an account with minimum privileges, such as a Windows built-in service virtual 
account, the built-in Network Service account, or a non administrative account that 
you create.  

PI ICU versions earlier than 1.4.14.x cannot create a service that runs as a Windows built-in 

service virtual account or the built-in Network Service or Local Service accounts. After ICU 

creates the interface service, you can change the account with a Windows administrative tool, 

such as Services on the Control Panel or the sc command-line utility. 

As discussed earlier, following the recommendation to run the interface service under a low-

privilege account may affect performance counters.  

Password 

If a Windows User account is entered in the Log on as text box, then a password must be 

provided in the Password text box, unless the account requires no password. 

Confirm password 

If a password is entered in the Password text box, then it must be confirmed in the Confirm 

Password text box. 

Dependencies 

The Installed services list is a list of the services currently installed on this machine. Services 

upon which this interface is dependent should be moved into the Dependencies list using the 

 button. For example, if API Buffering is running, then “bufserv” should be selected 

from the list at the right and added to the list on the left. To remove a service from the list of 

dependencies, use the  button, and the service name will be removed from the 

Dependencies list. 

When the interface is started (as a service), the services listed in the dependency list will be 

verified as running (or an attempt will be made to start them). If the dependent service(s) 

cannot be started for any reason, then the interface service will not run. 

Note: Please see the PI Log and Windows Event Logger for messages that may 
indicate the cause for any service not running as expected. 

 - Add Button 

To add a dependency from the list of Installed services, select the dependency name, and 

click the Add button. 



Interface Installation 

28  

 - Remove Button 

To remove a selected dependency, highlight the service name in the Dependencies list, and 

click the Remove button.   

The full name of the service selected in the Installed services list is displayed below the 

Installed services list box. 

Startup Type 

The Startup Type indicates whether the interface service will start automatically or needs to 

be started manually on reboot. 

 If the Auto option is selected, the service will be installed to start automatically when 

the machine reboots. 

 If the Manual option is selected, the interface service will not start on reboot, but will 

require someone to manually start the service. 

 If the Disabled option is selected, the service will not start at all. 

Generally, interface services are set to start automatically. 

Create 

The Create button adds the displayed service with the specified Dependencies and with the 

specified Startup Type.   

Remove  

The Remove button removes the displayed service. If the service is not currently installed, or 

if the service is currently running, this button will be grayed out.   

Start or Stop Service 

The toolbar contains a Start button  and a Stop button . If this interface service is not 

currently installed, these buttons will remain grayed out until the service is added. If this 

interface service is running, the Stop button is available. If this service is not running, the 

Start button is available. 

The status of the Interface service is indicated in the lower portion of the PI ICU dialog. 

 

 

Status of 

the ICU 

 

 

 

Service 

installed or 

uninstalled 

 

 

 

Status of the 

Interface 

Service 



 

PI Interface for GE iFix 29 

Installing Interface Service Manually 

Help for installing the interface as a service is available at any time with the command: 

PI-EDA.exe /help  

Open a Windows command prompt window and change to the directory where the 

PI-EDA1.exe executable is located. Then, consult the following table to determine the 

appropriate service installation command. 

Windows Service Installation Commands on a Interface Node or a PI Data Archive Node 
with Bufserv implemented 

Manual service PI-EDA.exe /install /depend "tcpip bufserv" 

Automatic service PI-EDA.exe /install /auto /depend "tcpip bufserv" 

*Automatic service with 
service id 

PI-EDA.exe /serviceid X /install /auto /depend "tcpip bufserv" 

Windows Service Installation Commands on a Interface Node or a PI Data Archive Node 
without Bufserv implemented 

Manual service PI-EDA.exe /install /depend tcpip 

Automatic service PI-EDA.exe /install /auto /depend tcpip 

*Automatic service with 
service id 

PI-EDA.exe /serviceid X /install /auto /depend tcpip 

*When specifying service id, the user must include an id number. It is suggested that this 

number correspond to the interface id (/id) parameter found in the interface .bat file. 

Check the Microsoft Windows Services control panel to verify that the service was added 

successfully. The services control panel can be used at any time to change the interface from 

an automatic service to a manual service or vice versa.  

The service installation commands in this section always create an interface service that runs 

under the built-in Local System account. The Local System account is highly privileged and 

the interface does not need most of the Local System privileges to operate correctly. 

Security Note: For best security, we recommend running this interface service 
under an account with minimum privileges, such as a Windows service virtual 
account, the built-in Network Service account, or a non administrative account that 
you create.  

As discussed earlier, following the recommendation to run the interface service under a low-

privilege account may affect performance counters. 

The services control panel can change the account that the interface service runs under. 

Changing the account while the interface service is running does not take effect until the 

interface service is restarted. 

 





 

PI Interface for GE iFix 31 

Chapter 5. Digital States 

For more information regarding Digital States, refer to the PI Data Archive documentation. 

Digital State Sets 

PI digital states are discrete values represented by strings. These strings are organized in the 

PI Data Archive as digital state sets. Each digital state set is a user-defined list of strings, 

enumerated from 0 to n to represent different values of discrete data. For more information 

about PI digital points and editing digital state sets, see the PI Data Archive manuals. 

An interface point that contains discrete data can be stored in the PI Data Archive as a digital 

point. A digital point associates discrete data with a digital state set, as specified by the user. 

System Digital State Set 

Similar to digital state sets is the system digital state set. This set is used for all points, 

regardless of type, to indicate the state of a point at a particular time. For example, if the 

interface receives bad data from the data source, it writes the system digital state Bad Input 

to the PI point instead of a value. The system digital state set has many unused states that can 

be used by the interface and other PI clients.  Digital States 193-320 are reserved for OSIsoft 

applications. 

 





 

PI Interface for GE iFix 33 

Chapter 6. PointSource 

The PointSource is a unique, single or multi-character string that is used to identify the PI 

point as a point that belongs to a particular interface. For example, the string Boiler1 may be 

used to identify points that belong to the MyInt interface. To implement this, the PointSource 

attribute would be set to Boiler1 for every PI point that is configured for the MyInt 

interface. Then, if /ps=Boiler1 is used on the startup command-line of the MyInt interface, 

the interface will search the PI Point Database upon startup for every PI point that is 

configured with a PointSource of Boiler1. Before an interface loads a point, the interface 

usually performs further checks by examining additional PI point attributes to determine 

whether a particular point is valid for the interface. For additional information, see the /ps 

parameter. If the PI API version being used is earlier than 1.6.x or the PI Data Archive 

version is earlier than 3.4.370.x, the PointSource is limited to a single character unless the 

SDK is being used.  

Case-sensitivity for PointSource Attribute 

The PointSource character that is supplied with the /ps command-line parameter is not case 

sensitive. That is, /ps=P and /ps=p are equivalent.  

Reserved Point Sources 

Several subsystems and applications that ship with the PI System are associated with default 

PointSource characters. The Totalizer Subsystem uses the PointSource character T, the Alarm 

Subsystem uses @ for Alarm points, G for Group Alarms and Q for SQC Alarm points, 

Random uses R, RampSoak uses 9, and the Performance Equations Subsystem uses C. Do not 

use these PointSource characters or change the default point source characters for these 

applications. Also, if a PointSource character is not explicitly defined when creating a 

PI point; the point is assigned a default PointSource character of Lab (PI 3). Therefore, it 

would be confusing to use Lab as the PointSource character for an interface. 

Note: Do not use a point source character that is already associated with another 
interface program. However it is acceptable to use the same point source for multiple 
instances of an interface. 

 





 

PI Interface for GE iFix 35 

Chapter 7. PI Point Configuration 

The PI point is the basic building block for controlling data flow to and from the 

PI Data Archive. A single point is configured for each measurement value that needs to be 

archived.  

If outputs to the data source device (control system) are not needed, configure the interface 

instance to disable outputs from PI. 

Security Note: Disabling outputs from PI defends against accidental or malicious 
changes to the control system. 

Point Attributes 

Use the point attributes below to define the PI point configuration for the Interface, including 

specifically what data to transfer. 

One PI point (PI tag) must be configured for each FIX32 or iFIX field the user wishes to read 

and/or write data. 

This document does not discuss the attributes that configure UniInt or PI Data Archive 

processing for a PI point. Specifically, UniInt provides exception reporting and the 

PI Data Archive or PIBufss provides data compression. Exception reporting and compression 

are very important aspects of data collection and archiving, which are not discussed in this 

document. 

Note: See the PI Universal Interface (UniInt) User Guide and PI Data Archive 
documentation for information on other attributes that are significant to PI point data 
collection and archiving. 

Tag 

The Tag attribute (or tagname) is the name for a point. There is a one-to-one correspondence 

between the name of a point and the point itself. Because of this relationship, PI 

documentation uses the terms “tag” and “point” interchangeably. 

Follow these rules for naming PI points: 

 The name must be unique on the PI Data Archive. 

 The first character must be alphanumeric, the underscore (_), or the percent sign (%). 

 Control characters such as linefeeds or tabs are illegal. 

 The following characters also are illegal:  * ’ ? ; { } [ ] | \ ` ' " 



PI Point Configuration 

36  

Length 

Depending on the version of the PI API and the PI Data Archive, this Interface supports Tag 

attributes whose length is at most 255 or 1023 characters. The following table indicates the 

maximum length of this attribute for all the different combinations of PI API and 

PI Data Archive versions.  

PI API PI Data Archive Maximum Length 

1.6.0.2 or higher 3.4.370.x or higher 1023 

1.6.0.2 or higher Below 3.4.370.x 255 

Below 1.6.0.2 3.4.370.x or higher 255 

Below 1.6.0.2 Below 3.4.370.x 255 

If the PI Data Archive version is earlier than 3.4.370.x or the PI API version is earlier than 

1.6.0.2, and you want to use a maximum Tag length of 1023, you need to enable the PI SDK. 

See Appendix_B for information. 

PointSource 

The PointSource attribute contains a unique, single or multi-character string that is used to 

identify the PI point as a point that belongs to a particular interface.  For additional 

information, see the /ps command-line parameter and the “PointSource” section. 

PointType 

Typically, device point types do not need to correspond to PI point types. For example, 

integer values from a device can be sent to floating point or digital PI points. Similarly, a 

floating-point value from the device can be sent to integer or digital PI points, although the 

values will be truncated.  

Float16, float32, float 64, int16, int32, digital, and string point types are supported. For more 

information on the individual point types, see PI Data Archive manuals. 

Location1 

Location1 indicates to which copy of the Interface the point belongs. The value of this 

attribute must match the /id command-line parameter. 

Location2 

This parameter identifies the direction of data flow for the point or that the point is an input 

point that should be used for storing all alarm and event data. 

Inputs 

Location2 = 0 

Defines a point as an input point (data goes from Intellution to the PI Data Archive).  

Input points are updated according to their assigned scan frequency or their update is event-

triggered. See the Location4 and ExDesc attribute descriptions for details about how to 

configure the update method for input points.  



 

PI Interface for GE iFix 37 

Outputs 

Location2 = 1 

Defines a point as an output point (data goes from PI to Intellution).  

Output point updates are event-triggered. See the Location4 attribute description and the 

section Output Points below for additional configuration information.   

Alarm & Event Data  

Location2 = 2 

All Alarm & Event String Point  

Previous versions of this interface supported this functionality through a command line 

parameter. When enabled the interface would write all alarm & event data to the specified 

PI Data Archive string point. However in order to support UniInt Phase 2 failover the 

interface now requires that all points are configured specifically for the interface and not 

passed as command line parameters. 

The following configurations are required to enable all alarm & event data to be stored in a 

single PI Data Archive string point: 

Point Attribute Configuration 

Location1 Interface ID as specified in PI-EDA.bat 

Location2 2 

Location4 1 

PointSource Point source as specified in PI-EDA.bat. 

PointType String 

If a point is configured with Location2=2 the interface will check if another point has 

already been specified. If it has, any additional points with Location2=2 will be rejected. 

Next the interface will verify that the point is a string type point and assigned to scan class 1 

(Location4=1). If these configurations are in place the interface uses this point to record all 

alarm and event message strings it collects from the local node.  

Note: Alarm & event message data collection must also be enabled through the ICU 
in order for all alarm & event string point to receive data. 

Location3 

Location3 is not used by this interface. 

Location4 

Scan-based Inputs 

For interfaces that support scan-based collection of data, Location4 defines the scan class for 

the PI point. The scan class determines the frequency at which input points are scanned for 

new values. For more information, see the description of the /f parameter in the Startup 

Command File section. 



PI Point Configuration 

38  

Trigger-based Inputs, Unsolicited Inputs, and Output Points 

Location 4 should be set to zero for these points. 

Alarm/Event Message Data Collection 

If alarm/event message data collection is enabled (see the /em and /c command line 

parameters), scan class 1 is used for alarm/event message data collection EXCLUSIVELY. 

All points with Location4=1 will be used for this purpose.  

Performance Considerations 

The absolute limit on resolution is 0.01 second. With high data resolution (fast scan rates), 

users should monitor CPU loading. The higher the data resolution, the more CPU time the 

interface will need. 

To optimize performance, points belonging to a particular Intellution node should be grouped 

into the same scan class for more efficient polling. By keeping all points for individual nodes 

within the same group, EDA does not have to poll multiple nodes in order to read values for a 

single scan. Note that event-triggered points take much longer to process since a separate 

group is defined for each event point, which is less efficient than scan-based updates. 

Location5 

This parameter determines the interface behavior when a NULL (blank) string value is 

received from Intellution for the configured source point. This provides users with an option 

for client viewing of string or digital data. This attribute provides users the option of having a 

‘No Data’ value written in place of the NULL.  

Location5=0 

Send NULL string value when a NULL string value is received as an update. 

Location5=1 

Write ‘No Data’ system digital state when NULL string value is received as an update. 

InstrumentTag 

InstrumentTag is used to specify the “node,tag,field” (NTF) identifier. The node references 

the Intellution node name which reads data for the specified tag. Tag references a block 

within the specified node, and field identifies a specific data value in the block and field data 

type. The NTF identifier is used to map PI points to the corresponding Intellution point. 

The following table shows the field values to obtain current values for given data types. 

Intellution Data 
Type 

Field Value Input Points:  

Supported PI Point 
Types 

Output Points:  

Supported PI Point 
Types 

Analog or Integer F_CV Float, Integer or Digital Float, Integer or Digital 

Digital or Boolean D_CV Digital or Integer Digital 

Multi-state Digital M_CV Digital or Integer Digital 

String A_CV String String 



 

PI Interface for GE iFix 39 

The interface has the ability to obtain a wide range of data for each block type. For a 

complete listing of the field options for each Intellution block type, see the Intellution 

Database Manger Online Help, Block Field Reference section.  

The current value fields in Intellution digital and multi-state digital block types are named 

A_CV, where the “A_” prefix indicates that the field contains a string value. The PI IntFix 

Interface provides translation from the string value to the integer value corresponding to the 

string so that data from digital or multi-state digital blocks can be used with PI points whose 

PI point types are digital or integer. The translation is enabled be using special field names as 

discussed below. 

The InstrumentTag attribute requires the following format:  

Node,Tag,Field 

The following table provides examples of how to configure the InstrumentTag given the 

Intellution node, tag name, and block type. 

Intellution 
Node 

Tag Name Block Type PI InstrumentTag Definition 

PLANT1 FLOW_PV Analog Input PLANT1,FLOW_PV,F_CV 

PLANT1 VALVE_PV Digital Input PLANT1,VALVE_PV,D_CV 

PLANT2 CONTROL_SP Multi-state Digital Input PLANT2,CONTROL_SP,M_CV 

PLANT2 COMMENT String PLANT2,COMMENT,A_CV 

Note that the interface is not limited to the block types listed in the above table.  

Digital blocks define two strings corresponding to binary values 0 and 1. If the field name in 

a PI Data Archive point definition has a “D_” type prefix, the PI IntFix Interface internally 

replaces the “D_” type prefix with “A_” to locate the actual Intellution string-valued field. 

(The “D_” type prefix is not known to the Intellution system.) The “D_” type prefix indicates 

to the interface that the value should be translated from string to integer. To define a 

PI Data Archive digital or integer point for a string-type field in an Intellution digital block, 

replace the “A_” type prefix in the field name with “D_”. For example, the current value field 

in digital blocks is named “A_CV”. In definitions for digital or integer PI Data Archive 

points for the current value of an Intellution digital block, use “D_CV” as the field name. 

Multi-state blocks define up to eight strings corresponding to states 0 to 7. If the field name in 

a PI Data Archive point definition has a “M_” type prefix, the PI IntFix Interface internally 

replaces the “M_” type prefix with “A_” to locate the actual Intellution string-valued field. 

(The “M_” type prefix is not known to the Intellution system.) The “M_” type prefix 

indicates to the interface that the value should be translated from string to integer. To define a 

PI Data Archive digital or integer point for a string-type field in an Intellution multi-state 

digital block, replace the “A_” type prefix in the field name with “M_”. For example, the 

current value field in multi-state digital blocks is named “A_CV”. In definitions for digital or 

integer PI Data Archive points for the current value of an Intellution multi-state digital block, 

use “M_CV” as the field name. 

Length 

Depending on the version of the PI API and the PI Data Archive, this interface supports an 

InstrumentTag attribute whose length is at most 32 or 1023 characters. The following table 

indicates the maximum length of this attribute for all the different combinations of PI API 

and PI Data Archive versions.  



PI Point Configuration 

40  

PI API PI Data Archive Maximum Length 

1.6.0.2 or higher 3.4.370.x or higher 1023 

1.6.0.2 or higher Below 3.4.370.x 32 

Below 1.6.0.2 3.4.370.x or higher 32 

Below 1.6.0.2 Below 3.4.370.x 32 

If the PI Data Archive version is earlier than 3.4.370.x or the PI API version is earlier than 

1.6.0.2, and you want to use a maximum InstrumentTag length of 1023, you need to 

enable the PI SDK. See Appendix B for information.  

If the NTF definition exceeds the InstrumentTag length limit, the extended descriptor can be 

used for defining the node and field names. If the NTF entry in the InstrumentTag is not 

complete, the ExDesc attribute will be checked. If the full NTF is specified in the 

InstrumentTag, then the interface does not check the ExDesc attribute for additional 

information – the interface already has all the information required. Using the ExDesc 

attribute for this purpose means the InstrumentTag will contain the Intellution tag name 

and the field and node names are defined in the ExDesc attribute. 

ExDesc 

Length 

Depending on the version of the PI API and the PI Data Archive, this Interface supports an 

ExDesc attribute whose length is at most 80 or 1023 characters. The following table indicates 

the maximum length of this attribute for all the different combinations of PI API and 

PI Data Archive versions.  

PI API PI Data Archive Maximum Length 

1.6.0.2 or higher 3.4.370.x or higher 1023 

1.6.0.2 or higher Below 3.4.370.x 80 

Below 1.6.0.2 3.4.370.x or higher 80 

Below 1.6.0.2 Below 3.4.370.x 80 

If the PI Data Archive version is earlier than 3.4.370.x or the PI API version is earlier than 

1.6.0.2, and you want to use a maximum ExDesc length of 1023, you need to enable the 

PI SDK. See Appendix B for information.  

Node and Field Definitions 

The extended descriptor can also be used for defining the node and field names when the 

NTF definition exceeds the length limit for InstrumentTag (see InstrumentTag description for 

more details).  

The following format should be used for defining the node and field names. 

NODE=node name, FIELD=field name 

All three (event=, node=, and field=) can be defined in the extended descriptor. The 

following example shows the syntax for a point specifying a trigger tag along with the node 

and field names (the order in which the parameters are defined is not important): 

EVENT=trigger tag, NODE=node id, FIELD=field id. 



 

PI Interface for GE iFix 41 

Performance Points  

For UniInt-based interfaces, the extended descriptor is checked for the string 

“PERFORMANCE_POINT”. If this character string is found, UniInt treats this point as a 

performance point. See the section called Scan Class Performance Points.  

Trigger-based Inputs  

For trigger-based input points, a separate trigger point must be configured. An input point is 

associated with a trigger point by entering a case-insensitive string in the extended descriptor 

(ExDesc) PI point attribute of the input point of the form: 

keyword=trigger_tag_name 

where keyword is replaced by “event” or “trig” and trigger_tag_name is replaced by the 

name of the trigger point. There should be no spaces in the string. UniInt automatically 

assumes that an input point is trigger-based instead of scan-based when the 

keyword=trigger_tag_name string is found in the extended descriptor attribute. 

An input is triggered when a new value is sent to the Snapshot of the trigger point. The new 

value does not need to be different than the previous Snapshot value to trigger an input, but 

the timestamp of the new value must be greater than (more recent than) or equal to the 

timestamp of the previous value. This is different than the trigger mechanism for output 

points. For output points, the timestamp of the trigger value must be greater than (not greater 

than or equal to) the timestamp of the previous value. 

Conditions can be placed on trigger events.  Event conditions are specified in the extended 

descriptor as follows: 

Event='trigger_tag_name' event_condition 

The trigger tag name must be in single quotes.  For example, 

Event='Sinusoid' Anychange 

will trigger on any event to the PI point sinusoid as long as the next event is different than the 

last event.  The initial event is read from the snapshot.   

The keywords in the following table can be used to specify trigger conditions. 

Event 
Condition 

Description 

Anychange Trigger on any change as long as the value of the current event is different than 
the value of the previous event.  System digital states also trigger events.  For 
example, an event will be triggered on a value change from 0 to “Bad Input,” and 
an event will be triggered on a value change from “Bad Input” to 0.   

Increment Trigger on any increase in value.  System digital states do not trigger events.  
For example, an event will be triggered on a value change from 0 to 1, but an 
event will not be triggered on a value change from “Pt Created” to 0.  Likewise, 
an event will not be triggered on a value change from 0 to “Bad Input.” 

Decrement Trigger on any decrease in value.  System digital states do not trigger events.  
For example, an event will be triggered on a value change from 1 to 0, but an 
event will not be triggered on a value change from “Pt Created” to 0.  Likewise, 
an event will not be triggered on a value change from 0 to “Bad Input.” 

Nonzero Trigger on any non-zero value.  Events are not triggered when a system digital 
state is written to the trigger point.  For example, an event is triggered on a value 
change from “Pt Created” to 1, but an event is not triggered on a value change 
from 1 to “Bad Input.” 



PI Point Configuration 

42  

Scan 

By default, the Scan attribute has a value of 1, which means that scanning is turned on for the 

point. Setting the scan attribute to 0 turns scanning off. If the scan attribute is 0 when the 

Interface starts, a message is written to the log and the point is not loaded by the Interface. 

There is one exception to the previous statement. 

If any PI point is removed from the Interface while the Interface is running (including setting 

the scan attribute to 0), SCAN OFF will be written to the PI point regardless of the value of 

the Scan attribute. Two examples of actions that would remove a PI point from an interface 

are to change the point source or set the scan attribute to 0. If an interface specific attribute is 

changed that causes the point to be rejected by the Interface, SCAN OFF will be written to the 

PI point. 

SourceTag 

A SourceTag is used in conjunction with an output point. An output point has Location2 set 

to 1. 

Shutdown 

The Shutdown attribute is 1 (true) by default. The default behavior of the PI Shutdown 

subsystem is to write the SHUTDOWN digital state to all PI points when PI is started. The 

timestamp that is used for the SHUTDOWN events is retrieved from a file that is updated by the 

Snapshot Subsystem. The timestamp is usually updated every 15 minutes, which means that 

the timestamp for the SHUTDOWN events will be accurate to within 15 minutes in the event of 

a power failure. For additional information on shutdown events, refer to PI Data Archive 

manuals.  

Note: The SHUTDOWN events that are written by the PI Shutdown subsystem are 

independent of the SHUTDOWN events that are written by the Interface when 

the /stopstat=Shutdown command-line parameter is specified.  

SHUTDOWN events can be disabled from being written to PI points when the PI Data Archive 

is restarted by setting the Shutdown attribute to 0 for each point. Alternatively, the default 

behavior of the PI Shutdown Subsystem can be changed to write SHUTDOWN events only for 

PI points that have their Shutdown attribute set to 0. To change the default behavior, edit the 

\PI\dat\Shutdown.dat file, as discussed in PI Data Archive manuals. 

Bufserv and PIBufss 

It is undesirable to write shutdown events when buffering is being used. Bufserv and PIBufss 

are utility programs that provide the capability to store and forward events to a 

PI Data Archive, allowing continuous data collection when the PI Data Archive is down for 

maintenance, upgrades, backups, and unexpected failures. That is, when the PI Data Archive 

is shutdown, Bufserv or PIBufss will continue to collect data for the Interface, making it 

undesirable to write SHUTDOWN events to the PI points for this Interface. Disabling Shutdown 

is recommended when sending data to a Highly Available PI Data Archive Collective. Refer 

to the Bufserv or PIBufss manuals for additional information. 



 

PI Interface for GE iFix 43 

DataSecurity 

The PI identity in the PI trust that authenticates the interface must be granted read access by 

the DataSecurity attribute of every PI point that the interface services. If the interface is used 

without a buffering application, write access also must be granted. (If the interface is used 

with a buffering application, the buffering application requires write access but the interface 

does not.) 

PtSecurity 

The PI identity in the PI trust that authenticates the interface must be granted read access by 

the PtSecurity attribute of every PI point that the interface services. 

Output Points 

Output points control the flow of data from the PI Data Archive to any destination that is 

external to the PI Data Archive, such as a PLC or a third-party database. For example, to 

write a value to a register in a PLC, use an output point. Each interface has its own rules for 

determining whether a given point is an input point or an output point. There is no de facto PI 

point attribute that distinguishes a point as an input point or an output point. 

Security Note: When output points are required, implement an output point 
whitelist, which provides a defense against accidental or malicious changes to the 
control system. 

Outputs are triggered for UniInt-based interfaces. That is, outputs are not scheduled to occur 

on a periodic basis. There are two mechanisms for triggering an output. 

As of UniInt 3.3.4, event conditions can be placed on triggered outputs. The conditions are 

specified using the same event condition keywords in the extended descriptor as described 

under “Trigger-Based Inputs. The only difference is that the trigger point is specified with the 

SourceTag attribute instead of with the “event” or “trig” keywords. Otherwise, the behavior 

of event conditions described in section Trigger-Based Inputs is identical for output points. 

For output points, event conditions are specified in the extended descriptor as follows: 

event_condition 

Trigger Method 1 (Recommended) 

For trigger method 1, a separate trigger point must be configured. The output point must have 

the same point source as the interface. The trigger point can be associated with any point 

source, including the point source of the interface. Also, the point type of the trigger point 

does not need to be the same as the point type of the output point. 

The output point is associated with the trigger point by setting the SourceTag attribute of the 

output point equal to the tag name of the trigger point. An output is triggered when a new 

value is sent to the Snapshot of the trigger point. The new value does not need to be different 

than the previous value that was sent to the Snapshot to trigger an output, but the timestamp 

of the new value must be more recent than the previous value. If no error is indicated, then 

the value that was sent to the trigger point is also written to the output point. If the output is 

unsuccessful, then an appropriate digital state that is indicative of the failure is usually written 



PI Point Configuration 

44  

to the output point. If an error is not indicated, the output still may not have succeeded 

because the interface may not be able to tell with certainty that an output has failed.  

Trigger Method 2 

For trigger method 2, a separate trigger point is not configured. To trigger an output, write a 

new value to the Snapshot of the output point itself. The new value does not need to be 

different than the previous value to trigger an output, but the timestamp of the new value 

must be more recent than the previous value.  

Trigger method 2 may be easier to configure than trigger method 1, but trigger method 2 has 

a significant disadvantage. If the output is unsuccessful, there is no point to receive a digital 

state that is indicative of the failure, which is very important for troubleshooting. 

 



 

PI Interface for GE iFix 45 

Chapter 8. Configuring OSI_iFIXmonitor Program 

Any program that uses the Intellution EDA library for iFIX, like this interface, can prevent 

iFIX itself from starting. To address this problem, the OSI_iFIXmonitor program 

(OSI_iFIXmonitor.exe) is included in the interface installation kit and the interface provides 

options to coordinate with iFIX that require configuration of the OSI_iFIXmonitor program 

as a task that iFIX starts and stops. This section explains how to add OSI_iFIXmonitor to the 

iFIX task list. Additional information about the problem and OSI_iFIXmonitor program is in 

the Principles of Operation section and Appendix F: OSI_iFIXmonitor Program. 

The interface installation kit stores a copy of the OSI_iFIXmonitor program in the same 

directory as the interface (see section Interface Installation Directory. To add 

OSI_iFIXmonitor to the iFIX task list, take the following steps. 

1. Open the Intellution System Configuration Utility (SCU). 

2. On the Configuration menu, select Tasks. 

 



Configuring OSI_iFIXmonitor Program 

46  

3. The Task Configuration dialog box opens and shows the tasks that are already 

configured. 

 

4. To add a new task, first change the Filename box to the full path to the 

OSI_iFIXmonitor program. Click  to open a file browser, select the program 

file, and the path will be entered in the Filename box. Or, type the full path to the 

OSI_iFIXmonitor program in the Filename box. 

5. The Command Line box contains command line parameters for the task. Typically, 

no command line parameters are needed for OSI_iFIXmonitor. Delete any text in the 

Command Line box. Parameters for the OSI_iFIXmonitor program are discussed in 

Appendix F: OSI_iFIXmonitor Program. 

6. In the Start Up Mode area, select the Background option. If iFIX is configured to 

run as a service, Background must be selected. When iFIX is not configured as a 

service, the other options are permitted, but there is usually no reason to use them. 



 

PI Interface for GE iFix 47 

7. Click Add to create a new entry in Configured Tasks box. 

 

8. Click OK to close the Task Configuration dialog box. 

9. Exit from the System Configuration Utility and save changes. 

10. If iFIX is running, it must be stopped and restarted to start the OSI_iFIXmonitor task. 

The OSI_iFIXmonitor program writes messages to the log file when it starts or stops, 

which can be used to confirm that OSI_iFIXmonitor is being started and stopped by 

iFIX. Also, the list on the Windows Task Manager Processes tab should include 

OSI_iFIXmonitor.exe while iFIX is running. 

 





 

PI Interface for GE iFix 49 

Chapter 9. Startup Command File 

Command-line parameters can begin with a / or with a -. For example, the /ps=M and  

-ps=M command-line parameters are equivalent. 

For Windows, command file names have a .bat extension. The Windows continuation 

character (^) allows for the use of multiple lines for the startup command. The maximum 

length of each line is 1024 characters (1 kilobyte). The number of parameters is unlimited, 

and the maximum length of each parameter is 1024 characters. 

The PI Interface Configuration Utility (PI ICU) provides a tool for configuring the Interface 

startup command file. 

Configuring the Interface with PI ICU 

Note: PI ICU requires PI 3.3 or greater. 

The PI Interface Configuration Utility provides a graphical user interface for configuring PI 

interfaces. If the Interface is configured by the PI ICU, the batch file of the Interface (PI-

EDA.bat) will be maintained by the PI ICU and all configuration changes will be kept in that 

file and the module database.  The procedure below describes the necessary steps for using PI 

ICU to configure the PI IntFix Interface. 

From the PI ICU menu, select Interface, then NewWindows Interface Instance from EXE..., 

and then Browse to the PI-EDA.exe executable file.  Then, enter values for Host 

PI Data server/collective, Point Source and Interface ID#.  A window such as the following 

opens:  

 



Startup Command File 

50  

“Interface name as displayed in the ICU (optional)” will have PI- pre-pended to this name 

and it will be the display name in the services menu. 

Click on Add.   

The following display should appear:  

 

Note that in this example the Host PI Data server is MKELLYd630W7. To configure the 

interface to communicate with a remote PI Data server, select ‘Interface => Connections…’ 

item from PI ICU menu and select the default server. If the remote node is not present in the 

list of servers, it can be added.   

Once the interface is added to PI ICU, near the top of the main PI ICU screen, the Interface 

Type should be IntFix. If not, use the drop-down box to change the Interface Type to be 
IntFix  

Click on Apply to enable the PI ICU to manage this copy of the IntFix Interface. 

 

The next step is to make selections in the interface-specific tab (i.e. “IntFix”) that allow the 

user to enter values for the startup parameters that are particular to the PI IntFix Interface.   



 

PI Interface for GE iFix 51 

 

Since the PI IntFix Interface is a UniInt-based interface, in some cases the user will need to 

make appropriate selections in the UniInt page.  This page allows the user to access UniInt 

features through the PI ICU and to make changes to the behavior of the interface.   

To set up the interface as a Windows Service, use the Service page.  This page allows 

configuration of the interface to run as a service as well as to starting and stopping of the 

interface. The interface can also be run interactively from the PI ICU.  To do that go to menu, 

select the Interface item and then Start Interactive. 

For more detailed information on how to use the above-mentioned and other PI ICU pages 

and selections, please refer to the PI Interface Configuration Utility User Manual.  The next 

section describes the selections that are available from the intfix page.  Once selections have 

been made on the PI ICU GUI, press the Apply button in order for PI ICU to make these 

changes to the interface’s startup file.   

Intfix Interface page 

Since the startup file of the PI IntFix Interface is maintained automatically by the PI ICU, use 

the intfix page to configure the startup parameters and do not make changes in the file 

manually.  The following is the description of interface configuration parameters used in the 

PI ICU Control and corresponding manual parameters. 



Startup Command File 

52  

Intfix 

  

The PI IntFix ICU Control for PI ICU has three tabs. A yellow text box indicates that an 

invalid value has been entered, or that a required value has not been entered. 

General Settings 

Startup delay (seconds) 

Enabling the check box allows you to specify how many seconds the interface waits on 

startup before connecting to Intellution. The default is 120. The delay allows the Intellution 

software to fully start before trying to connect (/W=delay, default:120). 

Enable local system time 

The default behavior of the interface is to use the PI Data Archive system time for the data 

timestamp. Enable this check box to have the interface use the local interface node system 

time for timestamp source. 

This option must be used with caution. If the local system time is ahead of the 

PI Data Archive, the data may be rejected. PI discards “future” data, which is defined as any 

event more than 10 minutes ahead of the PI Data Archive time. This option should only be 

used if there is a compelling reason to do so (/LS) 

Stop interface when iFix software has stopped 

This option will cause the interface to stop if the iFix software is stopped (/STOPWITHIFIX). 



 

PI Interface for GE iFix 53 

Debug Levels 

The interface has the option of enabling debug messaging for specific operations. Selecting 

Max debug level enables messaging for all specific operations plus additional messaging. 

Click on the appropriate check box to enable the desired debug messages. Note that enabling 

Point checking will slow interface startup proportional to the number of points; specifically, 

more points means slower interface startup (/DB=#,#,… Range:0-6). 

Alarm/Event Messages 

Note: When alarm/event message data collection is enabled, all points belonging to 
scan class one will be used for this purpose.  

It is recommended that a separate copy of the interface be run specifically for the 
purpose of collecting alarm/event message data. 

Enable alarm/event msg data from  

The check box allows you to configure the interface to collect alarm/event message data. 

Once this check box is active, it will enable the radio buttons for specifying which WUSERQ 

to query (/EM Default=WUSERQ1). 

String position for alarm/event data  

In order to collect alarm/event data on a tag-by-tag basis, the string position and length of the 

data value within the message string must be specified.  

Refer to the Alarm Common Message Format Configuration box accessed through the 

Intellution System Configuration Utility. On the Configure menu, click Alarms to open the 

Alarm Configuration dialog box. Click Advanced to open the Advanced Alarm 

Configuration box. Click Common Format to open the following dialog box: 

 

Using the preceding illustration of the Common Message Format Configuration dialog box 

as an example, note the starting string position of the Value column is 68 and the Value string 



Startup Command File 

54  

length is 13. The starting string position is calculated by adding the string length for Date, 

Time, Node, Tagname, and Alarm Type. The Column Order list does not change this 

calculation as the interface receives alarm/event messages with columns in the order specified 

in the Columns area; the Column Order list is of no consequence for the interface 

(/C=start:length). 

Cluster Failover 

The interface supports two forms of redundancy. One redundancy option is based on 

Microsoft Cluster server. See Appendix D: Cluster Failover for a complete discussion on 

operational requirements and configurations. 

 

Enable interface cluster failover 

Select this check box to use cluster failover. Upon enabling this box, the failover 

configuration options will become active (/FO). 

Cluster Mode: 

The interface has the ability to operate with a preference for running on a specified cluster 

node if at all possible. This is referred to as running with Primary bias. This behavior may be 

preferred if one of the cluster nodes has proven to be more stable or otherwise performs better 

than the others.  

If Primary bias is selected in the Cluster mode list, then the This node is the option will be 

enabled. In this box, you must select whether this cluster node is the primary or backup. Note 

it is critical that only one cluster node be specified as the primary. If more than one cluster 

node is specified as the primary node, they will compete for ownership of the cluster group 

resource, sending the interface into an endless loop of failovers.  



 

PI Interface for GE iFix 55 

A Cluster mode of No bias means the interface does not attempt to control which node runs 

the active interface. As a result, whichever node owns the cluster resource on startup will be 

the active interface. This will remain so until there is a problem that causes failover or a user 

uses the Cluster Manger to intentionally manipulate the configuration. The default value for 

this option is No Bias (/CM=0 for Primary and /CM=1 for No Bias, default=1). 

This Node is the: 

This option is enabled when Primary bias is specified for the Cluster Mode. In this box, select 

whether the current node is the primary or backup node for failover operation. The default 

value for this option is Backup (/PR=0 for primary and /PR=1 for backup, Default:1). 

Failover Mode: 

The interface has the option of running in either warm or hot failover mode. This behavior 

determines whether or not an interface running as a backup will query Intellution for point 

updates.  

Warm failover mode means the interface does not query for point updates when operating as 

the backup node. Hot failover mode tells the interface it should query Intellution for point 

updates at all times but send them only when active.  

Running in hot failover mode has the advantage of minimizing the risk of missing data on 

failover. However, to minimize loading on inactive cluster nodes, running in warm failover 

mode is recommended. The default value for this option is Warm (/FM=0 for hot and /FM=1 

for warm, Default:1) 

Resource number for APIOnline: 

The resource number is used to indicate the name of the apionline cluster group resource for 

the interface. This number will be appended to ‘apionline’ and used for initialization on 

interface startup. For example, if a value of 1 is entered, the interface will look for apionline1 

as the cluster group resource. A negative number tells the interface that the resource has been 

defined as simply apionline. A procedure for creating cluster group resources can be found in 

the section Group and Resource Creation Using Cluster Administrator (/RN=#). 

Active Interface node point: 

A PI string point can be specified to receive the name of the node where the active interface 

is running. The button to the right of this option can be used to launch a PI point search for 

selecting the desired point (/CN=<tagname>). 

The active cluster point should be configured as follows: 

Attribute Value 

PointSource L 

PointType string 

Compressing 0 

ExcDev 0 

In addition to receiving the name of the active interface node, this point will also receive 

shutdown events whenever the interface is stopped on any of the cluster nodes. The shutdown 

event will also contain the name of the machine in the following format: Shutdown 
hostname 



Startup Command File 

56  

Health Point ID 

This value is used when creating UniInt health points for an interface that uses Non-UniInt 

interface failover.  It is used for the Location3 point attribute for UniInt health points. 

(/UHT_ID=#) 

UniInt Failover Enabled 

If UniInt Failover is enabled, the following screen will appear when the Cluster Failover tab 

is selected: 

 



 

PI Interface for GE iFix 57 

OSI_iFixMonitor 

To use these options, OSI_iFixMonitor must be configured as an Intellution task (see section 

Configuring OSI_iFIXmonitor Program) and the interface must be setup as a service. 

 

Do not load Intellution libraries until local Intellution software is running 

Select Do not load Intellution libraries until local Intellution software is running to configure 

the PI IntFix Interface to verify that Intellution (iFIX) is running on the local node before 

loading the Intellution libraries. When this option is selected and the PI IntFix Interface starts 

before iFIX, the Intellution libraries will not be loaded and, therefore, the PI IntFix Interface 

will not prevent iFIX from starting (/DelayLoadEDA). 

OSI_iFixMonitor controls the interface service 

Checking this box puts OSI_iFixMonitor in control of the interface service and enables the 

configuration of the OSI_iFixMonitor program.  There are two choices to pick from which 

dictate how the interface will be controlled. 

Stop then restart the Interface 

The Stop then restart the Interface option configures OSI_iFIXmonitor to manage the PI 

IntFix Interface service. When iFIX starts, iFIX starts OSI_iFIXmonitor, which starts the PI 

IntFix Interface service (if it is not already running). When iFIX stops, it signals 

OSI_iFIXmonitor to terminate and OSI_iFIXmonitor stops the PI IntFix Interface service, 

waits for the PI IntFix Interface service to actually terminate, then restarts the PI IntFix 

Interface service.  



Startup Command File 

58  

Stop the Interface 

The Stop the interface option configures OSI_iFIXmonitor to manage the PI IntFix Interface 

service. When iFIX starts, iFIX starts OSI_iFIXmonitor, which starts the PI IntFix Interface 

service (if it is not already running). When iFIX stops, it signals OSI_iFIXmonitor to 

terminate and OSI_iFIXmonitor stops the PI IntFix Interface service. The PI IntFix Interface 

service remains stopped until iFIX is restarted.  

When local Intellution starts, wait # seconds before starting the Interface 

When using the Stop the Interface option, a wait time can be entered for the number of 

seconds to wait after iFIX starts before starting the interface. The default is not to wait but 

start the interface immediately once the iFIX software is running. 

Additional Parameters 

This section is provided for any additional parameters that the current ICU Control does not 

support. 

 

Note: The UniInt Interface User Manual includes details about other command-line 
parameters, which may be useful. 



 

PI Interface for GE iFix 59 

Command-line Parameters 

Note: The PI Universal Interface (UniInt) User Guide includes details about other 
command-line parameters, which may be useful. 

Parameter Description 

/c=start:length 

Optional 

*Used in conjunction with 
/em 

Designate the position of data within the alarm/event string. The 
start value is 1 based. 

/CacheMode 

Required 

Default: Not Defined 

Required for disconnected startup operation.  If defined, the 
/CacheMode startup parameter indicates that the interface will 

be configured to utilize the disconnected startup feature. 

/CachePath=path 

Optional 

Default: Not Defined 

Used to specify a directory in which to create the point caching 
files. The directory specified must already exist on the target 
machine. By default, the files are created in the same location as 
the interface executable. 

If the path contains any spaces, enclose the path in quotes. 

Examples: 

/CachePath=D:\PIPC\Interfaces\CacheFiles 

/CachePath=D:/PIPC/Interfaces/CacheFiles 

/CachePath=D:/PIPC/Interfaces/CacheFiles/ 

 

Examples with space in path name: 

/CachePath=”D:\Program Files\PIPC\MyFiles” 

/CachePath=”D:/Program Files/PIPC/MyFiles” 

/CachePath=”D:/Program Files/PIPC/MyFiles/” 

/CacheSynch=# 

Optional 

Default: 250 ms 

NOTE: Care must be taken when modifying this parameter. This 

value must be less than the smallest scan class period defined with 
the /f parameter. If the value of the /CacheSynch parameter 

is greater than the scan class value, input scans will be missed 
while the point cache file is being synchronized. 

The optional /CacheSynch=# startup parameter specifies the 

time slice period in milliseconds (ms) allocated by UniInt for 
synchronizing the interface point cache file with the 
PI Data Archive. By default, the interface will synchronize the point 
cache if running in the disconnected startup mode. UniInt allocates 
a maximum of # ms each pass through the control loop 
synchronizing the interface point cache until the file is completely 
synchronized.  

Synchronization of the point cache file can be disabled by setting 
the value /CacheSynch=0. The minimum synchronization 

period when cache synchronization is enabled is 50ms Whereas, 
the maximum synchronization period is 3000ms (3s).  Period 
values of 1 to 49 will be changed by the interface to the minimum 
of 50ms and values greater than 3000 will be set to the maximum 
interval value of 3000ms.  

Default: 250 ms 

Range:  {0, 50 – 3000}  time in milliseconds 

Example: /CacheSynch=50 (use a 50ms interval) 

                /CacheSynch=3000 (use a 3s interval) 

                /CacheSynch=0 (do not synchronize the cache) 



Startup Command File 

60  

Parameter Description 

/cm=# 

Optional 

*Used in conjunction with 
/fo 

Default=1 

Cluster mode, used for cluster failover. Specifies whether the 
interface has a bias toward running on the primary node (/CM=0) 

or no bias (/CM=1).   

/cn=tagname 

Optional 

*Used in conjunction with 
/fo 

When cluster failover is enabled, a PI Data Archive string point can 
be specified to receive the name of the node where the active 
interface is running. In addition to receiving the name of the active 
interface node, this point will also receive shutdown events 
whenever the interface is stopped on any of the cluster nodes. The 
shutdown event will also contain the name of the machine in the 
following format: Shutdown hostname. 

/db=# 

or 

/db=#,#,... 

Optional 

The interface has the option to enable debug messaging for 
specific operations. 

Debug options: 

1 – Maximum debug message level. 

2 – Point checking on startup and point edits. Note this will slow 
interface startup proportional to the number of points (more points 
means slower startup). 

3 – Input data. 

4 – Output data. 

5 – Alarm/event message data collection. 

6 – Cluster failover. 

/DelayLoadEDA 

Optional 

When the interface is installed on an iFIX node, once the interface 
loads the EDA library and calls it, the EDA library acquires 
resources whose existence will prevent iFIX from starting if it is not 
already running. 

If this parameter is not used, when the interface starts, the 
interface loads the EDA library and begins calling it. Consequently, 
if the interface starts before iFIX, iFIX will refuse to start. 

The /DelayLoadEDA parameter prevents the interface from 

loading or calling the EDA library until iFIX is verified to be running. 
Therefore, if the interface starts before iFIX, the interface will not 
prevent iFIX from starting.  

Note: For the interface to verify that iFIX is running without using 

the EDA library, the OSI_iFIXmonitor program must be configured 
in iFIX as a task that iFIX starts. OSI_iFIXmonitor is only needed if 
the /DelayLoadEDA parameter is used. 

After the interface detects that iFIX is running, it loads and begins 
using the EDA library. Once acquired, the resources used by the 
EDA library cannot be released dynamically. If iFIX stops, iFIX will 
refuse to restart until the interface terminates, which releases the 
EDA library resources. See the companion parameter 
/StopWithFIX. 



 

PI Interface for GE iFix 61 

Parameter Description 

/ec=# 

Optional 

The first instance of the /ec parameter on the command-line is 

used to specify a counter number, #, for an I/O Rate point. If the # 

is not specified, then the default event counter is 1. Also, if the /ec 

parameter is not specified at all, there is still a default event 
counter of 1 associated with the interface. If there is an I/O Rate 
point that is associated with an event counter of 1, every interface 
that is running without /ec=# explicitly defined will write to the 

same I/O Rate point. Either explicitly define an event counter other 
than 1 for each instance of the interface or do not associate any I/O 
Rate points with event counter 1. Configuration of I/O Rate points 
is discussed in the section called I/O Rate Point. 

For interfaces that run on Windows nodes, subsequent instances 
of the /ec parameter may be used by specific interfaces to keep 

track of various input or output operations. Subsequent instances 
of the /ec parameter can be of the form /ec*, where * is any 

ASCII character sequence. For example, /ecinput=10, 

/ecoutput=11, and /ec=12 are legitimate choices for the 

second, third, and fourth event counter strings. 

/em 

Optional 

Enable data collection for alarm/event messages. When specified, 
all points belonging to scan class 1 will be used to record alarm 
data on a point for point basis. In addition, the interface can be 
configured to send all alarm/event messages to a single PI string 
point (/al=tagname).  

The WUSERQ used for alarm/event data collection is specified 
using the /qn switch. 

/f=SS.## 

 or 

/f=SS.##,SS.## 

or 

/f=HH:MM:SS.## 

or 

/f=HH:MM:SS.##, 

hh:mm:ss.## 

 

Required for reading scan-
based inputs 

The /f parameter defines the time period between scans in terms 

of hours (HH), minutes (MM), seconds (SS) and sub-seconds (##). 

The scans can be scheduled to occur at discrete moments in time 

with an optional time offset specified in terms of hours (hh), 

minutes (mm),  seconds (ss) and sub-seconds (##). If HH and MM 

are omitted, then the time period that is specified is assumed to be 
in seconds.  

Each instance of the /f parameter on the command-line defines a 

scan class for the interface. There is no limit to the number of scan 
classes that can be defined. The first occurrence of the /f 

parameter on the command-line defines the first scan class of the 
interface; the second occurrence defines the second scan class, 
and so on. PI Points are associated with a particular scan class via 
the Location4 PI Point attribute. For example, all PI Points that 
have Location4 set to 1 will receive input values at the frequency 
defined by the first scan class. Similarly, all points that have 
Location4 set to 2 will receive input values at the frequency 
specified by the second scan class, and so on.  

Two scan classes are defined in the following example: 

/f=00:01:00,00:00:05 /f=00:00:07 

or, equivalently: 

/f=60,5 /f=7 

The first scan class has a scanning frequency of 1 minute with an 
offset of 5 seconds, and the second scan class has a scanning 
frequency of 7 seconds. When an offset is specified, the scans 
occur at discrete moments in time according to the formula: 

scan times = (reference time) + n(frequency) + offset 

where n is an integer and the reference time is midnight on the day 
that the interface was started. In the above example, frequency is 
60 seconds and offset is 5 seconds for the first scan class. This 
means that if the interface was started at 05:06:06, the first scan 
would be at 05:07:05, the second scan would be at 05:08:05, and 



Startup Command File 

62  

Parameter Description 

so on. Since no offset is specified for the second scan class, the 
absolute scan times are undefined. 

The definition of a scan class does not guarantee that the 
associated points will be scanned at the given frequency. If the 
interface is under a large load, then some scans may occur late or 
be skipped entirely. See the section “Performance Summaries” in 
the UniInt Interface User Manual.doc for more information on 
skipped or missed scans. 

Sub-second Scan Classes 

Sub-second scan classes can be defined on the command-line, 
such as 

/f=0.5 /f=00:00:00.1 

where the scanning frequency associated with the first scan class 
is 0.5 seconds and the scanning frequency associated with the 
second scan class is 0.1 of a second. 

Similarly, sub-second scan classes with sub-second offsets can be 
defined, such as 

/f=0.5,0.2 /f=1,0 

Wall Clock Scheduling 

Scan classes that strictly adhere to wall clock scheduling are now 
possible. This feature is available for interfaces that run on 
Windows and/or UNIX. Previously, wall clock scheduling was 

possible, but not across daylight saving time. For example, 

/f=24:00:00,08:00:00 corresponds to 1 scan a day starting 

at 8 AM. However, after a Daylight Saving Time change, the scan 
would occur either at 7 AM or 9 AM, depending upon the direction 
of the time shift. To schedule a scan once a day at 8 AM (even 
across daylight saving time), use 
/f=24:00:00,00:08:00,L. The ,L at the end of the scan 

class tells UniInt to use the new wall clock scheduling algorithm. 

/fm=# 

Optional 

*Used in conjunction with 
/fo 

Default=1 

The interface has the option of running in either warm or hot 
failover mode. This behavior determines whether or not an 
interface running as a backup will query Intellution for point 
updates.  

Warm failover mode means the interface does not query for point 
updates when operating as the backup node. Hot failover mode 
tells the interface it should query Intellution for point updates at all 
times but send them only when active.  

The advantage of running in hot failover mode is that you minimize 
the risk of missing data on failover. However, to minimize loading 
on inactive cluster nodes, OSIsoft recommends running in warm 
failover mode. The default value for this option is Warm. 

0 -> Hot 

1 -> Warm 

/fo 

Optional 

Enables cluster failover support.  

A complete discussion on failover operation and configuration can 
be found in Appendix D: Cluster Failover. 

/h Running the interface from a command prompt with /h as the only 

parameter causes the interface to print its version and a list of 
parameters – essentially an on line summary of this table.   

/help or /? Running the interface from a command prompt with /help or /? 

As the only parameter causes UniInt to print its version, a list of 
UniInt Service configuration parameters, and a list of UniInt generic 
interface parameters. 



 

PI Interface for GE iFix 63 

Parameter Description 

/host=host:port 

Required  

 

The /host parameter specifies the PI Data Archive node.  Host 

is the IP address or the domain name of the PI Data Archive node.  

Port is the port number for TCP/IP communication. The port is 

always 5450. It is recommended to explicitly define the host and 
port on the command-line with the /host parameter. 

Nevertheless, if either the host or port is not specified, the interface 
will attempt to use defaults. 

 

Examples: 
 
The interface is running on an interface node, the domain name of 
the PI Data Archive node is Marvin, and the IP address of Marvin is 
206.79.198.30. Valid /host parameters would be: 

/host=marvin 

/host=marvin:5450 

/host=206.79.198.30 

/host=206.79.198.30:5450 

/id=x 

Highly Recommended 

The /id parameter is used to specify the interface identifier.  

The interface identifier is a string that is no longer than 9 
characters in length. UniInt concatenates this string to the header 
that is used to identify error messages as belonging to a particular 
interface. See the Appendix A Error and Informational Messages 
for more information. 

UniInt always uses the /id parameter in the fashion described 

above. This interface also uses the /id parameter to identify a 

particular interface copy number that corresponds to an integer 
value that is assigned to one of the Location code point attributes, 
most frequently Location1. For this interface, use only numeric 
characters in the identifier. For example, 

/id=1 

/ls 

Optional 

The default behavior of the interface is to use the PI Data Archive 
system time for the data timestamp. Use /ls to specify that the 

interface should use the local interface node system time for 
timestamp source. 

This option must be used with caution. If the local system time is 
ahead of the PI Data Archive, the data may be rejected. PI 
discards “future” data, which is defined as any event more than 10 
minutes ahead of the PI Data Archive time. This option should only 
be used if there is a compelling reason to do so.   

/pr=# 

Optional 

*Used in conjunction with 
/fo and /cm=0 

Default=1 

When cluster failover is enabled and the cluster mode is set for 
primary bias, this switch is used to designate the local node as 
primary (/pr=0) or backup (/pr=1). 

/ps=x 

Required 

The /ps parameter specifies the point source for the interface. X 

is not case sensitive and can be any single or multiple character 
string. For example, /ps=P and /ps=p are equivalent.  The 

length of X is limited to 100 characters by UniInt. X can contain any 

character except ‘*’ and ‘?’. 

The point source that is assigned with the /ps parameter 

corresponds to the PointSource attribute of individual PI Points. 
The interface will attempt to load only those PI points with the 
appropriate point source.  

If the PI API version being used is prior to 1.6.x or the 

PI Data Archive version is prior to 3.4.370.x, the PointSource is 

limited to a single character unless the SDK is being used. 



Startup Command File 

64  

Parameter Description 

/qn=# 

Optional  

*Used in conjunction with 
/em 

Default: 1 

When alarm/event message data collection is enabled, this switch 
is used to specify whether WUSERQ1 (/qn=1) or WUSERQ2 

(/qn=2) is used for the data source. 

/rn=# 

Optional 

*Used in conjunction with 
/fo 

The resource number is used to indicate the name of the apionline 
cluster group resource for the interface. This number will be 
appended to ‘apionline’ and used for initialization on interface 
startup. For example, if you enter a value of 1, the interface will 
look for apionline1 as the cluster group resource. A negative 
number tells the interface that the resource has been defined as 
simply apionline. A procedure for creating cluster group resources 
can be found in the section Group and Resource Creation Using 
Cluster Administrator. 

/sio 

Optional 

The /sio parameter stands for “suppress initial outputs.” The 

parameter applies only for interfaces that support outputs. If the 
/sio parameter is not specified, the interface will behave in the 

following manner. 

When the interface is started, the interface determines the current 
Snapshot value of each output point. Next, the interface writes this 
value to each output point. In addition, whenever an individual 
output point is edited while the interface is running, the interface 
will write the current Snapshot value to the edited output point. 

This behavior is suppressed if the /sio parameter is specified on 

the command-line. That is, outputs will not be written when the 
interface starts or when an output point is edited. In other words, 
when the /sio parameter is specified, outputs will only be written 

when they are explicitly triggered. 



 

PI Interface for GE iFix 65 

Parameter Description 

/stopstat=digstate 

or 

/stopstat 

 

/stopstat only is 

equivalent to 

/stopstat="Intf 

Shut" 

 

Optional 

Default = no digital state 
written at shutdown. 

If /stopstat=digstate is present on the command line, then 

the digital state, digstate, will be written to each PI Point when 

the interface is stopped. For a PI Data Archive, digstate must 

be in the system digital state table. . UniInt will use the first 
occurrence of digstate found in the table. 

If the /stopstat parameter is present on the startup command 

line, then the digital state “Intf Shut” will be written to each PI 

Point when the interface is stopped.  

If neither /stopstat nor /stopstat=digstate is specified 

on the command line, then no digital states will be written when the 
interface is shut down. 

Note:  The /stopstat parameter is disabled If the 

interface is running in a UniInt failover configuration as 
defined in the UniInt Failover Configuration section of this 

manual.  Therefore, the digital state, digstate, will not be 

written to each PI Point when the interface is stopped.  This 
prevents the digital state being written to PI Points while a 
redundant system is also writing data to the same PI Points.  
The /stopstat parameter is disabled even if there is only 

one interface active in the failover configuration. 

Examples: 

/stopstat=shutdown 

/stopstat=”Intf Shut” 

The entire digstate value should be enclosed within double 

quotes when there is a space in digstate. 

/StopWithFIX 

Optional 

When the interface is installed on an iFIX node, once the interface 
loads the EDA library and calls it, the EDA library acquires 
resources whose existence will prevent iFIX from starting if it is not 
already running. Once acquired, the resources used by the EDA 
library cannot be released dynamically and are only released when 
the interface terminates. If iFIX stops after the interface begins 
calling the EDA library, iFIX will refuse to restart until all EDA client 
programs, including the interface, terminate and consequently 
release the EDA library resources. 

The /StopWithFIX parameter causes the interface to terminate 

itself when it detects that iFIX has changed from running to 
stopped. When the interface terminates, the EDA library resources 
are released, so iFIX will not be prevented from restarting. 

Note that the interface does not simply check for iFIX not running; 

iFIX must transition from running to stopped for the interface to 
self-terminate. Otherwise, the interface would immediately 
terminate if it were started before iFIX. When the interface is (or 
can be) started before iFIX, the companion parameter 
/DelayLoadEDA must also be used to prevent the interface from 
using the EDA library before iFIX starts. 

Note: This parameter causes the interface to terminate. If the 

interface is configured as a Windows service (the usual case), do 
not use this parameter. Instead, configure the OSI_iFIXmonitor 
program to control the interface service. See section Configuring 
the Interface with PI ICU or Appendix F: OSI_iFIXmonitor Program. 



Startup Command File 

66  

Parameter Description 

/UFO_ID=# 

 

Required for UniInt failover 
phase 1 or 2 

Failover ID.  This value must be different from the Failover ID of the 
other interface in the failover pair.  It can be any positive, non-zero 
integer. 

/UFO_Interval=# 

 

Optional 

Default: 1000 for phase 1 
failover 

Default: 5000 for phase 2 
failover 

 

Valid values are 50-20000. 

Failover Update Interval 

Specifies the heartbeat update interval in milliseconds and must be 
the same on both interface computers. 

This is the rate at which UniInt updates the failover heartbeat 
points as well as how often UniInt checks on the status of the other 
copy of the interface.  

/UFO_OtherID=# 

 

Required for UniInt failover 
phase 1 or 2 

Other Failover ID.  This value must be equal to the Failover ID 
configured for the other interface in the failover pair. 

/UFO_Sync=path/[fi

lename] 

 

Required for UniInt 
Interface Level Failover 
Phase 2 synchronization. 

 

Any valid pathname / any 
valid filename 

The default filename is 
generated as 
executablename_pointsour
ce_interfaceID.dat 

The Failover File Synchronization Filepath and Optional Filename 
specify the path to the shared file used for failover synchronization 
and an optional filename used to specify a user defined filename in 
lieu of the default filename.  

 

The path to the shared file directory can be a fully qualified 
machine name and directory, a mapped drive letter, or a local path 
if the shared file is on one of the interface nodes. The path must be 

terminated by a slash ( / ) or backslash ( \ ) character. If no d 

terminating slash is found, in the /UFO_Sync parameter, the 

interface interprets the final character string as an optional 
filename.  

The optional filename can be any valid filename. If the file does not 
exist, the first interface to start attempts to create the file. 

Note: If using the optional filename, do not supply a terminating 
slash or backslash character. 

If there are any spaces in the path or filename, the entire path and 
filename must be enclosed in quotes.  

Note: If you use the backslash and path separators and enclose 

the path in double quotes, the final backslash must be a double 

backslash (\\). Otherwise the closing double quote becomes part 

of the parameter instead of a parameter separator. 

Each node in the failover configuration must specify the same path 
and filename and must have read, write, and file creation rights to 
the shared directory specified by the path parameter.  

The service that the interface runs against must specify a valid 
logon user account under the “Log On” tab for the service 
properties. 

/UFO_Type=type 

 

Required for UniInt failover 
phase 2. 

The Failover Type indicates which type of failover configuration the 
interface will run. The valid types for failover are HOT, WARM, and 
COLD configurations. 

If an interface does not supported the requested type of failover, 
the interface will shut down and log an error to the log file stating 
the requested failover type is not supported. 



 

PI Interface for GE iFix 67 

Parameter Description 

/uht_id=# 

Optional 

Required  if any  type of 
failover other than UniInt 
failover phase 1 or 2 is 
supported. 

The /uht_id=# command-line parameter is used to specify a 

unique ID for interfaces that are run in a redundant mode without 
using the UniInt failover mechanism. There are several OSIsoft 
interfaces that are UniInt based and implement their own version of 
failover. In order for health point(s) to be configured to monitor a 
single copy of the interface, an additional parameter is required. If 
the /uht_id=# is specified, only health points with a location3 

value equal to # will be loaded. 

/w=# 

Optional 

Default: 120 

This specifies how many seconds the interface waits on startup 
before connecting to Intellution allowing it to fully start. 

Sample PI-EDA.bat File 

The following is an example file: 

REM=============================================================== 

REM   

REM PI-EDA.bat   

REM 

REM Sample startup command file for the  

REM Intellution Fix DMACS (FIX32) / Dynamics (iFIX) 

REM  

REM ============================================================ 

REM 

REM OSIsoft strongly recommends using PI ICU to modify startup files. 

REM 

REM Sample command line 

REM 

    .\PI-EDA.exe ^ 

    /host=XXXXXX:5450 ^  

    /ps=IntFix ^  

    /id=1 ^  

    /w=120 ^ 

    /ec=2 ^ 

    /f=00:00:01 ^  

    /em ^  

    /c=67:13 

REM 

REM End of PI-EDA.bat File 

 





 

PI Interface for GE iFix 69 

Chapter 10. UniInt Failover Configuration 

Introduction 

 

To minimize data loss during a single point of failure within a system, UniInt provides two 

failover schemas: (1) synchronization through the data source and (2) synchronization 

through a shared file. Synchronization through the data source is Phase 1, and 

synchronization through a shared file is Phase 2.  

Phase 1 UniInt Failover uses the data source itself to synchronize failover operations and 

provides a hot failover, no data loss solution when a single point of failure occurs. For this 

option, the data source must be able to communicate with and provide data for two interfaces 

simultaneously. Additionally, the failover configuration requires the interface to support 

outputs.  

Phase 2 UniInt Failover uses a shared file to synchronize failover operations and provides for 

hot, warm, or cold failover. The Phase 2 hot failover configuration provides a no data loss 

solution for a single point of failure similar to Phase 1. However, in warm and cold failover 

configurations, you can expect a small period of data loss during a single point of failure 

transition. 

Note: Although both failover methods successfully maintain continuous data flow 
OSIsoft recommends using Phase 2 because it is supported by more interfaces. 

 Phase 1 is appropriate in only two situations: (1) if performance degradation 
occurs using the shared file or (2) read/write permissions for the shared file cannot 
be granted to both interfaces. 



UniInt Failover Configuration 

70  

You can also configure UniInt failover to send data to a High Availability (HA) 

PI Data Archive collective. The collective provides redundant PI Data Archives to allow for 

the uninterrupted collection and presentation of time series data. In an HA configuration, 

PI Data Archives can be taken down for maintenance or repair. The HA PI Data Archive 

collective is described in the High Availability Administrator Guide. 

When configured for UniInt failover, the interface routes all PI point data through a state 

machine. The state machine determines whether to queue data or send it directly to a PI point 

depending on the current state of the interface. When the interface is in the active state, data 

sent through the interface is routed directly to a PI point. In the backup state, data from the 

interface is queued for a short period. Queued data in the backup interface ensures a no-data 

loss failover under normal circumstances for phase 1 and for the hot failover configuration of 

phase 2. The same algorithm of queuing events while in backup is used for output data. 

Quick Overview 

The Quick Overview below may be used to configure this Interface for failover.  The failover 

configuration requires the two copies of the interface participating in failover be installed on 

different nodes.  Users should verify non-failover interface operation as discussed in the 

Installation Checklist section of this manual prior to configuring the interface for failover 

operations. If you are not familiar with UniInt failover configuration, return to this section 

after reading the rest of the UniInt Failover Configuration section in detail.  If a failure occurs 

at any step below, correct the error and start again at the beginning of step 6 Test in the table 

below.  For the discussion below, the first copy of the interface configured and tested will be 

considered the primary interface and the second copy of the interface configured will be the 

backup interface. 

Configuration 

 One Data Source 

 Two Interfaces 

Prerequisites 

 Interface 1 is the Primary interface for collection of PI data from the data source. 

 Interface 2 is the Backup interface for collection of PI data from the data source. 

 Phase 1: The data source must be configured with six failover control points (input 

and output points for three failover control types):  

 (1) Active ID. 

 (2) Heartbeat for Interface 1.  

 (3) Heartbeat for Interface 2. 

 You must set up a shared file if using Phase 2 failover.. 

 Phase 2: The shared file must store data for five failover control points:  

 (1) Active ID. 

 (2) Heartbeat 1. 

 (3) Heartbeat 2. 

 (4) Device Status 1. 

 (5) Device Status 2. 



 

PI Interface for GE iFix 71 

 Each interface must be configured with two required failover command line 

parameters: (1) its FailoverID number (/UFO_ID); (2) the FailoverID number of its 

Backup interface (/UFO_OtherID). You must also specify the name of the 

PI Data Archive host for exceptions and PI point updates. 

 All other configuration parameters for the two interfaces must be identical. 



UniInt Failover Configuration 

72  

Synchronization through the Data Source (Phase 1) 

Business Network                                                                                                       

Process Network                                                                                                            

IF-Node1

PI-Interface.exe

/host=PrimaryPI

/UFO_ID=1

/UFO_OTHERID=2

IF-Node2

PI-Interface.exe

/host=SecondaryPI

/UFO_ID=2

/UFO_OTHERID=1

DataSource

DCS/PLC/Data Server

Client

Process Book

DataLink

PrimaryPI

PI Server

Role = 1

SecondaryPI

PI Server

Role = 2

Active ID

Heartbeat 1

Heartbeat 2

Data register 0

.

.

.

Data register n

 

Figure 1: Failover Architecture Phase 1 – Synchronization through the Data Source 

Figure 1 shows Phase 1 failover architecture. The diagram shows a typical network setup. 

This by no means represents the myriad possible network configurations; it is an example 

only for the following discussions. This example is explained in greater detail after the 

discussion of the start-up parameters, data source points, and PI points.  



 

PI Interface for GE iFix 73 

Configuring Synchronization through the Data Source (Phase 1)  

Step Description 

1. Verify non-failover interface operation as described in the Installation Checklist section 
of this manual 

2. Configure Points on the Data Source 

Create three points (Active ID, Heartbeat 1 and Heartbeat 2) on the data source. The 
interface must be able to read from and write to these points. The ActiveID must accept 

values from 0 to the highest failover ID. The two heartbeat points must accept values 
from 0 to 31.  

See the Data Source Points section below. 

3. Use the Interface Configuration Utility to configure the interface parameters  

Enable failover by selecting “Enable UniInt Failover” in the Failover section of the 
Interface Configuration Utility (ICU) and assign the appropriate number for the two 
Failover IDs: (1) a Failover ID number for the interface; and (2) the Failover ID number 
for its backup interface. 

The Failover ID for each interface must be unique and each interface must know the 
Failover ID of its backup interface. 

All other command line parameters for the Primary and Backup interfaces must be 
identical. 

If you are using a PI Data Archive collective, you must specifically identify the primary 
and backup interfaces as different members of the collective. 

[Optional] Set the update rate for the heartbeat point if the input points are unsolicited. 

4. Configure the PI points 

You must configure six PI points for the interface (input and output points for each of the 
three failover points on the data source). For more information about configuring input 
and output points, refer to the PI Point Configuration chapter 

You can also configure two state points for monitoring the status of the interfaces. 

Tag ExDesc digitalset 

The remaining attributes must 
be configured according to 
the PI Point Configuration 
chapter so the PI points map 
to the correct points on the 
data source 

ActiveID_In [UFO_ACTIVEID]   

ActiveID_Out [UFO_ACTIVEID]   

IF1_HB_In 

(IF-Node1) 

[UFO_HEARTBEAT:#
] 

  

IF1_HB_Out 

(IF-Node1) 

[UFO_HEARTBEAT:#
] 

  

IF2_HB_In 

(IF-Node2) 

[UFO_HEARTBEAT:#
] 

  

IF2_HB_Out 

(IF-Node2) 

[UFO_HEARTBEAT:#
] 

  

IF1_State 

(IF-Node1) 
[UFO_STATE:#] IF_State 

IF2_State 

(IF-Node2) 
[UFO_STATE:#] IF_State 

 

5. If using PI APS versions earlier than 1.2.4.0 to synchronize the Data Source and PI 
points, special attention must be paid to the failover control points.  Check that the 
failover control points are not included in the PI APS synchronization scheme.  
Synchronizing the control points will cause the failover points to be edited by PI APS 
and may result in possible interface shutdown. 

6. Test the configuration.  

Run the interface with the six Failover Control PI points to ensure their proper operation. 



UniInt Failover Configuration 

74  

Step Description 

1. Start the primary interface interactively without buffering. 

2. Verify a successful interface start by reviewing the log file.  The log file will contain 
messages that indicate the failover state of the interface.  A successful start with 
only a single interface copy running will be indicated by an informational message 

stating “UniInt failover: Interface in the “Primary” state 

and actively sending data to PI. Backup interface not 

available.” If the interface has failed to start, an error message will appear in 

the log file.  For details relating to informational and error messages, refer to the 
Messages section below. 

3. For example, verify data on the FIX32/iFix node using the Database Builder Utility. 

 The Active ID control point on the FIX32/iFix node must be set to the 
value of the running copy of the interface as defined by the /UFO_ID 

startup command-line parameter. 

 The Heartbeat control point on the FIX32/iFix node must be changing 

values at a rate specified by the /UFO_Interval startup command-

line parameter. 

4. Verify data on the PI Data Archive using available PI tools. 

 The Active ID control point on the PI Data Archive must be set to the 
value of the running copy of the interface as defined by the /UFO_ID 

startup command-line parameter. 

 The Heartbeat control point on the PI Data Archive must be changing 
values at a rate specified by the /UFO_Interval startup command-

line parameter. 

5. Stop the primary interface. 

6. Start the backup interface interactively without buffering. Notice that this copy will 
become the primary because the other copy is stopped. 

7. Repeat steps 2, 3, 4 and 5. 

8. Stop the backup interface. 

9. Start buffering. 

10. Start the primary interface interactively. 

11. Once the primary interface has successfully started and is collecting data, start the 
backup interface interactively. 

12. Verify that both copies of the interface are running in a failover configuration. 

 Review the log file for the copy of the interface that was started first.  
The log file will contain messages that indicate the failover state of the 
interface.  The state of this interface must have changed as indicated 

with an informational message stating “UniInt failover: 

Interface in the “Primary” state and actively sending 

data to PI. Backup interface available.”  If the interface 

has not changed to this state, browse the log file for error messages.  
For details relating to informational and error messages, refer to the 
Messages section below. 

 Review the log file for the copy of the interface that was started last.  
The log file will contain messages that indicate the failover state of the 
interface.  A successful start of the interface will be indicated by an 

informational message stating “UniInt failover: Interface in 

the “Backup” state.”  If the interface has failed to start, an error 

message will appear in the log file.  For details relating to informational 
and error messages, refer to the Messages section below. 

13. For example: verify data on the FIX32/iFix node using the Database Builder utility. 

 The Active ID control point on the FIX32/iFix node must be set to the 



 

PI Interface for GE iFix 75 

Step Description 

value of the running copy of the interface that was started first as 
defined by the /UFO_ID startup command-line parameter. 

 The Heartbeat control points for both copies of the interface on the 
FIX32/iFix node must be changing values at a rate specified by the 
/UFO_Interval startup command-line parameter. 

14. Verify data on the PI Data Archive using available PI tools. 

 The Active ID control point on the PI Data Archive must be set to the 
value of the running copy of the interface that was started first as 
defined by the /UFO_ID startup command-line parameter. 

 The Heartbeat control points for both copies of the interface on the 
PI Data Archive must be changing values at a rate specified by the 
/UFO_Interval startup command-line parameter or the scan class 

which the points have been built against. 

15. Test Failover by stopping the primary interface. 

16. Verify the backup interface has assumed the role of primary by searching the log 

file for a message indicating the backup interface has changed to the “UniInt 

failover: Interface in the “Primary” state and actively 

sending data to PI. Backup interface not available.” The 

backup interface is now considered primary and the previous primary interface is 
now backup. 

17. Verify no loss of data in the PI Data Archive.  There may be an overlap of data due 
to the queuing of data.  However, there must be no data loss. 

18. Start the backup interface.  Once the primary interface detects a backup interface, 

the primary interface will now change state indicating “UniInt failover: 

Interface in the “Primary” state and actively sending 

data to PI. Backup interface available.” In the log file. 

19. Verify the backup interface starts and assumes the role of backup.  A successful 
start of the backup interface will be indicated by an informational message stating 

“UniInt failover: Interface in “Backup” state.” Since this is 

the initial state of the interface, the informational message will be near the 
beginning of the start sequence of the log file. 

20. Test failover with different failure scenarios (e.g. loss of PI Data Archive connection 
for a single interface copy).  UniInt failover guarantees no data loss with a single 
point of failure.  Verify no data loss by checking the data in the PI Data Archive and 
on the data source. 

21. Stop both copies of the interface, start buffering, start each interface as a service. 

22. Verify data as stated above. 

23. To designate a specific interface as primary.  Set the Active ID point on the Data 
Source Server of the desired primary interface as defined by the /UFO_ID startup 

command-line parameter. 

 



UniInt Failover Configuration 

76  

Configuring UniInt Failover through the Data Source (Phase 1) 

Start-Up Parameters 

Note:  The /stopstat parameter is disabled If the interface is running in a UniInt 

failover configuration.  Therefore, the digital state, digstate, will not be written to 

each PI Point when the interface is stopped.  This prevents the digital state being 
written to PI Points while a redundant system is also writing data to the same PI 
Points.  The /stopstat parameter is disabled even if there is only one interface 

active in the failover configuration. 

The following table lists the start-up parameters used by UniInt Failover. All of the 

parameters are required except the /UFO_Interval startup parameter. 

Parameter Required/ 

Optional 

Description Value/Default 

/UFO_ID=# Required Failover ID for IF-Node1  

This value must be different from the 
failover ID of IF-Node2. 

Any positive, non-
zero integer / 1 

Required Failover ID for IF-Node2  

This value must be different from the 
failover ID of IF-Node1. 

Any positive, non-
zero integer / 2 

/UFO_OtherID=# Required Other Failover ID for IF-Node1  

The value must be equal to the Failover ID 
configured for the interface on IF-Node2. 

Same value as 
Failover ID for 
IF-Node2 / 2 

Required Other Failover ID for IF-Node2  

The value must be equal to the Failover ID 
configured for the interface on IF-Node1. 

Same value as 
Failover ID for 
IF-Node1 / 1 

/UFO_Interval=# Optional Failover Update Interval 

Specifies the update Interval in 
milliseconds and must be the same on 
both interface computers. 

This is the rate at which UniInt updates 
the failover heartbeat points as well as 
how often UniInt checks on the status of 
the other copy of the interface. 

The /UFO_Interval is only used if the 

failover control input PI points are 
collected on an unsolicited basis. If the 
input PI points are scanned, the failover 
update interval is determined by the scan 
class associated with the points. 

50 – 20000 / 1000 



 

PI Interface for GE iFix 77 

Parameter Required/ 

Optional 

Description Value/Default 

/Host=server Required Host PI Data Archive for Exceptions and 
PI point updates 

The value of the /Host startup 

parameter depends on the 
PI Data Archive configuration. If the 
PI Data Archive is not part of a collective, 
the value of /Host must be identical on 

both interface computers. 

If the redundant interfaces are being 
configured to send data to a 
PI Data Archive collective, the value of the 
/Host parameters on the different 

interface nodes must point to different 
members of the collective. 

This configuration ensures that outputs 
continue to be sent to the Data Source if 
one of the PI Data Archives becomes 
unavailable for any reason. 

For IF-Node1 

PrimaryPI / None 

For IF-Node2 

SecondaryPI / 
None 

Data Source Points 

The following table identifies the points that are required to manage failover and the values 

used for each PI attribute.  

The following table explains each of the points required on the data source in more detail. 

Point Description Value / Default 

ActiveID Monitored by the interfaces to determine which 
interface is currently sending data to the 
PI Data Archive. ActiveID must be initialized so 

that when the interfaces read it for the first time, 
it is not an error. 

ActiveID can also be used to force failover. For 

example, if the current Primary is IF-Node 1 and 
ActiveID is 1, you can manually change 
ActiveID to 2. This causes the interface at IF-

Node2 to transition to the primary role and the 
interface at IF-Node1 to transition to the backup 
role. 

From 0 to the highest 
Interface Failover ID 
number / None) 

Updated by the 
redundant Interfaces 

Can be changed 
manually to initiate a 
manual failover 

Heartbeat 1 Updated periodically by the interface on 
IF-Node1. The interface on IF-Node2 monitors 
this value to determine if the interface on 
IF-Node1 has become unresponsive. 

Values range between 
0 and 31 / None 

Updated by the 
Interface on IF-Node1 

Heartbeat 2 Updated periodically by the interface on 
IF-Node2. The interface on IF-Node1 monitors 
this value to determine if the interface on 
IF-Node2 has become unresponsive. 

Values range between 
0 and 31 / None 

Updated by the 
Interface on IF-Node2 



UniInt Failover Configuration 

78  

PI Points 

The following tables list the required UniInt failover control PI points, the values they will 

receive, and descriptions. 

Active_ID Point Configuration 

Attributes ActiveID IN AcitveID OUT 

Tag <Intf>_Active_IN <Intf>_Active_OUT 

Compmax 0 0 

ExDesc [UFO_ActiveID] [UFO_ActiveID] 

Location1 Match # in /id=# Match # in /id=# 

Point Source Match x in /ps=x Match x in /ps=x 

Point Type Int32 Int32 

Shutdown 0 0 

Step 1 1 

Heartbeat Point Configuration 

Attribute Heartbeat 1 IN Heartbeat 1 OUT Heartbeat 2 IN Heartbeat 2 OUT 

Tag <HB1>_IN <HB1>_OUT <HB2>_IN <HB2>_OUT 

ExDesc 

[UFO_Heartbeat:#] 

Match # in 
/UFO_ID=# 

[UFO_Heartbeat:#] 

Match # in 
/UFO_ID=# 

[UFO_Heartbeat:#] 

Match # in 
/UFO_OtherID=# 

[UFO_Heartbeat:#] 

Match # in 
/UFO_OtherID=# 

Location1 Match # in /id=# Match # in /id=# Match # in /id=# Match # in /id=# 

Point 
Source 

Match x in /ps=x Match x in /ps=x Match x in /ps=x Match x in /ps=x 

Point Type int32 int32 int32 int32 

Shutdown 0 0 0 0 

Step 1 1 1 1 

Interface State Point Configuration 

Attribute Primary Backup 

Tag <Tagname1> <Tagname2> 

Compmax 0 0 

DigitalSet UFO_State UFO_State 

ExDesc [UFO_State:#] 

(Match /UFO_ID=# on primary node) 

[UFO_State:#] 

(Match /UFO_ID=# on backup node) 

Location1 Match # in /id=# Same as for Primary node 

PointSource Match x in /ps=x Same as for Primary node 

PointType digital digital 

Shutdown 0 0 

Step 1 1 



 

PI Interface for GE iFix 79 

The following table describes the extended descriptor for the above PI points in more detail. 

PI Point ExDesc Required / 
Optional 

Description Value / 
Default 

[UFO_ACTIVEID] 

 

(Used for both the 
ActiveID IN and OUT 
points.) 

Required The active ID input point must be 
configured as an input PI point for the 
interface and it must be configured to read 
the ActiveID on the data source. 

Consult the PI Point Configuration chapter 
for a description of configuring input 
points.  

The ExDesc must start with the case 
sensitive string: [UFO_ACTIVEID] 

0 – highest 
Failover ID / 
None 

Updated by the 
redundant 
Interfaces 

[UFO_HEARTBEAT:#] 

(IF-Node1) 

Required The Heartbeat 1 Output Point must be 
configured as an output PI point for the 
interface and it must be configured to 
write to the Heartbeat 1 point on the data 
source. 

Consult the PI Point Configuration chapter 
for information about configuring output 
points.  

The ExDesc must start with the case 
sensitive string: [UFO_HEARTBEAT:#] 

The number following the colon (:) must 
be the Failover ID for the interface running 
on IF-Node1.  

0 – 31 / None  

Updated by the 
interface on 
Node 1 

 [UFO_HEARTBEAT:#] 

(IF-Node2) 

Required The Heartbeat 2 Input Point must be 
configured as an input PI point for the 
interface and it must be configured to read 
the Heartbeat 2 Point on the Data Source. 

Consult the PI Point Configuration chapter 
for information about configuring input 
points.  

The ExDesc must start with the case 
sensitive string: [UFO_HEARTBEAT:#] 

The number following the colon (:) must 
be the Failover ID for the interface running 
on IF-Node2. 

0 – 31 / None  

Updated by the 
interface on 
Node 2 



UniInt Failover Configuration 

80  

PI Point ExDesc Required / 
Optional 

Description Value / 
Default 

 [UFO_STATE:#] 

(IF-Node1) 

Optional The failover state points are optional and 
do not require a point on the Data Source. 
The value of the state point can be written 
to the data source by configuring a normal 
interface output point and setting the 
SourceTag attribute to the failover state 
point.  

The number following the colon (:) must 
be the Failover ID for the interface running 
on IF-Node1. 

The failover state points are digital points 
assigned to a digital state set with the 
following values. 

0 = Off: The interface has been shut 
down. 

1 = Backup No Data Source: The 
interface is running but is unable to 
communicate to the data source. 

2 = Backup No PI Connection: The 
interface is running and connected to the 
data source but has lost its 
communication to the PI Data Archive. 

3 = Backup: The interface is running and 
collecting data normally and is ready to 
take over if the primary shuts down or 
experiences problems. 

4 = Transition: The interface stays in this 
state for only a short period of time. The 
transition period is designed to prevent 
thrashing when both primary and backup 
interfaces attempt to assume the role of 
the primary interface. 

5 = Primary: The interface is running, 
collecting data, and sending the data to 
the PI Data Archive. 

0 – 5 / None 

Updated by the 
Primary 
Interface 

 [UFO_STATE:#] 

(IF-Node2) 

Optional The failover state points are optional and 
do not require a point on the data source. 
The value of the state point can be written 
to the data source by configuring a normal 
interface output point and setting the 
SourceTag attribute to the failover state 
point. 

The number following the colon (:) must 
be the Failover ID for the interface running 
on IF-Node2.  

0 – 5 / None 

Updated by the 
Backup 
Interface 



 

PI Interface for GE iFix 81 

Detailed Explanation of Synchronization through the Data Source 

Business Network                                                                                                       

Process Network                                                                                                            

IF-Node1

PI-Interface.exe

/host=PrimaryPI

/UFO_ID=1

/UFO_OTHERID=2

IF-Node2

PI-Interface.exe

/host=SecondaryPI

/UFO_ID=2

/UFO_OTHERID=1

DataSource

DCS/PLC/Data Server

Client

Process Book

DataLink

PrimaryPI

PI Server

Role = 1

SecondaryPI

PI Server

Role = 2

Active ID

Heartbeat 1

Heartbeat 2

Data register 0

.

.

.

Data register n

 

Figure 2 Synchronization through Data Source (Phase 1) Failover Architecture 

Synchronization through the data source uses two separate interface nodes communicating 

with the data source. The failover scheme requires six failover control points in the 

PI Data Archive and three control points on the data source to control failover operation. The 

PI points initialize the interface with configuration information for reading and writing to the 

control points on the data source. Once the interface is configured and running, the ability to 

read or write to the PI points is not required for failover operation because only the control 

points on the data source are monitored. However, the PI point values are sent to the 

PI Data Archive so that you can monitor them with standard OSIsoft client tools. You can 

force manual failover by changing the active ID point on the data source to the backup 

failover ID. 

The figure above shows a typical network in the normal or steady state. This diagram doesn’t 

represent the myriad configurations that can be supported; it is simply an example for the 

following discussions. If your hardware configuration differs from the figure, the settings for 

the Primary and Backup interfaces remain the same with the exception of the /host startup 

parameter. If the interfaces communicate with a stand-alone PI Data Archive, the /host 

parameter for both interfaces must be the same. 



UniInt Failover Configuration 

82  

To ensure that output to the data source continues when a PI Data Archive in the collective 

becomes unavailable, the interface running on the primary node (IF-Node1) needs the /host 

parameter set to a PI Data Archive that is part of the collective, and the interface running on 

the backup node (IF-Node2) needs the /host parameter set to a different PI Data Archive in 

the same collective.  

The continued operation of output when a PI Data Archive becomes unavailable presumes the 

source data for output data (that is, data read from the PI Data Archive and written to the data 

source) comes into the PI Data Archive from a process that sends values to all of the 

PI Data Archives in the collective via n-way buffering. 

The solid red line in the figure shows input data flow when the interface on IF-Node1 is in 

the primary state. The data is read from the data source by the interface and sent to a buffer. 

Buffering sends the input data to all of the PI Data Archives in the collective via n-way 

buffering. 

The solid blue line shows output data flow. Since the interface on IF-Node1 is configured 

with /host=PrimaryPI, the interface signs up for exceptions with the PI Data Archive on 

PrimaryPI. Exceptions are received by the interface and sent to the data source via the 

interface. 

The dashed red line shows input data flow to the backup interface. The dashed line stops at 

the interface because the interface does not send the data to buffering unless the interface is in 

the primary state. If the backup interface transitions to the primary state for any reason, the 

backup interface begins to send the input data to buffering. Buffering continues to write the 

data to all of the PI Data Archives in the collective via n-way buffering. 

The dashed blue line shows output data flow to the backup interface. The dashed line stops at 

the interface because an interface does not send data to the data source unless the interface is 

in the primary state. When the backup interface becomes the primary for any reason, it begins 

to send output data to the data source. 

In the event that the Primary PI Data Archive becomes unavailable for any reason, the 

primary interface informs the backup interface that it has lost its connection to the 

PI Data Archive. The backup interface becomes the primary interface because its status is 

better than the current primary interface. However, if the entire network goes off line and 

both primary and backup interfaces lose their connection to their respective PI Data Archives, 

the primary interface remains primary because the current status of the backup interface is the 

same as the primary, not better. In this case, output data cannot flow to the data source 

because there is no way for any of the interfaces to get the exception data. 

Steady State Operation 

Steady state operation is considered the normal operating condition. In this state, the primary 

interface is actively collecting data and sending its data to the PI Data Archive. The primary 

interface is also updating its heartbeat point, monitoring the heartbeat point for the backup 

interface, and checking the ActiveID every failover update interval. In this state, the backup 

interface is actively collecting and queuing data but not sending the received data to the 

PI Data Archive. It too is updating its heartbeat point, monitoring the heartbeat point for the 

primary interface, and checking the ActiveID every failover update interval. As long as the 

heartbeat point for the primary interface indicates that it is operating properly and the 

ActiveID has not changed, the backup interface will continue in this mode of operation. 

The interaction of the control points is fundamental to failover. The discussion that follows 

only refers to the data written to the control points on the data source. However, every value 



 

PI Interface for GE iFix 83 

written to the control points on the data source is echoed to the control points in the 

PI Data Archive. Updating of the control points is assumed to take place unless 

communication with the PI Data Archive is interrupted. The updates to the PI Data Archive 

will be buffered by Bufserv or PIBufss in this case. 

Each interface copy participating in the failover solution queues two failover intervals worth 

of data to prevent any data loss. When a failover occurs, there may be a period of overlapping 

data for up to 2 intervals. The exact amount of overlap is determined by the timing and the 

cause of the failover and may be different every time. Using the default update interval of 1 

second will result in overlapping data between 0 and 2 seconds. The no data loss claim is 

based on a single point of failure. If both interfaces have trouble collecting data for the same 

period of time, data will be lost during that time. 

As mentioned above, each interface has its own heartbeat point. In normal operation, the 

value of the Heartbeat point on the data source is incremented by UniInt from 1 – 15 and then 

wraps around to a value of 1 again. UniInt increments the heartbeat point on the data source 

every failover update interval. The default failover update interval is 1 second. UniInt also 

reads the value of the heartbeat point for the other interface copy participating in failover 

every failover update interval. If the connection to the PI Data Archive is lost, the value of the 

heartbeat point increments from 17 – 31 and then wrap around to a value of 17 again. Once 

the connection to the PI Data Archive is restored, the heartbeat values revert back to the 1 to 

15 range. During a normal shutdown process, the heartbeat value is set to zero. 

During steady state, the ActiveID is the failover ID of the primary interface. This value is set 

by UniInt when the interface enters the primary state and is not changed by the primary 

interface until it shuts down gracefully. During shutdown, the primary interface sets the 

ActiveID to zero before shutting down. The backup interface can assume control as primary 

even if the current primary is not experiencing a problem. You can force this transition by 

setting the ActiveID control point on the data source to the failover ID of the desired 

interface.  

To prevent data loss during failover, the backup interface continuously queues data in 

memory for the two most recent failover update intervals. As long as the backup interface 

determines that the primary interface is in good status, the backup interface simply maintains 

this queue with the most recent data. When the backup interface transitions to primary status, 

the backup begins transmitting to PI starting with the queued data 



UniInt Failover Configuration 

84  

Synchronization through a Shared File (Phase 2) 

Business Network                                                                                                       

Process Network                                                                                                            

IF-Node1

PI-Interface.exe

/host=PrimaryPI

/UFO_ID=1

/UFO_OTHERID=2

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

IF-Node2

PI-Interface.exe

/host=SecondaryPI

/UFO_ID=2

/UFO_OTHERID=1

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

DataSource

DCS/PLC/Data Server

Client

Process Book

DataLink

PrimaryPI

PI Server

Role = 1

SecondaryPI

PI Server

Role = 2

Data register 0

.

.

.

Data register n

FileSvr

.\UFO\Intf_PS_1.dat

Figure 3: Synchronization through a Shared File (Phase 2) Failover Architecture 

The Phase 2 failover architecture is shown in Figure 2 which depicts a typical network setup 

including the path to the synchronization file located on a File Server (FileSvr). Other 

configurations may be supported and this figure is used only as an example for the following 

discussion.  

For a more detailed explanation of this synchronization method, see Detailed Explanation of 

Synchronization through a Shared File (Phase 2) 



 

PI Interface for GE iFix 85 

Configuring Synchronization through a Shared File (Phase 2) 

Step Description 

1. Verify non-failover interface operation as described in the Installation Checklist section of 
this manual 

2. Configure the Shared File 

Choose a location for the shared file. The file can reside on one of the interface nodes or 
on a separate node from the Interfaces; however OSIsoft strongly recommends that you 
put the file on a Windows Server platform that has the “File Server” role configured. . 

Set up a file share and make sure to assign the permissions so that both Primary and 
Backup interfaces have read/write access to the file. 

3. Configure the interface parameters  

Use the Failover section of the Interface Configuration Utility (ICU) to enable failover and 
create two parameters for each interface: (1) a failover ID number for the interface; and 
(2) the Failover ID number for its backup interface. 

The Failover ID for each interface must be unique and each interface must know the 
Failover ID of its backup interface. 

If the interface can perform using either Phase 1 or Phase 2 select the Phase 2 option in 
the ICU. 

Select the synchronization File Path and File to use for failover. 

Select the type of failover required (Cold, Warm, Hot).  The choice depends on what types 
of failover the interface supports. 

Ensure that the user name assigned in the Log on as parameter in the Service page of 
the ICU is a user that has read/write access to the folder where the shared file will reside. 

All other command line parameters for the primary and secondary interfaces must be 
identical. 

If you use a PI Data Archive collective, you must point the primary and secondary 
interfaces to different members of the collective by setting the SDK Member under the PI 
Host Information section of the ICU. 

[Option] Set the update rate for the heartbeat point if you need a value other than the 
default of 5000 milliseconds. 

4. Configure the PI points 

Configure five PI points for the interface: the active ID, heartbeat 1, heartbeat2, device 
status 1 and device status 2. You can also configure two state points for monitoring the 
status of the interfaces. 

Do not confuse the failover device status points with the UniInt health device status 
points. The information in the two points is similar, but the failover device status points are 
integer values and the health device status points are string values. 

Tag ExDesc digitalset 

UniInt does not 
examine the 
remaining attributes, 
but the PointSource 
and location1 must 
match 

ActiveID [UFO2_ACTIVEID]  

IF1_Heartbeat 

(IF-Node1) [UFO2_HEARTBEAT:#]  

IF2_Heartbeat 

(IF-Node2) [UFO2_HEARTBEAT:#]  

IF1_DeviceStatus 

(IF-Node1) [UFO2_DEVICESTAT:#]  

IF2_DeviceStatus 

(IF-Node2) [UFO2_DEVICESTAT:#]  

IF1_State 

(IF-Node1) [UFO2_STATE:#] IF_State 

IF2_State 

(IF-Node2) [UFO2_STATE:#] IF_State 
 

5. Test the configuration.  



UniInt Failover Configuration 

86  

Step Description 

After configuring the shared file and the interface and PI points, the interface should be 
ready to run. 

For help resolving failover file issues, see knowledge base article 889 on the OSIsoft 
technical support web site. 

1. Start the primary interface interactively without buffering. 

2. Verify a successful interface start by reviewing the log file.  The log file will contain 
messages that indicate the failover state of the interface.  A successful start with only 
a single interface copy running will be indicated by an informational message stating 

“UniInt failover: Interface in the “Primary” state and 

actively sending data to PI. Backup interface not 

available.” If the interface has failed to start, an error message will appear in the 

log file.  For details relating to informational and error messages, refer to the 
Messages section below. 

3. Verify data on the PI Data Archive using available PI tools. 

 The active ID control point in the PI Data Archive must be set to the 

value of the running copy of the interface as defined by the /UFO_ID 

startup command-line parameter. 

 The heartbeat control point on the PI Data Archive must be changing 
values at a rate specified by the /UFO_Interval startup 

command-line parameter. 

4. Stop the primary interface. 

5. Start the backup interface interactively without buffering. Notice that this copy will 
become the primary because the other copy is stopped. 

6. Repeat steps 2, and 3. 

7. Stop the backup interface. 

8. Start buffering. 

9. Start the primary interface interactively. 

10. Once the primary interface has successfully started and is collecting data, start the 
backup interface interactively. 

11. Verify that both copies of the interface are running in a failover configuration. 

 Review the log file for the copy of the interface that was started first.  
The log file will contain messages that indicate the failover state of the 
interface.  The state of this interface must have changed as indicated 

with an informational message stating “UniInt failover: 
Interface in the “Primary” state and actively sending 

data to PI. Backup interface available.”  If the interface 

has not changed to this state, browse the log file for error messages.  
For details relating to informational and error messages, refer to the 
Messages section below. 

 Review the log file for the copy of the interface that was started last.  
The log file will contain messages that indicate the failover state of the 
interface.  A successful start of the interface will be indicated by an 

informational message stating “UniInt failover: Interface in 

the “Backup” state.”  If the interface has failed to start, an error 

message will appear in the log file.  For details relating to informational 
and error messages, refer to the Messages section below. 

12. Verify data on the PI Data Archive using available PI tools. 

 The active ID control point in the PI Data Archive must be set to the 
value of the running copy of the interface that was started first as 
defined by the /UFO_ID startup command-line parameter. 

 The heartbeat control points for both copies of the interface in the 
PI Data Archive must be changing values at a rate specified by the 

https://techsupport.osisoft.com/Troubleshooting/KB/KB00889


 

PI Interface for GE iFix 87 

Step Description 

/UFO_Interval startup command-line parameter or the scan class 

which the points have been built against. 

13. Test Failover by stopping the primary interface. 

14. Verify the backup interface has assumed the role of primary by searching the log file 

for a message indicating the backup interface has changed to the “UniInt 

failover: Interface in the “Primary” state and actively 

sending data to PI. Backup interface not available.” The 

backup interface is now considered primary and the previous primary interface is now 
backup. 

15. Verify data in the PI Data Archive. For hot failover, there may be an overlap of data 
due to the queuing of data, but there must be no data loss.  For warm or cold failover, 
short gaps in archived data are expected. 

16. Start the backup interface. Once the primary interface detects a backup interface, the 

primary interface will now change state indicating “UniInt failover: 

Interface in the “Primary” state and actively sending 

data to PI. Backup interface available.” In the log file. 

17. Verify the backup interface starts and assumes the role of backup.  A successful start 
of the backup interface will be indicated by an informational message stating 

“UniInt failover: Interface in “Backup state.” Since this is the 

initial state of the interface, the informational message will be near the beginning of 
the start sequence of the log file. 

18. Test failover with different failure scenarios (for example, loss of PI Data Archive 
connection for a single interface copy).  UniInt hot failover guarantees no data loss 
with a single point of failure; verify no data loss by checking the data in the 
PI Data Archive and on the data source. For warm or cold failover, short gaps in 
archived data can occur. 

19. Stop both copies of the interface, start buffering, start each interface as a service. 

20. Verify data as stated above. 

21. To designate a specific interface as primary, set the active ID point to the ID of the 
desired primary interface as defined by the /UFO_ID startup command-line 

parameter. 



UniInt Failover Configuration 

88  

Configuring UniInt Failover through a Shared File (Phase 2) 

Start-Up Parameters 

Note:  The /stopstat parameter is disabled If the interface is running in a UniInt 

failover configuration.  Therefore, the digital state, digstate, will not be written to 

each PI Point when the interface is stopped.  This prevents the digital state being 
written to PI Points while a redundant system is also writing data to the same PI 
Points.  The /stopstat parameter is disabled even if there is only one interface 

active in the failover configuration. 

The following table lists the start-up parameters used by UniInt Failover Phase 2. All of the 

parameters are required except the /UFO_Interval startup parameter. See the table below 

for further explanation. 

Parameter Required/ 

Optional 

Description Value/Default 

/UFO_ID=# Required Failover ID for IF-Node1  

This value must be different from 
the failover ID of IF-Node2. 

Any positive, non-
zero integer / 1 

Required Failover ID for IF-Node2  

This value must be different from 
the failover ID of IF-Node1. 

Any positive, non-
zero integer / 2 

/UFO_OtherID=# Required Other Failover ID for IF-Node1  

The value must be equal to the 
Failover ID configured for the 
interface on IF-Node2. 

Same value as 
Failover ID for 
IF-Node2 / 2 

Required Other Failover ID for IF-Node2  

The value must be equal to the 
Failover ID configured for the 
interface on IF-Node1. 

Same value as 
Failover ID for 
IF-Node1 / 1 

/UFO_Sync= 

path/[filename] 

Required for 
Phase 2 
synchronization 

The failover synchronization file 
path and optional filename specify 

the path to the shared file used for 
failover synchronization and an 
optional filename used to specify a 
user defined filename in lieu of the 
default filename.  

The path to the shared file 
directory can be a fully qualified 
machine name and directory, a 
mapped drive letter, or a local path 
if the shared file is on one of the 
interface nodes. The path must be 

terminated by a slash ( / ) or 

backslash ( \ ) character. If no 

terminating slash is found, in the 
/UFO_Sync parameter, the 

interface interprets the final 
character string as an optional 
filename.  

The optional filename can be any 
valid filename. If the file does not 

Any valid pathname / 
any valid filename 

The default filename 
is generated as 
executablename_ 

pointsource_ 

interfaceID.dat 



 

PI Interface for GE iFix 89 

Parameter Required/ 

Optional 

Description Value/Default 

exist, the first interface to start 
attempts to create the file. 

Note: If using the optional 
filename, do not supply a 

terminating slash or backslash 
character. 

If there are any spaces in the path 
or filename, the entire path and 
filename must be enclosed in 
quotes.  

Note: If you use the backslash 

and path separators and enclose 
the path in double quotes, the final 
backslash must be a double 

backslash (\\). Otherwise the 

closing double quote becomes 
part of the parameter instead of a 
parameter separator. 

Each node in the failover 
configuration must specify the 
same path and filename and must 
have read, write, and file creation 
rights to the shared directory 
specified by the path parameter.  

The service that the interface runs 
against must specify a valid logon 
user account under the “Log On” 
tab for the service properties.  

/UFO_Type=type Required The Failover Type indicates which 
type of failover configuration the 
interface will run. The valid types 
for failover are HOT, WARM, and 
COLD configurations. 

If an interface does not supported 
the requested type of failover, the 
interface will shutdown and log an 
error to the log file stating the 
requested failover type is not 
supported. 

COLD|WARM|HOT / 
COLD 

/UFO_Interval=# Optional Failover Update Interval 

Specifies the heartbeat Update 
Interval in milliseconds and must 
be the same on both interface 
computers. 

This is the rate at which UniInt 
updates the failover heartbeat 
points as well as how often UniInt 
checks on the status of the other 
copy of the interface.  

50 – 20000 / 5000 



UniInt Failover Configuration 

90  

Parameter Required/ 

Optional 

Description Value/Default 

/Host=server Required Host PI Data Archive for 
Exceptions and PI point updates 

The value of the /Host startup 

parameter depends on the 
PI Data Archive configuration. If 
the PI Data Archive is not part of a 
collective, the value of /Host 

must be identical on both interface 
computers. 

If the redundant interfaces are 
being configured to send data to a 
PI Data Archive collective, the 
value of the /Host parameters 

on the different interface nodes 
should equal to different members 
of the collective. 

This parameter ensures that 
outputs continue to be sent to the 
Data Source if one of the 
PI Data Archives becomes 
unavailable for any reason. 

For IF-Node1 

PrimaryPI / None 

For IF-Node2 

SecondaryPI / None 

Failover Control Points 

The following table describes the points that are required to manage failover. In phase 2 

Failover, these points are located in a data file shared by the Primary and Backup interfaces. 

OSIsoft recommends that you locate the shared file on a dedicated server that has no other 

role in data collection. This avoids potential resource contention and processing degradation 

if your system monitors a large number of data points at a high frequency. 

Point Description Value / Default 

ActiveID Monitored by the interfaces to determine which 
interface is currently sending data to the 
PI Data Archive. ActiveID must be initialized so 

that when the interfaces read it for the first time, 
it is not an error. 

Active ID can also be used to force failover. For 
example, if the current primary is IF-Node 1 and 
Active ID is 1, you can manually change Active 
ID to 2. This causes the interface at IF-Node2 to 
transition to the primary role and the interface at 
IF-Node1 to transition to the backup role. 

From 0 to the highest 
Interface Failover ID 
number / None) 

Updated by the 
redundant Interfaces 

Can be changed 
manually to initiate a 
manual failover 

Heartbeat 1 Updated periodically by the interface on 
IF-Node1. The interface on IF-Node2 monitors 
this value to determine if the interface on 
IF-Node1 has become unresponsive. 

Values range between 
0 and 31 / None 

Updated by the 
Interface on IF-Node1 

Heartbeat 2 Updated periodically by the interface on 
IF-Node2. The interface on IF-Node1 monitors 
this value to determine if the interface on 
IF-Node2 has become unresponsive. 

Values range between 
0 and 31 / None 

Updated by the 
Interface on IF-Node2 



 

PI Interface for GE iFix 91 

PI Points 

The following tables list the required UniInt Failover Control PI points, the values they will 

receive, and descriptions. 

Active_ID Point Configuration 

Attributes ActiveID 

Tag <Intf>_ActiveID 

Compmax 0 

ExDesc [UFO2_ActiveID] 

Location1 Match # in /id=# 

Location5 Optional, Time in min to wait for backup 
to collect data before failing over. 

Point Source Match x in /ps=x 

Point Type Int32 

Shutdown 0 

Step 1 

Heartbeat and Device Status Point Configuration 

Attribute Heartbeat 1 Heartbeat 2 DeviceStatus 1 DeviceStatus 2 

Tag <HB1> <HB2> <DS1> <DS2> 

ExDesc 

[UFO2_Heartbeat:#] 

Match # in 
/UFO_ID=# 

[UFO2_Heartbeat:#] 

Match # in 
/UFO_OtherID=# 

[UFO2_DeviceStat:#] 

Match # in 
/UFO_ID=# 

[UFO2_DeviceStat:#] 

Match # in 
/UFO_OtherID=# 

Location1 Match # in /id=# Match # in /id=# Match # in /id=# Match # in /id=# 

Location5 Optional, Time in 
min to wait for 
backup to collect 
data before failing 
over. 

Optional, Time in 
min to wait for 
backup to collect 
data before failing 
over. 

Optional, Time in 
min to wait for 
backup to collect 
data before failing 
over. 

Optional, Time in 
min to wait for 
backup to collect 
data before failing 
over. 

Point 
Source 

Match x in /ps=x Match x in /ps=x Match x in /ps=x Match x in /ps=x 

Point Type int32 int32 int32 int32 

Shutdown 0 0 0 0 

Step 1 1 1 1 

Interface State Point Configuration 

Attribute Primary Backup 

Tag <Tagname1> <Tagname2> 

Compmax 0 0 

DigitalSet UFO_State UFO_State 

ExDesc [UFO2_State:#] 

(Match /UFO_ID=# on primary node) 

[UFO2_State:#] 

(Match /UFO_ID=# on backup node) 

Location1 Match # in /id=# Same as for Primary node 

PointSource Match x in /ps=x Same as for Primary node 

PointType digital digital 



UniInt Failover Configuration 

92  

Attribute Primary Backup 

Shutdown 0 0 

Step 1 1 

The following table describes the extended descriptor for the above PI points in more detail. 

PI Point ExDesc Required / 
Optional 

Description Value 

 [UFO2_ACTIVEID] Required Active ID point 

The ExDesc must start with the 
case sensitive string: 
[UFO2_ACTIVEID].  

The pointsource must match the 
interfaces’ point source.  

Location1 must match the ID for the 
interfaces.  

Location5 is the COLD failover retry 
interval in minutes. This can be 
used to specify how long before an 
interface retries to connect to the 
device in a COLD failover 
configuration. (See the description 
of COLD failover retry interval for a 
detailed explanation.) 

0 – highest 
Interface Failover 
ID 

Updated by the 
redundant 
Interfaces 

 [UFO2_HEARTBEAT:#] 

(IF-Node1) 

Required Heartbeat 1 point 

The ExDesc must start with the 
case sensitive string: 
[UFO2_HEARTBEAT:#] 

The number following the colon (:) 
must be the Failover ID for the 
interface running on IF-Node1.  

The PointSource must match the 
interfaces’ /ps parameter.  

Location1 must match the ID for the 
interfaces.  

0 – 31 / None 

Updated by the 
Interface on 
IF-Node1 

 [UFO2_HEARTBEAT:#] 

(IF-Node2) 

Required Heartbeat 2 point 

The ExDesc must start with the 
case sensitive string: 
[UFO2_HEARTBEAT:#] 

The number following the colon (:) 
must be the Failover ID for the 
interface running on IF-Node2.  

The PointSource must match the 
interfaces’ /ps parameter.  

Location1 must match the id for the 
interfaces. 

0 – 31 / None 

Updated by the 
Interface on 
IF-Node2 



 

PI Interface for GE iFix 93 

PI Point ExDesc Required / 
Optional 

Description Value 

 [UFO2_DEVICESTAT :#] 

(IF-Node1) 

Required Device Status 1 point 

The ExDesc must start with the 
case sensitive string: 
[UFO2_DEVICESTAT:#] 

The value following the colon (:) 
must be the Failover ID for the 
interface running on IF-Node1 

The PointSource must match the 
interfaces’ /ps parameter.  

Location1 must match the id for the 
interfaces. 

A lower value is a better status and 
the interface with the lower status 
will attempt to become the primary 
interface. 

The failover 1 device status point is 
very similar to the UniInt Health 
Device Status point except the data 
written to this point are integer 
values. A value of 0 is good and a 
value of 99 is OFF. Any value 
between these two extremes may 
result in a failover. The interface 
client code updates these values 
when the health device status point 
is updated. 

0 – 99 / None 

Updated by the 
Interface on 
IF-Node1 

 [UFO2_DEVICESTAT :#] 

(IF-Node2) 

Required Device Status 2 point 

The ExDesc must start with the 
case sensitive string: 
[UFO2_DEVICESTAT:#] 

The number following the colon (:) 
must be the Failover ID for the 
interface running on IF-Node2 

The PointSource must match the 
interfaces’ /ps parameter.  

Location1 must match the ID for the 
interfaces.  

A lower value is a better status and 
the interface with the lower status 
will attempt to become the primary 
interface. 

0 – 99 / None 

Updated by the 
Interface on 
IF-Node2 

 [UFO2_STATE:#] 

(IF-Node1) 

Optional State 1 point 

The ExDesc must start with the 
case sensitive string: 
[UFO2_STATE:#] 

The number following the colon (:) 
must be the Failover ID for the 
interface running on IF-Node1 

The failover state point is 
recommended. 

The failover state points are digital 
points assigned to a digital state set 
with the following values. 

0 = Off: The interface has been 
shut down. 

1 = Backup No Data Source: The 

0 – 5 / None 

Normally updated 
by the Interface 
currently in the 
primary role. 



UniInt Failover Configuration 

94  

PI Point ExDesc Required / 
Optional 

Description Value 

interface is running but cannot 
communicate with the data source. 

2 = Backup No PI Connection: The 
interface is running and connected 
to the data source but has lost its 
communication to the 
PI Data Archive. 

3 = Backup: The interface is 
running and collecting data 
normally and is ready to take over 
as primary if the primary interface 
shuts down or experiences 
problems. 

4 = Transition: The interface stays 
in this state for only a short period 
of time. The transition period 
prevents thrashing when more than 
one interface attempts to assume 
the role of primary interface. 

5 = Primary: The interface is 
running, collecting data and 
sending the data to the 
PI Data Archive. 

 [UFO2_STATE:#] 

(IF-Node2) 

Optional State 2 point  

The ExDesc must start with the 
case sensitive string: 
[UFO2_STATE:#] 

The number following the colon (:) 
must be the Failover ID for the 
interface running on IF-Node2 

The failover state point is 
recommended. 

Normally updated 
by the Interface 
currently in the 
Primary state. 

Values range 
between 0 and 5. 
See description of 
State 1 point. 



 

PI Interface for GE iFix 95 

Detailed Explanation of Synchronization through a Shared File 
(Phase 2) 

In a shared file failover configuration, no failover control information is passed between the 

data source and the interface. This failover scheme uses five PI points to control failover 

operation, and all failover communication between primary and backup interfaces passes 

through a shared data file. 

Once the interface is configured and running, the ability to read or write to the PI points is not 

required for the proper operation of failover (unless connection to the shared file is lost). This 

solution does not require a connection to the PI Data Archive after initial startup because the 

control point data are set and monitored in the shared file. However, the PI point values are 

sent to the PI Data Archive so that you can monitor them with standard OSIsoft client tools. 

You can force manual failover by changing the active ID point on the PI Data Archive to the 

backup failover ID. 

Business Network                                                                                                       

Process Network                                                                                                            

IF-Node1

PI-Interface.exe

/host=PrimaryPI

/UFO_ID=1

/UFO_OTHERID=2

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

IF-Node2

PI-Interface.exe

/host=SecondaryPI

/UFO_ID=2

/UFO_OTHERID=1

/UFO_TYPE=HOT

/UFO_SYNC=\\FileSvr\UFO\Intf_PS_1.dat

DataSource

DCS/PLC/Data Server

Client

Process Book

DataLink

PrimaryPI

PI Server

Role = 1

SecondaryPI

PI Server

Role = 2

Data register 0

.

.

.

Data register n

FileSvr

.\UFO\Intf_PS_1.dat

 

The preceding figure shows a typical network setup in the normal or steady state. The solid 

magenta lines show the data path from the interface nodes to the shared file used for failover 

synchronization. The shared file can be located anywhere in the network as long as both 

interface nodes can read, write, and create the necessary file on the shared file machine. 

OSIsoft strongly recommends that you put the file on a dedicated file server that has no other 

role in the collection of data. 



UniInt Failover Configuration 

96  

The major difference between synchronizing the interfaces through the data source (Phase 1) 

and synchronizing the interfaces through the shared file (Phase 2) is where the control data is 

located. When synchronizing through the data source, the control data is acquired directly 

from the data source. We assume that if the primary interface cannot read the failover control 

points, then it cannot read any other data. There is no need for a backup communications path 

between the control data and the interface. 

When synchronizing through a shared file, however, we cannot assume that loss of control 

information from the shared file implies that the primary interface is down. We must account 

for the possible loss of the path to the shared file itself and provide an alternate control path 

to determine the status of the primary interface. For this reason, if the shared file is 

unreachable for any reason, the interfaces use the PI Data Archive as an alternate path to pass 

control data.  

When the backup interface does not receive updates from the shared file, it cannot tell 

definitively why the primary is not updating the file, whether the path to the shared file is 

down, whether the path to the data source is down, or whether the interface itself is having 

problems. To resolve this uncertainty, the backup interface uses the path to the 

PI Data Archive to determine the status of the primary interface. If the primary interface is 

still communicating with the PI Data Archive, than failover to the backup is not required. 

However, if the primary interface is not posting data to the PI Data Archive, then the backup 

must initiate failover operations.  

The primary interface also monitors the connection with the shared file to maintain the 

integrity of the failover configuration. If the primary interface can read and write to the 

shared file with no errors but the backup control information is not changing, then the backup 

is experiencing some error condition. To determine exactly where the problem exists, the 

primary interface uses the path to PI to establish the status of the backup interface. For 

example, if the backup interface controls indicate that it has been shutdown, it may have been 

restarted and is now experiencing errors reading and writing to the shared file. Both primary 

and backup interfaces must always check their status through PI to determine if one or the 

other is not updating the shared file and why. 

Steady State Operation 

Steady state operation is considered the normal operating condition. In this state, the primary 

interface is actively collecting data and sending its data to PI points. The primary interface is 

also updating its heartbeat value; monitoring the heartbeat value for the backup interface, 

checking the active ID value, and checking the device status for the backup interface every 

failover update interval on the shared file. Likewise, the backup interface is updating its 

heartbeat value; monitoring the heartbeat value for the primary interface, checking the active 

ID value, and checking the device status for the primary interface every failover update 

interval on the shared file. As long as the heartbeat value for the primary interface indicates 

that it is operating properly, the active ID has not changed, and the device status on the 

primary interface is good, the backup interface will continue in this mode of operation. 

An interface configured for hot failover will have the backup interface actively collecting and 

queuing data but not sending that data to the PI Data Archive. An interface for warm failover 

in the backup role is not actively collecting data from the data source even though it may be 

configured with PI points and may even have a good connection to the data source. An 

interface configured for cold failover in the backup role is not connected to the data source 

and upon initial startup will not have configured PI points.  



 

PI Interface for GE iFix 97 

The interaction between the interface and the shared file is fundamental to failover. The 

discussion that follows only refers to the data written to the shared file. However, every value 

written to the shared file is echoed to the points in the PI Data Archive. Updating of the 

points in the PI Data Archive is assumed to take place unless communication with the 

PI Data Archive is interrupted. The updates to the PI Data Archive will be buffered by 

Bufserv or PIBufss in this case. 

In a hot failover configuration, each interface participating in the failover solution will queue 

three failover intervals worth of data to prevent any data loss. When a failover occurs, there 

may be a period of overlapping data for up to 3 intervals. The exact amount of overlap is 

determined by the timing and the cause of the failover and may be different every time. Using 

the default update interval of 5 seconds will result in overlapping data between 0 and 15 

seconds. The no data loss claim for hot failover is based on a single point of failure. If both 

interfaces have trouble collecting data for the same period of time, data will be lost during 

that time. 

As mentioned above, each interface has its own heartbeat value. In normal operation, the 

Heartbeat value on the shared file is incremented by UniInt from 1 – 15 and then wraps 

around to a value of 1 again. UniInt increments the heartbeat value on the shared file every 

failover update interval. The default failover update interval is 5 seconds. UniInt also reads 

the heartbeat value for the other interface copy participating in failover every failover update 

interval. If the connection to the PI Data Archive is lost, the value of the heartbeat will be 

incremented from 17 – 31 and then wrap around to a value of 17 again. Once the connection 

to the PI Data Archive is restored, the heartbeat values will revert back to the 1 to 15 range. 

During a normal shutdown process, the heartbeat value will be set to zero. 

During steady state, the active ID will equal the value of the failover ID of the primary 

interface. This value is set by UniInt when the interface enters the primary state and is not 

updated again by the primary interface until it shuts down gracefully. During shutdown, the 

primary interface will set the active ID to zero before shutting down. The backup interface 

has the ability to assume control as primary even if the current primary is not experiencing 

problems. This can be accomplished by setting the active ID point in the PI Data Archive to 

the active ID of the desired interface copy.  

As previously mentioned, in a hot failover configuration the backup interface actively collects 

data but does not send its data to PI points. To eliminate any data loss during a failover, the 

backup interface queues data in memory for three failover update intervals. The data in the 

queue is continuously updated to contain the most recent data. Data older than three update 

intervals is discarded if the primary interface is in a good status as determined by the backup. 

If the backup interface transitions to the primary, it will have data in its queue to send to the 

PI points. This queued data is sent to the PI points using the same function calls that would 

have been used had the interface been in a primary state when the data was collected.  If 

UniInt receives data without a timestamp, the primary copy uses the current PI time to 

timestamp data sent to PI points. Likewise, the backup copy timestamps data it receives 

without a timestamp with the current PI time before queuing its data. This preserves the 

accuracy of the timestamps. 



UniInt Failover Configuration 

98  

Failover Configuration Using PI ICU 

The use of the PI ICU is the recommended and safest method for configuring the Interface for 

UniInt failover.  With the exception of the notes described in this section, the Interface shall 

be configured with the PI ICU as described in the Configuring the Interface with the PI ICU 

section of this manual. 

Note: With the exception of the /UFO_ID and /UFO_OtherID startup command-

line parameters, the UniInt failover scheme requires that both copies of the interface 
have identical startup command files.  This requirement causes the PI ICU to 
produce a message when creating the second copy of the interface stating that the 
“PS/ID combo already in use by the interface” as shown in Figure 4 below.  Ignore 
this message and click the Add button. 

Create the Interface Instance with PI ICU 

If the interface does not already exist in the ICU it must first be created.  The procedure for 

doing this is the same as for non-failover interfaces.  When configuring the second instance 

for UniInt Failover the Point Source and Interface ID will be in yellow and a message will be 

displayed saying this is already in use.  This should be ignored.  

 

Figure 4: PI ICU configuration screen shows that the “PS/ID combo is already in use by 

the interface.” The user must ignore the yellow boxes, which indicate errors, and click the 

Add button to configure the interface for failover.  



 

PI Interface for GE iFix 99 

Configuring the UniInt Failover Startup Parameters with PI ICU 

There are three interface startup parameters that control UniInt failover: /UFO_ID, 

/UFO_OtherID, and /UFO_Interval. The UFO stands for UniInt Failover.  The /UFO_ID 

and /UFO_OtherID parameters are required for the interface to operate in a failover 

configuration, but the /UFO_Interval is optional.  Each of these parameters is described in 

detail in Configuring UniInt Failover through a Shared File (Phase 1)section and Start-Up 

Parameters  

 

Figure 5: This figure illustrates the PI ICU failover configuration page showing the 

UniInt failover startup parameters (phase 1).  This copy of the interface defines its 

failover ID as 1 (/UFO_ID=1) and the other interface’s failover ID as 2 

(/UFO_OtherID=2).  The other failover interface copy must define its failover ID as 2 

(/UFO_ID=2) and the other interface failover ID as 1 (/UFO_OtherID=1) in its ICU 

failover configuration page. 



UniInt Failover Configuration 

100  

 

Figure 6: This figure illustrates the PI ICU failover configuration page showing the 

UniInt failover startup parameters (phase 2).  This copy of the interface defines its 

failover ID as 2 (/UFO_ID=2) and the other interface’s failover ID as 1 

(/UFO_OtherID=1).  The other failover interface copy must define its failover ID as 1 

(/UFO_ID=1) and the other interface failover ID as 2 (/UFO_OtherID=2) in its ICU 

failover configuration page.  It also defines the location and name of the synchronization 

file as well as the type of failover as COLD. 

Creating the Failover State Digital State Set  

The UFO_State digital state set is used in conjunction with the failover state digital point.  If 

the UFO_State digital state set has not been created yet, it can be created using either the 

Failover page of the ICU (1.4.1.0 or later) or the Digital States plug-in in the SMT Utility 

(3.0.0.7 or later). 

Using the PI ICU Utility to create Digital State Set 

To use the UniInt Failover page to create the UFO_State digital state set, right-click on any 

of the failover points in the list and then click the Create UFO_State Digital Set on Server 

XXXXXX… command, where XXXXXX is the PI Data Archive where the points will be or are 

created.   



 

PI Interface for GE iFix 101 

Phase 1 

 

Phase 2 

 

This command is unavailable if the UFO_State digital state set already exists on the XXXXXX 

PI Data Archive. 

Using the PI SMT 3 Utility to create Digital State Set 

Optionally the Export UFO_State Digital Set (.csv) command on the shortcut menu can be 

selected to create a comma-separated file to be imported via the PI System Management 

Tools (SMT) (version 3.0.0.7 or later) or use the 

UniInt_Failover_DigitalSet_UFO_State.csv file included in the installation kit. 

The procedure below outlines the steps necessary to create a digital set in a PI Data Archive 

using the Import from File command found in the SMT application.  The procedure assumes 

the user has a basic understanding of the SMT application. 

1. Open the SMT application. 

2. Select the appropriate PI Data Archive from the PI Servers window.  If the desired 

server is not listed, add it using the PI Connection Manager.  A view of the SMT 

application is shown in Figure 7 below. 

3. From the System Management Plug-Ins window, expand Points then select 

Digital States.  A list of available digital state sets will be displayed in the main 

window for the selected PI Data Archive.  Refer to Figure 7 below. 

4. In the main window, right-click on the desired server and select the Import from File 

command.  Refer to Figure 7 below. 



UniInt Failover Configuration 

102  

 

Figure 7: PI SMT application configured to import a digital state set file.  The PI Servers 

window shows the “localhost” PI Data Archive selected along with the System 

Management Plug-Ins window showing the Digital States Plug-In as being selected.  The 

digital state set file can now be imported by selecting the Import from File command.  

5. Navigate to and select the UniInt_Failover_DigitalSet_UFO_State.csv file 

for import using the Browse icon on the display.  Select the desired Overwrite 

Options. Refer to Figure 8 below. 

 

Figure 8: PI SMT application Import Digital Set(s) dialog box.  This view shows the 

UniInt_Failover_DigitalSet_UFO_State.csv file as being selected for import.  

Select the desired Overwrite Options by choosing the appropriate option button. 

6. Click on the OK button.  Refer to Figure 8 above. 

7. The UFO_State digital set is created as shown in Figure 9 below. 



 

PI Interface for GE iFix 103 

 

Figure 9: The PI SMT application showing the UFO_State digital set created in the 

“localhost” PI Data Archive. 



UniInt Failover Configuration 

104  

Creating the UniInt Failover Control and Failover State Points (Phase 
1) 

The ICU can be used to create a comma delimited file that contains all of the non-interface 

specific point attributes configured correctly for UniInt failover.  This file can be edited 

according to the UniInt failover point configuration sections above. 

In addition, the interface installation procedure installs an example file that creates the UniInt 

failover points.  This example file already has the IntFix Interface specific attributes 

configured. 

To use the ICU Failover page to create this file, simply right-click any of the failover points 

in the list and select Export Point Configuration then edit this file as needed and import with 

SMT. 

After the failover control and failover state points have been created, the Failover page of the 

ICU should look similar to the illustration below. 

 



 

PI Interface for GE iFix 105 

Creating the UniInt Failover Control and Failover State Points (Phase 
2) 

The ICU can be used to create the UniInt failover control and state points.   

To use the ICU Failover page to create these points, simply right-click any of the failover 

points in the list and click the Create all points (UFO Phase 2) command.   

If this menu command is unavailable, it is because the UFO_State digital state set has not 

been created in the PI Data Archive yet.  Create UFO_State Digital Set on Server xxxxxxx… 

on the shortcut menu can be used to create that digital state set.  After this has been done, 

then the Create all points (UFO Phase2) command should be available. 

 

Once the failover control and failover state points have been created, the Failover page of the 

ICU should look similar to the illustration below. 

 



UniInt Failover Configuration 

106  

Converting from Phase 1 to Phase 2 Failover 

The few differences between Phase 1 and Phase 2 Failover are described in the following 

table.  

Points / Attributes / 
Parameters 

Phase 1 Phase 2 

Control Data Path parameter Absence of this command line 
parameter 
(/UFO_Sync=<path>) in the 

startup (.bat) file, causes Phase 
1 synchronization. 

The presence of this command 
line parameter 
(/UFO_Sync=<path>) signals 

Phase 2 synchronization and 
specifies the directory path to the 
shared file and, optionally, the 
file name. 

Control Points Six PI pointss Five PI points 

Phase 2 does not require both input and output points because they 
are not serviced by the interface client. Phase 2 failover requires only 
a single Active ID, Heartbeat 1, and Heartbeat 2 point. 

Active ID (input) 
Active ID 

Active ID (output) 

Heartbeat 1 (input) 
Heartbeat 1 

Heartbeat 1 (output) 

Heartbeat 2 (input) 
Heartbeat 2 

Heartbeat 2 (output) 

Phase 2 requires two device status points to convey the status of 
communications link to the data source. 

 DeviceStatus 1 

DeviceStatus 2 

[Optional] State points [Optional] State points 

InstrumentTag attributes Phase 1 requires these point 
attributes to communicate 
directly with the data source 
device. 

 

ExDesc attributes Keyword [UFO_tagname] Keyword [UFO2_tagname] 

Procedure 

Step Description 

1. Add /UFO_Sync parameter to the startup file to define the path and, optionally, the file 

name of the shared synchronization file. 

2. Change the Active ID, Heartbeat 1, and Heartbeat 2 points to remove input/output 
designations  

OR 

Create new Phase 2 points that do not have input/output qualifiers. 

3. Create device status 1 and device status 2 points. 

4. Create new points for Phase 2 or change the ExDesc attribute keywords for the points from 
[UFO_tagname] to [UFO2_tagname]. 

5. Remove InstrumentTag attributes. 

 



 

PI Interface for GE iFix 107 

Chapter 11. Interface Node Clock 

Make sure that the time and time zone settings on the computer are correct.  To confirm, run 

the Date/Time applet located in the Windows Control Panel.  If the locale where the interface 

node resides observes Daylight Saving Time, check the “Automatically adjust clock for 

daylight saving changes” box.  For example, 

 

In addition, make sure that the TZ environment variable is not defined.  All of the currently 

defined environment variables can be viewed by opening a Command Prompt window and 

typing set.  That is, 

C:> set 

Confirm that TZ is not in the resulting list.  If it is, run the System applet of the Control 

Panel, click the “Environment Variables” button under the Advanced Tab, and remove TZ 

from the list of environment variables. 

 





 

PI Interface for GE iFix 109 

Chapter 12. Security 

The PI Firewall Database and the PI Trust Database must be configured so that the interface 

is allowed to write data to the PI Data Archive.  

The Trust Database, which is maintained by the PI Base Subsystem, replaces the Proxy 

Database used prior to PI Data Archive version 3.3. The PI Trust Database maintains all the 

functionality of the proxy mechanism while being more secure. 

See “Manage Interface Authentication with PI Trusts” in the chapter “Manage Security” of 

the PI Server Introduction to System Management Guide. 

If the interface cannot write data to the PI Data Archive because it has insufficient privileges, 

a -10401 error will be reported in the log file. If the interface cannot send data to a PI2 Data 

Archive, it writes a -999 error. See the section Appendix A: Error and Informational 

Messages for additional information on error messaging. 

Authentication 

Interface instances are usually configured to run as Windows services. Since a service runs in 

a non-interactive context, a PI trust is required to authenticate the interface service to the 

PI Data Archive. A PI trust is associated with one PI identity, PI user, or PI group. When an 

interface successfully authenticates through a trust, the interface is granted the access rights 

for the associated identity, user, or group. 

OSIsoft discourages using highly-privileged identities, users, or groups in PI trusts for 

interfaces. 

Security Note: Avoid using the piadmin super-user and piadmins group. The 
recommended best practice for PI Data Archive security is to create an identity, user, 
or group that has only the access rights which are necessary for the interface to 
operate. 

PI Data Archive v3.3 and Later 

Security Configuration using Trust Editor 

The Trust Editor plug-in for PI System Management Tools edits the PI trust table. 

See the “Manage Interface Authentication with PI Trusts” section in the PI Server 

Introduction to System Management manual for more details on security configuration. 



Security 

110  

Security configuration using piconfig 

For PI Data Archive v3.3 and higher, the following example demonstrates how to edit the PI 

trust table with piconfig: 

C:\PI\adm> piconfig 

@table pitrust 

@mode create 

@istr Trust,IPAddr,NetMask,PIUser 

a_trust_name,192.168.100.11,255.255.255.255,trust_identity 

@quit 

For the preceding example, 

Trust: An arbitrary name for the trust table entry; in the above example, 

a_trust_name 

IPAddr: the IP address of the computer running the interface; in the above example, 

192.168.100.11 

NetMask: the network mask; 255.255.255.255 specifies an exact match with IPAddr 

PIUser:  the PI identity, user, or group the interface is entrusted as; in the example, 

trust_identity  

PI Data Archive v3.2 

For PI Data Archive v3.2, the following example demonstrates how to edit the PI Proxy table: 

C:\PI\adm> piconfig 

@table pi_gen,piproxy 

@mode create 

@istr host,proxyaccount 

piapimachine,piadmin 

@quit 

In place of piapimachine, put the name of the interface node as it is seen by the 

PI Data Archive. 

Authorization 

For an interface instance to start and write data to PI points, the following permissions must 

be granted to the PI identity, user, or group in the PI trust that authenticates the interface 

instance. 

Database Security Permission Notes 

PIPOINT r,w  

 

Point Database Permission Notes 

PtSecurity r,w  

DataSecurity r,w Unbuffered 

 r Buffered (the buffering application 
requires r,w for the interface points) 



 

PI Interface for GE iFix 111 

The permissions in the preceding table must be granted for every PI point that is configured 

for the interface instance. Observe that buffering on the interface node is significant to PI 

point permissions. 

When the interface instance is running on an unbuffered interface node, the interface instance 

sends PI point updates directly to the PI Data Archive. Therefore, the DataSecurity attribute 

must grant write access to the PI identity, user, or group in the PI trust that authenticates the 

interface instance. 

When the interface instance is running on a buffered interface node, the interface instance 

sends PI point updates to the local buffering application, which relays the PI point updates to 

the PI Data Archive. The buffering application is a separate client to the PI Data Archive and, 

therefore, authenticates independently of the interface instances. The DataSecurity attribute 

must grant write access to the PI identity, user, or group in the PI trust that authenticates the 

buffering application. 

 





 

PI Interface for GE iFix 113 

Chapter 13. Starting / Stopping the Interface 

This section describes starting and stopping the Interface once it has been installed as a 

service. 

 

Starting Interface as a Service 

If the Interface was installed as service, it can be started from PI ICU, the Services control 

panel or with the command: 

PI-EDA.exe /start [ /serviceid id ] 

To start the interface service with PI ICU, use the  button on the PI ICU toolbar. 

A message will inform the user of the status of the interface service. Even if the message 

indicates that the service has started successfully, double check through the Services control 

panel applet. Services may terminate immediately after startup for a variety of reasons, and 

one typical reason is that the service is not able to find the command-line parameters in the 

associated .bat file. Verify that the root name of the .bat file and the .exe file are the same, 

and that the .bat file and the .exe file are in the same directory. Further troubleshooting of 

services might require consulting the log file, Windows Event Viewer, or other sources of log 

messages. See the section Appendix A: Error and Informational Messages for additional 

information. 

Stopping Interface Running as a Service 

If the Interface was installed as service, it can be stopped at any time from PI ICU, the 

Services control panel or with the command: 

PI-EDA.exe /stop [ /serviceid id ] 

To stop the interface service with PI ICU, use the  button on the PI ICU toolbar. 

The service can be removed by: 

PI-EDA.exe /remove [ /serviceid id ] 

 





 

PI Interface for GE iFix 115 

Chapter 14. Buffering 

Buffering refers to an interface node’s ability to temporarily store the data that interfaces 

collect and to forward these data to the appropriate PI Data Archives. OSIsoft strongly 

recommends that you enable buffering on your interface nodes. Otherwise, if the interface 

node stops communicating with the PI Data Archive, you lose the data that your interfaces 

collect.  

The PI SDK installation kit installs two buffering applications: the PI Buffer Subsystem 

(PIBufss) and the PI API Buffer Server (Bufserv).  PIBufss and Bufserv are mutually 

exclusive; that is, on a particular computer, you can run only one of them at any given time.  

If you have PI Data Archives that are part of a collective, PIBufss supports n-way buffering. 

N-way buffering refers to the ability of a buffering application to send the same data to each 

of the PI Data Archives in a collective. (Bufserv also supports n-way buffering, but OSIsoft 

recommends that you run PIBufss instead.) 

Which Buffering Application to Use 

You should use PIBufss whenever possible because it offers better throughput than Bufserv. 

In addition, if the interfaces on an interface node are sending data to a PI Data Archive 

collective, PIBufss guarantees identical data in the archive records of all the PI Data Archives 

that are part of that collective.  

You can use PIBufss only under the following conditions: 

 the PI Data Archive version is at least 3.4.375.x; and 

 all of the interfaces running on the interface node send data to the same 

PI Data Archive or to the same collective. 

If any of the following scenarios apply, you must use Bufserv: 

 the PI Data Archive version is earlier than 3.4.375.x; or 

 the interface node runs multiple interfaces, and these interfaces send data to multiple 

PI Data Archives that are not part of a single collective.  

If an interface node runs multiple interfaces, and these interfaces send data to two or more 

PI Data Archive collectives, then neither PIBufss nor Bufserv is appropriate. The reason is 

that PIBufss and Bufserv can buffer data only to a single collective. If you need to buffer to 

more than one collective, you need to use two or more interface nodes to run your interfaces. 

It is technically possible to run Bufserv on the PI Data Archive node. However, OSIsoft does 

not recommend this configuration. 



Buffering 

116  

How Buffering Works 

A complete technical description of PIBufss and Bufserv is beyond the scope of this 

document. However, the following paragraphs provide some insights on how buffering 

works. 

When an interface node has buffering enabled, the buffering application (PIBufss or Bufserv) 

connects to the PI Data Archive. It also creates shared memory storage. 

When an interface program makes a PI API function call that writes data to the 

PI Data Archive (for example, pisn_sendexceptionqx()), the PI API checks whether 

buffering is enabled. If it is, these data writing functions do not send the interface data to the 

PI Data Archive. Instead, they write the data to the shared memory storage that the buffering 

application created.  

The buffering application (either Bufserv or PIBufss) in turn 

 reads the data in shared memory, and 

 if a connection to the PI Data Archive exists, sends the data to the PI Data Archive; 

or 

 if there is no connection to the PI Data Archive, continues to store the data in shared 

memory (if shared memory storage is available) or writes the data to disk (if shared 

memory storage is full). 

When the buffering application re-establishes connection to the PI Data Archive, it writes to 

the PI Data Archive the interface data contained in both shared memory storage and disk. 

(Before sending data to the PI Data Archive, PIBufss performs further tasks such as data 

validation and data compression, but the description of these tasks is beyond the scope of this 

document.) 

When PIBufss writes interface data to disk, it writes to multiple files. The names of these 

buffering files are PIBUFQ_*.DAT.  

When Bufserv writes interface data to disk, it writes to a single file. The name of its buffering 

file is APIBUF.DAT.  

As a previous paragraph indicates, PIBufss and Bufserv create shared memory storage at 

startup. These memory buffers must be large enough to accommodate the data that an 

interface collects during a single scan. Otherwise, the interface may fail to write all its 

collected data to the memory buffers, resulting in data loss. The buffering configuration 

section of this chapter provides guidelines for sizing these memory buffers. 

When buffering is enabled, it affects the entire interface node. That is, you do not have a 

configuration where the buffering application buffers data for one interface running on an 

interface node but not for another interface running on the same interface node. 

Buffering and PI Data Archive Security 

After you enable buffering, it is the buffering 

application - and not the interface program - that writes data to the PI Data Archive. If the 

PI Data Archive’s trust table contains a trust entry that allows all applications on an interface 

node to write data, then the buffering application is able to write data to the PI Data Archive. 



 

PI Interface for GE iFix 117 

However, if the PI Data Archive contains an interface-specific PI trust entry that allows a 

particular interface program to write data, you must have a PI trust entry specific to buffering. 

The following are the appropriate entries for the Application Name field of a PI trust entry: 

Buffering Application Application Name field for PI Trust 

PI Buffer Subsystem PIBufss.exe 

PI API Buffer Server APIBE (if the PI API is using 4 character process 
names) 

APIBUF (if the PI API is using  8 character process 
names) 

To use a process name greater than 4 characters in length for a trust application name, use the 

LONGAPPNAME=1 in the PIClient.ini file. 

See the Security chapter for additional information. 

Enabling Buffering on an Interface Node with the ICU 

The ICU allows you to select either PIBufss or Bufserv as the buffering application for your 

interface node. Run the ICU and select Tools > Buffering. 

Choose Buffer Type 

 

To select PIBufss as the buffering application, choose Enable buffering with PI Buffer 

Subsystem. 

To select Bufserv as the buffering application, choose Enable buffering with API Buffer 

Server.  

If a warning message such as the following appears, click Yes. 



Buffering 

118  

 

Buffering Settings 

There are a number of settings that affect the operation of PIBufss and Bufserv. The 

Buffering Settings section allows you to set these parameters. If you do not enter values for 

these parameters, PIBufss and Bufserv use default values. 

PIBufss 

For PIBufss, the paragraphs below describe the settings that may require user intervention. 

Please contact OSIsoft Technical Support for assistance in further optimizing these and all 

remaining settings. 

 

Primary and Secondary Memory Buffer Size (Bytes) 

This is a key parameter for buffering performance. The sum of these two memory buffer sizes 

must be large enough to accommodate the data that an interface collects during a single scan. 

A typical event with a float32 point type requires about 25 bytes. If an interface writes data to 

5,000 points, it can potentially send 125,000 bytes (25 * 5000) of data in one scan. As a 

result, the size of each memory buffer should be 62,500 bytes. 

The default value of these memory buffers is 32,768 bytes.  OSIsoft recommends that these 

two memory buffer sizes should be increased to the maximum of 2000000 for the best 

buffering performance. 



 

PI Interface for GE iFix 119 

Send rate (milliseconds) 

Send rate is the time in milliseconds that PIBufss waits between sending up to the Maximum 

transfer objects (described below) to the PI Data Archive. The default value is 100. The valid 

range is 0 to 2,000,000. 

Maximum transfer objects 

Maximum transfer objects is the maximum number of events that PIBufss sends between 

each Send rate pause. The default value is 500. The valid range is 1 to 2,000,000. 

Event Queue File Size (Mbytes) 

This is the size of the event queue files. PIBufss stores the buffered data to these files. The 

default value is 32. The range is 8 to 131072 MB (up to a maximum of 128 GB). Please see 

the section entitled "Queue File Sizing" in the PIBufss.chm file for details on how to 

appropriately size the event queue files. 

Event Queue Path 

This is the location of the event queue file. The default value is [PIHOME]\DAT. 

For optimal performance and reliability, OSIsoft recommends that you place the PIBufss 

event queue files on a different drive/controller from the system drive and the drive with the 

Windows paging file. (By default, these two drives are the same.) 

Bufserv 

For Bufserv, the paragraphs below describe the settings that may require user intervention. 

Please contact OSIsoft Technical Support for assistance in further optimizing these and all 

remaining settings. 

 



Buffering 

120  

Maximum buffer file size (KB) 

This is the maximum size of the buffer file ([PIHOME]\DAT\APIBUF.DAT). When Bufserv 

cannot communicate with the PI Data Archive, it writes and appends data to this file. When 

the buffer file reaches this maximum size, Bufserv discards data. 

The default value is 2,000,000 KB, which is about 2 GB. The range is from 1 to 2,000,000. 

Primary and Secondary Memory Buffer Size (Bytes) 

This is a key parameter for buffering performance. The sum of these two memory buffer sizes 

must be large enough to accommodate the data that an interface collects during a single scan. 

A typical event with a float32 point type requires about 25 bytes. If an interface writes data to 

5,000 points, it can potentially send 125,000 bytes (25 * 5000) of data in one scan. As a 

result, the size of each memory buffer should be 62,500 bytes. 

The default value of these memory buffers is 32,768 bytes. OSIsoft recommends that these 

two memory buffer sizes should be increased to the maximum of 2000000 for the best 

buffering performance. 

Send rate (milliseconds) 

Send rate is the time in milliseconds that Bufserv waits between sending up to the Maximum 

transfer objects (described below) to the PI Data Archive. The default value is 100. The valid 

range is 0 to 2,000,000. 

Maximum transfer objects 

Max transfer objects is the maximum number of events that Bufserv sends between each 

Send rate pause. The default value is 500. The valid range is 1 to 2,000,000. 

Buffered Servers 

The Buffered Servers section allows you to define the PI Data Archives or PI Data Archive 

collective that the buffering application writes data. 

PIBufss 

PIBufss buffers data only to a single PI Data Archive or a single PI Data Archive collective. 

Select the PI Data Archive or the collective from the Buffering to collective/server drop down 

list box. 

The following figure shows that PIBufss is configured to write data to a standalone 

PI Data Archive named starlight. Notice that the Replicate data to all collective member 

nodes check box is not available because this PI Data Archive is not part of a collective. 

(PIBufss automatically detects whether a PI Data Archive is part of a collective.) 



 

PI Interface for GE iFix 121 

 

The following figure shows that PIBufss is configured to write data to a PI Data Archive 

collective named admiral. By default, PIBufss replicates data to all collective members. 

That is, it provides n-way buffering. 

You can override this option by clearing the Replicate data to all collective member nodes 

check box. Then, select (or clear) the collective members as desired. 

 



Buffering 

122  

Bufserv 

Bufserv buffers data to a standalone PI Data Archive or to multiple standalone 

PI Data Archives. (If you want to buffer to multiple PI Data Archives that are part of a 

collective, you should use PIBufss.) 

If the PI Data Archive to which you want Bufserv to buffer data is not in the Server list, enter 

its name in the Add a server box and click the Add Server button. This PI Data Archive name 

must be identical to the API Hostname entry: 

 

The following screen shows that Bufserv is configured to write to a standalone named 

etamp390. You use this configuration when all the interfaces on the interface node write 

data to etamp390.  

 

The following screen shows that Bufserv is configured to write to two standalone 

PI Data Archives, one named etamp390 and the other one named starlight. You use this 

configuration when some of the interfaces on the interface node write data to etamp390 and 

some write to starlight. 



 

PI Interface for GE iFix 123 

 

Installing Buffering as a Service 

Both the PIBufss and Bufserv applications run as a Windows service. 

PI Buffer Subsystem Service 

Use the PI Buffer Subsystem Service page to configure PIBufss as a service. This page also 

allows you to start and stop the PIBufss service. 

PIBufss does not require the logon rights of the local administrator account. It is sufficient to 

use the LocalSystem account instead. Although the screen below shows asterisks for the 

LocalSystem password, this account does not have a password. 



Buffering 

124  

 

 

API Buffer Server Service 

Use the API Buffer Server Service page to configure Bufserv as a service. This page also 

allows you to start and stop the Bufserv service 

Bufserv version 1.6 and later does not require the logon rights of the local administrator 

account. It is sufficient to use the LocalSystem account instead. Although the screen below 

shows asterisks for the LocalSystem password, this account does not have a password. 



 

PI Interface for GE iFix 125 

 

 





 

PI Interface for GE iFix 127 

Chapter 15. Interface Diagnostics Configuration 

The PI Point Configuration chapter provides information on building PI points for collecting 

data from the device. This chapter describes the configuration of points related to interface 

diagnostics. 

Note: The procedure for configuring interface diagnostics is not specific to this 
Interface. Thus, for simplicity, the instructions and screenshots that follow refer to an 
interface named ModbusE.  

Some of the points that follow refer to a “performance summary interval”. This interval is 8 

hours by default. You can change this parameter via the Scan performance summary box in 

the UniInt – Debug parameter category pane: 

 

Scan Class Performance Points 

A Scan Class Performance Point measures the amount of time (in seconds) that this Interface 

takes to complete a scan. The Interface writes this scan completion time to millisecond 

resolution. Scan completion times close to 0 indicate that the Interface is performing 

optimally. Conversely, long scan completion times indicate an increased risk of missed or 

skipped scans. To prevent missed or skipped scans, you should distribute the data collection 

points among several scan classes. 



Interface Diagnostics Configuration 

128  

You configure one Scan Class Performance Point for each Scan Class in this Interface. From 

the ICU, select this Interface from the Interface drop-down list and click UniInt-Performance 

Points in the parameter category pane: 

 

Right click the row for a particular Scan Class # to bring up the context menu: 

 

You need not restart the Interface for it to write values to the Scan Class Performance Points. 

To see the current values (snapshots) of the Scan Class Performance Points, right click and 

select Refresh Snapshots. 

Create / Create ALL 

To create a Performance Point, right-click the line belonging to the point to be created, and 

select Create.  Click Create All to create all the Scan Class Performance Points. 

Delete 

To delete a Performance Point, right-click the line belonging to the point to be deleted, and 

select Delete.  



 

PI Interface for GE iFix 129 

Correct / Correct All 

If the “Status” of a point is marked “Incorrect”, the point configuration can be automatically 

corrected by ICU by right-clicking on the line belonging to the point to be corrected, and 

selecting Correct. The Performance Points are created with the following PI attribute values. 

If ICU detects that a Performance Point is not defined with the following, it will be marked 

Incorrect: To correct all points click the Correct All menu item. 

The Performance Points are created with the following PI attribute values: 

Attribute Details 

Tag Tag name that appears in the list box 

Point Source PointSource for points for this interface, as specified on the 
General page 

Compressing Off 

Excmax 0 

Descriptor Interface name + “ Scan Class # Performance Point” 

Rename 

Right-click the line belonging to the point and select “Rename” to rename the Performance 

Point.  

Column descriptions 

Status 

The Status column in the Performance Points table indicates whether the Performance Point 

exists for the scan class in column 2. 

Created – Indicates that the Performance Point does exist 

Not Created – Indicates that the Performance Point does not exist 

Deleted – Indicates that a Performance Point existed, but was just deleted by the user 

Scan Class # 

The Scan Class column indicates which scan class the Performance Point in the Tagname 

column belongs to. There will be one scan class in the Scan Class column for each scan class 

listed in the Scan Classes combo box on the UniInt Parameters tab. 

Tagname 

The Tagname column holds the Performance point tag name. 

PS 

This is the point source used for these performance points and the interface. 

Location1 

This is the value used by the interface for the /ID=# point attribute. 



Interface Diagnostics Configuration 

130  

Exdesc 

This is the used to tell the interface that these are performance points and the value is used to 

corresponds to the /ID=# command line parameter if multiple copies of the same interface 

are running on the Interface node. 

Snapshot 

The Snapshot column holds the snapshot value of each Performance Point that exists in the 

PI Data Archive. The Snapshot column is updated when the Performance Points/Counters tab 

is clicked, and when the interface is first loaded.  You may have to scroll to the right to see 

the snapshots. 

Performance Counters Points 

When running as a Service or interactively, this Interface exposes performance data via 

Windows Performance Counters. Such data include items like: 

 the amount of time that the Interface has been running; 

 the number of points the Interface has added to its point list; 

 the number of points that are currently updating among others 

There are two types or instances of Performance Counters that can be collected and stored in 

PI Points.  The first is (_Total) which is a total for the Performance Counter since the 

interface instance was started.  The other is for individual Scan Classes (Scan Class x) where 

x is a particular scan class defined for the interface instance that is being monitored. 

OSIsoft’s PI Performance Monitor Interface is capable of reading these performance values 

and writing them to PI points. Please see the Performance Monitor Interface for more 

information. 

If there is no PI Performance Monitor Interface registered with the ICU in the Module 

Database for the PI Data Archive the interface is sending its data to, you cannot use the ICU 

to create any Interface instance’s Performance Counters Points: 



 

PI Interface for GE iFix 131 

 

After installing the PI Performance Monitor Interface as a service, select this Interface 

instance from the Interface drop-down list, then click Performance Counters in the parameter 

categories pane, and right click on the row containing the Performance Counters Point you 

wish to create. This will bring up the context menu: 

 



Interface Diagnostics Configuration 

132  

Click Create to create the Performance Counters Point for that particular row. Click Create 

All to create all the Performance Counters Points listed which have a status of Not Created. 

To see the current values (snapshots) of the created Performance Counters Points, right click 

on any row and select Refresh Snapshots. 

Note: The PI Performance Monitor Interface – and not this Interface – is responsible 
for updating the values for the Performance Counters Points in the PI Data Archive. 
So, make sure that the PI Performance Monitor Interface is running correctly. 

Performance Counters 

In the following lists of Performance Counters the naming convention used will be: 

“PerformanceCounterName” (.PerformanceCountersPoint Suffix)  

The tagname created by the ICU for each Performance Counter point is based on the setting 

found under the Tools  Options  Naming Conventions  Performance Counter Points.  

The default for this is “sy.perf.[machine].[if service] followed by the Performance Counter 

Point suffix. 

Performance Counters for both (_Total) and (Scan Class x) 

“Point Count” (.point_count) 

A .point_count Performance Counters Point is available for each Scan Class of this Interface 

as well as a Total for the interface instance.  

The .point_count Performance Counters Point indicates the number of PI Points per Scan 

Class or the total number for the interface instance. This point is similar to the Health Point  

[UI_SCPOINTCOUNT] for scan classes and [UI_POINTCOUNT] for totals. 

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for 

example, “sy.perf.etamp390.E1(Scan Class 1).point_count” refers to Scan Class 

1, “(Scan Class 2)” refers to Scan Class 2, and so on. The tag containing “(_Total)” refers to 

the sum of all Scan Classes. 

“Scheduled Scans: % Missed” (.sched_scans_%missed) 

A .sched_scans_%missed Performance Counters Point is available for each Scan Class of this 

Interface as well as a Total for the interface instance. 

The .sched_scans_%missed Performance Counters Point indicates the percentage of scans the 

Interface missed per Scan Class or the total number missed for all scan classes since startup. 

A missed scan occurs if the Interface performs the scan one second later than scheduled. 

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for 

example, “sy.perf.etamp390.E1(Scan Class 1).sched_scans_%missed” refers 

to Scan Class 1, “(Scan Class 2)” refers to Scan Class 2, and so on. The tag containing 

“(_Total)” refers to the sum of all Scan Classes. 



 

PI Interface for GE iFix 133 

“Scheduled Scans: % Skipped” (.sched_scans_%skipped) 

A .sched_scans_%skipped Performance Counters Point is available for each Scan Class of 

this Interface as well as a Total for the interface instance.  

The .sched_scans_%skipped Performance Counters Point indicates the percentage of scans 

the Interface skipped per Scan Class or the total number skipped for all scan classes since 

startup.  A skipped scan is a scan that occurs at least one scan period after its scheduled time. 

This point is similar to the [UI_SCSKIPPED] Health Point. 

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for 

example, “sy.perf.etamp390.E1(Scan Class 1).sched_scans_%skipped” refers 

to Scan Class 1, “(Scan Class 2)” refers to Scan Class 2, and so on. The tag containing 

“(_Total)” refers to the sum of all Scan Classes. 

“Scheduled Scans: Scan count this interval” (.sched_scans_this_interval) 

A .sched_scans_this_interval Performance Counters Point is available for each Scan Class of 

this Interface as well as a Total for the interface instance.  

The .sched_scans_this_interval Performance Counters Point indicates the number of scans 

that the Interface performed per performance summary interval for the scan class or the total 

number of scans performed for all scan classes during the summary interval.  This point is 

similar to the [UI_SCSCANCOUNT] Health Point. 

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for 

example, “sy.perf.etamp390.E1(Scan Class 1).sched_scans_this_interval” 

refers to Scan Class 1, “(Scan Class 2)” refers to Scan Class 2, and so on. The tag containing 

“(_Total)” refers to the sum of all Scan Classes. 

Performance Counters for (_Total) only 

“Device Actual Connections” (.Device_Actual_Connections) 

The .Device_Actual_Connections Performance Counters Point stores the actual number of 

foreign devices currently connected and working properly out of the expected number of 

foreign device connections to the interface. This value will always be less than or equal to the 

Expected Connections. 

“Device Expected Connections” (.Device_Expected_Connections) 

The .Device_Expected_Connections Performance Counters Point stores the total number of 

foreign device connections for the interface. This is the expected number of foreign device 

connections configured that should be working properly at runtime. If the interface can only 

communicate with 1 foreign device then the value of this counter will always be one. If the 

interface can support multiple foreign device connections then this is the total number of 

expected working connections configured for this Interface. 

“Device Status” (.Device_Status) 

The .Device_Status Performance Counters Point stores communication information about the 

interface and the connection to the foreign device(s). The value of this counter is based on the 

expected connections, actual connections and value of the /PercentUp command line 

option.  If the device status is good then the value is ‘0’. If the device status is bad then the 



Interface Diagnostics Configuration 

134  

value is ‘1’. If the interface only supports connecting to 1 foreign device then the 

/PercentUp command line value does not change the results of the calculation. If for 

example the Interface can connect to 10 devices and 5 are currently working then the value of 

the /PercentUp command line parameter is applied to determine the Device Status. If the 

value of the /PercentUp command line parameter is set to 50 and at least 5 devices are 

working then the DeviceStatus will remain good (i.e. have a value of zero). 

“Failover Status” (.Failover_Status) 

The .Failover_Status Performance Counters Point stores the failover state of the interface 

when configured for UniInt interface level failover. The value of the counter will be ‘0’ when 

the interface is running as the ‘Primary’ interface in the failover configuration. If the interface 

is running in backup mode then the value of the counter will be ‘1’. 

“Interface up-time (seconds)” (.up_time) 

The .up_time Performance Counters Point indicates the amount of time (in seconds) that this 

Interface has been running. At startup the value of the counter is zero. The value will 

continue to increment until it reaches the maximum value for an unsigned integer. Once it 

reaches this value then it will start back over at zero.  

“IO Rate (events/second)” (.io_rates) 

The .io_rates Performance Counters Point indicates the rate (in event per second) at which 

this Interface writes data to its input points. (As of UniInt 4.5.0.x and later this performance 

counters point will no longer be available.) 

“Log file message count” (.log_file_msg_count) 

The .log_file_msg_count Performance Counters Point indicates the number of messages that 

the Interface has written to the log file. This point is similar to the [UI_MSGCOUNT] 

Health Point. 

“PI Status” (PI_Status) 

The .PI_Status Performance Counters Point stores communication information about the 

interface and the connection to the PI Data Archive. If the interface is properly 

communicating with the PI Data Archive then the value of the counter is ‘0’. If the 

communication to the PI Data Archive goes down for any reason then the value of the 

counter will be ‘1’. Once the interface is properly communicating with the PI Data Archive 

again then the value will change back to ‘0’. 

“Points added to the interface” (.pts_added_to_interface) 

The .pts_added_to_interface Performance Counter Point indicates the number of points the 

Interface has added to its point list. This does not include the number of points configured at 

startup. This is the number of points added to the interface after the interface has finished a 

successful startup.  



 

PI Interface for GE iFix 135 

“Points edited in the interface”(.pts_edited_in_interface) 

The .pts_edited_in_interface Performance Counters Point indicates the number of point edits 

the Interface has detected. The Interface detects edits for those points whose PointSource 

attribute matches the Point Source parameter and whose Location1 attribute matches the 

Interface ID parameter of the Interface. 

“Points Good” (.Points_Good) 

The .Points_Good Performance Counters Point is the number of points that have sent a good 

current value to the PI. Data Archive A good value is defined as any value that is not a 

system digital state value. A point can either be Good, In Error or Stale. The total of Points 

Good, Points In Error and Points State will equal the Point Count. There is one exception to 

this rule. At startup of an interface, the Stale timeout must elapse before the point will be 

added to the Stale Counter. Therefore the interface must be up and running for at least 10 

minutes for all points to belong to a particular Counter. 

“Points In Error” (.Points_In_Error) 

The .Points_In_Error Performance Counters Point indicates the number of points that have 

sent a current value to the PI Data Archive that is a system digital state value. Once a point is 

in the In Error count it will remain in the In Error count until the point receives a new, good 

value. Points in Error do not transition to the Stale Counter. Only good points become stale.  

“Points removed from the interface” (.pts_removed_from_interface) 

The .pts_removed_from_interface Performance Counters Point indicates the number of points 

that have been removed from the Interface configuration. A point can be removed from the 

interface when one of the point attributes is updated and the point is no longer a part of the 

interface configuration.  For example, changing the point source, location 1, or Scan attribute 

can cause the point to no longer be a part of the interface configuration. 

“Points Stale 10(min)” (.Points_Stale_10min) 

The .Points_Stale_10min Performance Counters Point indicates the number of good points 

that have not received a new value in the last 10 min. If a point is Good, then it will remain in 

the good list until the Stale timeout elapses. At this time if the point has not received a new 

value within the Stale Period then the point will move from the Good count to the Stale 

count. Only points that are Good can become Stale. If the point is in the In Error count then it 

will remain in the In Error count until the error clears. As stated above, the total count of 

Points Good, Points In Error and Points Stale will match the Point Count for the Interface. 

“Points Stale 30(min)” (.Points_Stale_30min) 

The .Points_Stale_30min Performance Counters Point indicates the number of points that 

have not received a new value in the last 30 min. For a point to be in the Stale 30 minute 

count it must also be a part of the Stale 10 minute count. 

“Points Stale 60(min)” (.Points_Stale_60min) 

The .Points_Stale_60min Performance Counters Point indicates the number of points that 

have not received a new value in the last 60 min. For a point to be in the Stale 60 minute 

count it must also be a part of the Stale 10 minute and 30 minute count. 



Interface Diagnostics Configuration 

136  

“Points Stale 240(min)” (.Points_Stale_240min) 

The .Points_Stale_240min Performance Counters Point indicates the number of points that 

have not received a new value in the last 240 min. For a point to be in the Stale 240 minute 

count it must also be a part of the Stale 10 minute, 30 minute and 60 minute count. 

Performance Counters for (Scan Class x) only 

“Device Scan Time (milliseconds)” (.Device_Scan_Time) 

A .Device_Scan_Time Performance Counter Point is available for each Scan Class of this 

Interface.   

The .Device_Scan_Time Performance Counters Point indicates the number of milliseconds 

the Interface takes to read the data from the foreign device and package the data to send to the 

PI Data Archive. This counter does not include the amount of time to send the data to the 

PI Data Archive. This point is similar to the [UI_SCINDEVSCANTIME] Health Point. 

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for 

example, “sy.perf.etamp390.E1 (Scan Class 1).device_scan _time” refers to 

Scan Class 1, “(Scan Class 2) refers to Scan Class 2, and so on. 

“Scan Time (milliseconds)” (.scan_time) 

A .scan_time Performance Counter Point is available for each Scan Class of this Interface.  

The .scan_time Performance Counter Point indicates the number of milliseconds the Interface 

takes to both read the data from the device and send the data to the PI Data Archive.  This 

point is similar to the [UI_SCINSCANTIME] Health Point. 

The ICU uses a naming convention such that the tag containing “(Scan Class 1)” (for 

example, “sy.perf.etamp390.E1(Scan Class 1).scan_time” refers to Scan Class 1, 

“(Scan Class 2)” refers to Scan Class 2, and so on. 



 

PI Interface for GE iFix 137 

Interface Health Monitoring Points 

Interface Health Monitoring Points provide information about the health of this Interface.  To 

use the ICU to configure these points, select this Interface from the Interface drop-down list 

and click Health Points from the parameter category pane: 

 

Right click the row for a particular Health Point to display the context menu: 

 

Click Create to create the Health Point for that particular row. Click Create All to create all 

the Health Points. 



Interface Diagnostics Configuration 

138  

To see the current values (snapshots) of the Health Points, right click and select Refresh 

Snapshots. 

For some of the Health Points described subsequently, the Interface updates their values at 

each performance summary interval (typically, 8 hours). 

 [UI_HEARTBEAT] 

The [UI_HEARTBEAT] Health Point indicates whether the Interface is currently running. 

The value of this point is an integer that increments continuously from 1 to 15. After reaching 

15, the value resets to 1.  

The fastest scan class frequency determines the frequency at which the Interface updates this 

point: 

Fastest Scan Frequency Update frequency 

Less than 1 second 1 second 

Between 1 and 60 
seconds, inclusive 

Scan frequency 

More than 60 seconds 60 seconds 

If the value of the [UI_HEARTBEAT] Health Point is not changing, then this Interface is in 

an unresponsive state. 

[UI_DEVSTAT] 

A device status point is a type of interface Heath point. Specifically, it is a PI point that is 

updated by the interface to indicate the current interface working state. For example, if a 

device status point exists, the interface will send an update when it establishes or loses 

communication with Intellution. In this way, users can monitor the device status point to 

track the health of the interface without referring to log files. 

A device status point must be a string point and the first characters in its ExDesc attribute 

must be [UI_DEVSTAT]. Refer to the UniInt Interface User Manual for more information on 

configuring interface Health points. 

The following events can be written to the device status point: 

 “1 | Starting” – UniInt writes this string to the Device Status point when the interface 

starts. The snapshot for the Device Status point will contain this value until either 

communication is established with Intellution on the local node or the interface shuts 

down. 

 Digital state Good – the interface writes this event to the Device Status point when it 

establishes communication with Intellution on the local node. 

 If the interface loses communication with the Intellution on the local node, the 

interface writes one of the following strings to the Device Status point: 

o "3 | 1 device(s) in error | Local Intellution stopped; interface shutting down."  

o "3 | 1 device(s) in error | Local Intellution stopped; interface will continue."  

 If the interface is unable to collect alarm & event data it will write one of the 

following updates to the Device Status point; 

o “3 | 1 device(s) in error | Unable to collect alarm & event data.” 

o “3 | 1 device(s) in error | Service library not loaded.” 



 

PI Interface for GE iFix 139 

 “4 | Intf Shutdown” – UniInt writes this string to the Device Status point when the 

interface stops. 

[UI_SCINFO] 

The [UI_SCINFO] Health Point provides scan class information. The value of this point is a 

string that indicates  

 the number of scan classes; 

 the update frequency of the [UI_HEARTBEAT] Health Point; and 

 the scan class frequencies 

An example value for the [UI_SCINFO] Health Point is: 

3 | 5 | 5 | 60 | 120  

The Interface updates the value of this point at startup and at each performance summary 

interval. 

[UI_IORATE] 

The [UI_IORATE] Health Point indicates the sum of 

1. the number of scan-based input values the Interface collects before it performs 

exception reporting; and 

2. the number of event-based input values the Interface collects before it performs 

exception reporting; and 

3. the number of values that the Interface writes to output points that have a 

SourceTag. 

The Interface updates this point at the same frequency as the [UI_HEARTBEAT] point. The 

value of this [UI_IORATE] Health Point may be zero. A stale timestamp for this point 

indicates that this Interface has stopped collecting data. 

[UI_MSGCOUNT] 

The [UI_MSGCOUNT] Health Point tracks the number of messages that the Interface has 

written to the log file since start-up. In general, a large number for this point indicates that the 

Interface is encountering problems. You should investigate the cause of these problems by 

looking in log messages 

The Interface updates the value of this point every 60 seconds. While the Interface is running, 

the value of this point never decreases. 

[UI_POINTCOUNT] 

The [UI_POINTCOUNT] Health Point counts number of PI points loaded by the interface. 

This count includes all input, output and triggered input points. This count does NOT include 

any interface health points or performance points. 

The interface updates the value of this point at startup, on change and at shutdown. 



Interface Diagnostics Configuration 

140  

[UI_OUTPUTRATE] 

After performing an output to the device, this Interface writes the output value to the output 

point if the point has a SourceTag. The [UI_OUTPUTRATE] Health Point tracks the 

number of these values. If there are no output points for this Interface, it writes the System 

Digital State No Result to this Health Point. 

The Interface updates this point at the same frequency as the [UI_HEARTBEAT] point’s.  

The Interface resets the value of this point to zero at each performance summary interval. 

[UI_OUTPUTBVRATE] 

The [UI_OUTPUTBVRATE] Health Point tracks the number of System Digital State values 

that the Interface writes to output points that have a SourceTag. If there are no output points 

for this Interface, it writes the System Digital State No Result to this Health Point. 

The Interface updates this point at the same frequency as the [UI_HEARTBEAT] point’s.  

The Interface resets the value of this point to zero at each performance summary interval. 

[UI_TRIGGERRATE] 

The [UI_TRIGGERRATE] Health Point tracks the number of values that the Interface writes 

to event-based input points. If there are no event-based input points for this Interface, it writes 

the System Digital State No Result to this Health Point. 

The Interface updates this point at the same frequency as the [UI_HEARTBEAT] point’s.  

The Interface resets the value of this point to zero at each performance summary interval. 

[UI_TRIGGERBVRATE] 

The [UI_TRIGGERRATE] Health Point tracks the number of System Digital State values 

that the Interface writes to event-based input points. If there are no event-based input points 

for this Interface, it writes the System Digital State No Result to this Health Point. 

The Interface updates this point at the same frequency as the [UI_HEARTBEAT] point’s.  

The Interface resets the value of this point to zero at each performance summary interval. 

[UI_SCIORATE] 

You can create a [UI_SCIORATE] Health Point for each Scan Class in this Interface. The 

ICU uses a tag naming convention such that the suffix “.sc1” (for example, 

sy.st.etamp390.E1.Scan Class IO Rate.sc1) refers to Scan Class 1, “.sc2” refers to 

Scan Class 2, and so on. 

A particular Scan Class’s [UI_SCIORATE] point indicates the number of values that the 

Interface has collected. If the current value of this point is between zero and the 

corresponding [UI_SCPOINTCOUNT] point, inclusive, then the Interface executed the scan 

successfully. If a [UI_SCIORATE] point stops updating, then this condition indicates that an 

error has occurred and the points in the scan class are no longer receiving new data. 

The Interface updates the value of a [UI_SCIORATE] point after the completion of the 

associated scan. 

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not 

applicable to this Interface. 



 

PI Interface for GE iFix 141 

[UI_SCBVRATE] 

You can create a [UI_SCBVRATE] Health Point for each Scan Class in this Interface. The 

ICU uses a tag naming convention such that the suffix “.sc1” (for example, 

sy.st.etamp390.E1.Scan Class Bad Value Rate.sc1) refers to Scan Class 1, 

“.sc2” refers to Scan Class 2, and so on. 

A particular Scan Class’s [UI_SCBVRATE] point indicates the number System Digital State 

values that the Interface has collected. 

The Interface updates the value of a [UI_SCBVRATE] point after the completion of the 

associated scan. 

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not 

applicable to this Interface. 

[UI_SCSCANCOUNT] 

You can create a [UI_SCSCANCOUNT] Health Point for each Scan Class in this Interface. 

The ICU uses a tag naming convention such that the suffix “.sc1” (for example, 

sy.st.etamp390.E1.Scan Class Scan Count.sc1) refers to Scan Class 1, “.sc2” 

refers to Scan Class 2, and so on. 

A particular Scan Class’s [UI_ SCSCANCOUNT] point tracks the number of scans that the 

Interface has performed. 

The Interface updates the value of this point at the completion of the associated scan. The 

Interface resets the value to zero at each performance summary interval. 

Although there is no “Scan Class 0”, the ICU allows you to create the point with the suffix 

“.sc0”. This point indicates the total number of scans the Interface has performed for all of its 

Scan Classes. 

[UI_SCSKIPPED] 

You can create a [UI_SCSKIPPED] Health Point for each Scan Class in this Interface. The 

ICU uses a tag naming convention such that the suffix “.sc1” (for example, 

sy.st.etamp390.E1.Scan Class Scans Skipped.sc1) refers to Scan Class 1, “.sc2” 

refers to Scan Class 2, and so on. 

A particular Scan Class’s [UI_SCSKIPPED] point tracks the number of scans that the 

Interface was not able to perform before the scan time elapsed and before the Interface 

performed the next scheduled scan. 

The Interface updates the value of this point each time it skips a scan. The value represents 

the total number of skipped scans since the previous performance summary interval. The 

Interface resets the value of this point to zero at each performance summary interval. 

Although there is no “Scan Class 0”, the ICU allows you to create the point with the suffix 

“.sc0”. This point monitors the total skipped scans for all of the Interface’s Scan Classes. 

[UI_SCPOINTCOUNT] 

You can create a [UI_SCPOINTCOUNT] Health Point for each Scan Class in this Interface. 

The ICU uses a tag naming convention such that the suffix “.sc1” (for example, 

sy.st.etamp390.E1.Scan Class Point Count.sc1) refers to Scan Class 1, “.sc2” 

refers to Scan Class 2, and so on. 



Interface Diagnostics Configuration 

142  

This Health Point monitors the number of points in a Scan Class. 

The Interface updates a [UI_SCPOINTCOUNT] Health Point when it performs the associated 

scan. 

Although the ICU allows you to create the point with the suffix “.sc0”, this point is not 

applicable to this Interface. 

[UI_SCINSCANTIME] 

You can create a [UI_SCINSCANTIME] Health Point for each Scan Class in this Interface. 

The ICU uses a tag naming convention such that the suffix “.sc1” (for example, 

sy.st.etamp390.E1.Scan Class Scan Time.sc1) refers to Scan Class 1, “.sc2” 

refers to Scan Class 2, and so on. 

A particular Scan Class’s [UI_ SCINSCANTIME] point represents the amount of time (in 

milliseconds) the Interface takes to read data from the device, fill in the values for the points, 

and send the values to the PI Data Archive. 

The Interface updates the value of this point at the completion of the associated scan. 

[UI_SCINDEVSCANTIME] 

You can create a [UI_SCINDEVSCANTIME] Health Point for each Scan Class in this 

Interface. The ICU uses a tag naming convention such that the suffix “.sc1” (for example, 

sy.st.etamp390.E1.Scan Class Device Scan Time.sc1) refers to Scan Class 1, 

“.sc2” refers to Scan Class 2, and so on. 

A particular Scan Class’s [UI_ SCINDEVSCANTIME] point represents the amount of time 

(in milliseconds) the Interface takes to read data from the device and fill in the values for the 

points. 

The value of a [UI_ SCINDEVSCANTIME] point is a fraction of the corresponding 

[UI_SCINSCANTIME] point value. You can use these numbers to determine the percentage 

of time the Interface spends communicating with the device compared with the percentage of 

time communicating with the PI Data Archive. 

If the [UI_SCSKIPPED] value is increasing, the [UI_SCINDEVSCANTIME] points along 

with the [UI_SCINSCANTIME] points can help identify where the delay is occurring: 

whether the reason is communication with the device, communication with the 

PI Data Archive, or elsewhere. 

The Interface updates the value of this point at the completion of the associated scan.  

I/O Rate Point 

An I/O Rate point measures the rate at which the Interface writes data to its input points. The 

value of an I/O Rate point represents a 10-minute average of the total number of values per 

minute that the Interface sends to the PI Data Archive.  

When the Interface starts, it writes 0 to the I/O Rate point. After running for ten minutes, the 

Interface writes the I/O Rate value. The Interface continues to write a value every 10 minutes. 

When the Interface stops, it writes 0. 



 

PI Interface for GE iFix 143 

The ICU allows you to create one I/O Rate point for each copy of this Interface. Select this 

Interface from the Interface drop-down list, click IO Rate in the parameter category pane, and 

check Enable IORates for this Interface.  

 

As the preceding picture shows, the ICU suggests an Event Counter number and a Tagname 

for the I/O Rate Point. Click the Save button to save the settings and create the I/O Rate point. 

Click the Apply button to apply the changes to this copy of the Interface. 

You need to restart the Interface in order for it to write a value to the newly created I/O Rate 

point. Restart the Interface by clicking the Restart button: 

 

(The reason you need to restart the Interface is that the PointSource attribute of an I/O Rate 

point is Lab.) 

To confirm that the interface recognizes the I/O Rate Point, look in the log file for a message 

such as: 

PI-ModBus 1> IORATE: tag sy.io.etamp390.ModbusE1 configured. 

To see the I/O Rate point’s current value (snapshot), click the Refresh snapshot button: 



Interface Diagnostics Configuration 

144  

 

Enable IORates for this Interface 

The Enable IORates for this interface check box enables or disables I/O Rates for the current 

interface. To disable I/O Rates for the selected interface, uncheck this box. To enable I/O 

Rates for the selected interface, check this box. 

Event Counter 

The Event Counter correlates a point specified in the iorates.dat file with this copy of the 

interface. The command-line equivalent is /ec=x, where x is the same number that is 

assigned to a tag name in the iorates.dat file. 

Tagname 

The tag name listed under the Tagname column is the name of the I/O Rate point. 

Tag Status 

The Tag Status column indicates whether the I/O Rate point exists in the PI Data Archive. 

The possible states are: 

 Created – This status indicates that the point exist in the PI Data Archive 

 Not Created – This status indicates that the point does not yet exist in the 

PI Data Archive 

 Deleted – This status indicates that the point has just been deleted 

 Unknown – This status indicates that the PI ICU is not able to access the 

PI Data Archive 

In File 

The In File column indicates whether the I/O Rate tag in the Tagname and the number in the 

Event Counter box is in the IORates.dat file. The possible states are: 

 Yes – This status indicates that the tag name and event counter are in the IORates.dat 

file 

 No – This status indicates that the tag name and event counter are not in the 

IORates.dat file 



 

PI Interface for GE iFix 145 

Snapshot 

The Snapshot column holds the snapshot value of the I/O Rate point, if the I/O Rate point 

exists in the PI Data Archive. The Snapshot column is updated when the IORates/Status Tags 

tab is clicked, and when the Interface is first loaded. 

Create/Save 

Create the suggested I/O Rate point with the tag name indicated in the Tagname box. Or, save 

any changes for the tag name indicated in the Tagname box. 

Delete 

Delete the I/O Rate point listed in the Tagname box. 

Rename 

Change the tag name for the I/O Rate point listed in the Tagname box. 

Add to File 

Add the tag name to the IORates.dat file with the event counter listed in the Event Counter 

box. 

Search 

Search the PI Data Archive for a previously defined I/O Rate point. 

Interface Status Point 

The PI Interface Status Utility (ISU) alerts you when an interface is not currently writing data 

to the PI Data Archive. This situation commonly occurs if 

 the monitored interface is running on an interface node, but the interface node cannot 

communicate with the PI Data Archive; or 

 the monitored interface is not running, but it failed to write at shutdown a System 

state such as Intf Shut. 

The ISU works by periodically looking at the timestamp of a watchdog Point. The watchdog 

point is a point whose value a monitored interface (such as this Interface) frequently updates. 

The watchdog point has its excdev, excmin, and excmax point attributes set to 0. So, a non-

changing timestamp for the watchdog point indicates that the monitored interface is not 

writing data. 

Please see the Interface Status Interface for complete information on using the ISU. PI 

Interface Status runs only on a PI Data Archive Node. 

If you have used the ICU to configure the PI Interface Status Utility Interface on the 

PI Data Archive node, the ICU allows you to create the appropriate ISU point. Select this 

interface from the Interface list and click Interface Status in the parameter category pane. 

Right click on a point in the Interface Status Utility Tag Definition list to open the shortcut 

menu. 



Interface Diagnostics Configuration 

146  

 

Click Create to create the ISU point.  

Use the Tag Search button to select a watchdog point. (Recall that the watchdog point is one 

of the points for which this Interface collects data.)  

Select a Scan frequency from the drop-down list box. This Scan frequency is the interval at 

which the ISU monitors the watchdog point. For optimal performance, choose a Scan 

frequency that is less frequent than the majority of the scan rates for this Interface’s points. 

For example, if this Interface scans most of its points every 30 seconds, choose a Scan 

frequency of 60 seconds. If this Interface scans most of its points every second, choose a Scan 

frequency of 10 seconds. 

If the Tag Status indicates that the ISU point is Incorrect, right click to enable the context 

menu and select Correct. 

Note: The PI Interface Status Utility – and not this Interface – is responsible for 
updating the ISU point. So, make sure that the PI Interface Status Utility is running 
correctly. 

 



 

PI Interface for GE iFix 147 

Appendix A. Error and Informational Messages 

A string NameID is pre-pended to error messages written to the message log. Name is a non-

configurable identifier that is no longer than 9 characters. ID is a configurable identifier that 

is no longer than 9 characters and is specified using the /id parameter on the startup 

command-line. 

Message Logs 

The location of the message log depends upon the platform on which the Interface is running. 

For more information about logs for interfaces running on Windows, see UniInt Interface 

Message Logging for UniInt 4.5.0.x and later Interfaces or knowledge base article 401 on the 

OSIsoft technical support web site. 

Messages are written to the log file at the following times. 

 When the Interface starts many informational messages are written to the log. These 

include the version of the interface, the version of UniInt, the command-line 

parameters used, and the number of points. 

 As the Interface loads points, messages are sent to the log if there are any problems 

with the configuration of the points. 

 If the UniInt /dbUniInt parameter is found in the command-line, then various 

informational messages are written to the log file. 

Messages 

Interface-specific Troubleshooting  

If the interface is behaving in an unexpected manner, check the log file. Even when the 

interface runs in interactive mode, not all error messages are written to the screen.  

Interface Startup and Point-loading Errors 

 

http://techsupport.osisoft.com/techsupport/nontemplates/KB/article.aspx?id=KB00401


Error and Informational Messages 

148  

Check that the Windows Environment Variables (Control Panel -> System) contain the path 

to the eda.dll and fixtools.dll (assuming Intellution software is installed on the 

system). 

Message EDA Failed to add tag [NODE, TAG, FIELD] to the group. 

NDK:Network Command Table (NCT) full. 

Meaning Interface failed to initialize because the Intellution program TCPTask.exe has hung 

or is not running. Verify TCPTask is part of the startup list for the Intellution software. 
Restart the Intellution software and interface. 

 

Message EDA Failed to add tag, [tagname], to the group. Location2 

out of range. 

Meaning Location2 defines whether the point is an input (0) or output (1). Verify the PI point 
definition has a Location2 value of either 0 or 1. 

 

Message Complete NODE:TAG:FIELD information unavailable for PI 

tag: [tagname] 

Meaning Verify that the complete Node, Tag, Field (NTF) definition has been defined. The point 
definition uses the InstrumentTag. If the NTF definition requires more than 32 
characters, use the Exdesc point attribute to define the Node and Field parameters. 

 

Message EDA Failed to add tag [NODE,TAG,FIELD] to the group. 

[tagname] 

Meaning When debug is enabled for point checking, the interface attempts to verify the point with 
Intellution during startup. If this fails, it prints this message to the log file. Check the 
point configuration for this point, in particular the NTF definition. Launch the Intellution 
Database Builder program and verify you can view current values for this point. 

Data Collection Errors 

The following list of error codes describe the common return values the interface receives 

from Intellution when a point update request fails. They can be grouped into two general 

categories: network errors and non-network errors. 

Non-network Errors 

When the interface receives a non-network error from Intellution in response to a data 

request, it writes “Bad Input”, prints the error to the log file, and continues scanning for data. 

The point does not get dropped from the scan list (the interface will continue to try and read 

data for the point) but the error message will not be repeated in the log file. The message is 

only printed the first time the read fails. 

Message Read failed. Error 1209 returned calling eda_get_float(); 

[tagname] 

Meaning This error gets returned to the interface from Intellution on an update request and 
translates to “Illegal block field”. Verify the NTF definition (InstrumentTag) for the PI 
point configuration. 

 



 

PI Interface for GE iFix 149 

Message Read failed. Error 1212 returned calling eda_get_float(); 

[tagname] 

Meaning This error gets returned to the interface from Intellution on an update request and 
translates to “Field’s value not known”. Verify that the Intellution software is currently 
scanning data for that point. Run Intellution Database Builder program and check that it 
is on scan and you can view a current value. 

 

Message Read failed. Error 1750 returned calling eda_get_float(); 

[tagname] 

Meaning This error gets returned to the interface from Intellution on an update request and 
translates to “Tag name is not defined”. Run Intellution Database Builder program and 
verify that the point exists on the defined node. Verify the NTF definition 
(InstrumentTag) for the PI point configuration. 

 

Message Read failed. Eda_get_ascii returned empty string; 

[tagname] 

Meaning When the interface gets a blank (null) value for a string or digital point, it writes ‘No 
Data’ to the PI point and logs this message to the log file. 

 

Network Errors 

When the interface receives a network error from Intellution, it writes “IO Timeout”, stops 

scanning for updates and goes into a wait loop while trying to re-establish a connection to 

Intellution. 

Message Read failed. Error 1914 returned calling eda_get_float(); 

[tagname] [Node,Tag,Field] 

Meaning This error gets returned to the interface from Intellution on an update request and 
translates to “Connection NOT established with node”. Verify the local Intellution 
software is running. If the point data is coming from a remote Intellution View/SCADA 
node check the network connection. 

System Errors and PI Errors 

System errors are associated with positive error numbers. Errors related to PI are associated 

with negative error numbers.  

Error Descriptions 

Descriptions of system and PI errors can be obtained with the pidiag utility: 

\PI\adm\pidiag – e error_number 



Error and Informational Messages 

150  

UniInt Failover Specific Error Messages 

Informational 

Message 16-May-06 10:38:00 

PI-EDA 1> UniInt failover: Interface in the “Backup” 

state. 

Meaning Upon system startup, the initial transition is made to this state. While in this state the 
interface monitors the status of the other interface participating in failover. When 
configured for Hot failover, data received from the data source is queued and not sent 
to the PI Data Archive while in this state. The amount of data queued while in this state 
is determined by the failover update interval. In any case, there will be typically no more 
than two update intervals of data in the queue at any given time. Some transition chains 
may cause the queue to hold up to five failover update intervals worth of data. 

 

Message 16-May-06 10:38:05 

PI-EDA 1> UniInt failover: Interface in the “Primary” 

state and actively sending data to PI. Backup interface 

not available. 

Meaning While in this state, the interface is in its primary role and sends data to the 
PI Data Archive as it is received. This message also states that there is not a backup 
interface participating in failover. 

 

Message 16-May-06 16:37:21 

PI-EDA 1> UniInt failover: Interface in the “Primary” 

state and actively sending data to PI. Backup interface 

available. 

Meaning While in this state, the interface sends data to the PI Data Archive as it is received. This 
message also states that the other copy of the interface appears to be ready to take 
over the role of primary. 



 

PI Interface for GE iFix 151 

Errors (Phase 1 & 2) 

Message 16-May-06 17:29:06 

PI-EDA 1> One of the required Failover Synchronization 

points was not loaded. 

 Error = 0: The Active ID synchronization point was not 

loaded. 

The input PI tag was not loaded 

Cause The Active ID point is not configured properly.   

Resolution Check validity of point attributes.  For example, make sure Location1 attribute is valid 

for the interface.  All failover points must have the same PointSource and 

Location1 attributes.  Modify point attributes as necessary and restart the interface. 

 

Message 16-May-06 17:38:06 

PI-EDA 1> One of the required Failover Synchronization 

points was not loaded. 

Error = 0: The Heartbeat point for this copy of the 

interface was not loaded. 

The input PI tag was not loaded 

Cause The Heartbeat point is not configured properly.   

Resolution Check validity of point attributes.  For example, make sure Location1 attribute is valid 
for the interface.  All failover points must have the same PointSource and Location1 
attributes.  Modify point attributes as necessary and restart the interface. 

 

Message 17-May-06 09:06:03 

PI-EDA > The Uniint FailOver ID (/UFO_ID) must be a 

positive integer. 

Cause The UFO_ID parameter has not been assigned a positive integer value. 

Resolution Change and verify the parameter to a positive integer and restart the interface. 

 

Message 17-May-06 09:06:03 

PI-EDA 1> The Failover ID parameter (/UFO_ID) was found 

but the ID for the redundant copy was not found 

Cause The /UFO_OtherID parameter is not defined or has not been assigned a positive 

integer value. 

Resolution Change and verify the /UFO_OtherID parameter to a positive integer and restart 

the interface. 



Error and Informational Messages 

152  

Errors (Phase 1) 

Message 17-May-06 09:06:03 

PI-EDA 1> UniInt failover: Interface in an “Error” state.  

Could not read failover control points. 

Cause The failover control points on the data source are returning a value to the interface that 
is in error.  This error can be caused by creating a non-initialized control point on the 
data source.” This message will only be received if the interface is configured to be 
synchronized through the data source (Phase 1). 

Resolution Check validity of the value of the control points on the data source. 

 

Message 16-May-06 17:29:06 

PI-EDA 1> Loading Failover Synchronization tag failed 

Error Number = 0: Description = [FailOver] or HeartBeat:n] 

was found in the exdesc for Tag Active_IN but the tag was 

not loaded by the interface. 

Failover will not be initialized unless another Active ID 

tag is successfully loaded by the interface. 

Cause The Active ID or Heartbeat point is not configured properly. This message will only be 
received if the interface is configured to be synchronized through the data source 
(Phase 1).   

Resolution Check validity of point attributes.  For example, make sure Location1 attribute is valid 
for the interface.  All failover points must have the same PointSource and Location1 
attributes.  Modify point attributes as necessary and restart the interface. 

 

Message 17-May-06 09:05:39 

PI-EDA 1> Error reading Active ID point from Data source 

Active_IN (Point 29600) status = -255 

Cause The Active ID point value on the data source produced an error when read by the 
interface.  The value read from the data source must be valid. Upon receiving this error, 
the interface will enter the “Backup in Error state.” 

Resolution Check validity of the value of the Active ID point on the data source.  For example, use 
the Database Builder application to view and edit the value for the Active ID point. 

 

Message 17-May-06 09:06:03 

PI-EDA 1> Error reading the value for the other copy’s 

Heartbeat point from Data source 

HB2_IN (Point 29604) status = -255 

Cause The Heartbeat point value on the data source produced an error when read by the 
interface.  The value read from the data source must be valid.  Upon receiving this 
error, the interface will enter the “Backup in Error state.” 

Resolution Check validity of the value of the Heartbeat point on the data source. For example, use 
the Database Builder application to view and edit the value for the Heartbeat point. 



 

PI Interface for GE iFix 153 

Errors (Phase 2) 

Unable to open synchronization file 

Message 27-Jun-08 17:27:17 

PI Eight Track 1 1> Error 5: Unable to create file   

‘\\georgiaking\GeorgiaKingStorage\UnIntFailover\\PIEightT

rack_eight_1.dat’ 

Verify that interface has read/write/create access on 

file server machine. 

Initializing UniInt library failed 

Stopping Interface 

Cause This message will be seen when the interface is unable to create a new failover 
synchronization file at startup. The creation of the file only takes place the first time 
either copy of the interface is started and the file does not exist. The error number 
most commonly seen is error number 5. Error number 5 is an “access denied” error 
and is likely the result of a permissions problem. 

Resolution Ensure the account the interface is running under has read and write permissions for 
the folder. The “log on as” property of the Windows service may need to be set to an 
account that has permissions for the folder. 

Error Opening Synchronization File 

Message Sun Jun 29 17:18:51 2008 

PI Eight Track 1 2> WARNING> Failover Warning: Error = 64 

Unable to open Failover Control File 

‘\\georgiaking\GeorgiaKingStorage\Eight\PIEightTrack_eigh

t_1.dat’ 

The interface will not be able to change state if PI is 

not available 

Cause This message will be seen when the interface is unable to open the failover 
synchronization file. The interface failover will continue to operate correctly as long as 
communication to the PI Data Archive is not interrupted. If communication to the 
PI Data Archive is interrupted while one or both interfaces cannot access the 
synchronization file, the interfaces will remain in the state they were in at the time of 
the second failure, so the primary interface will remain primary and the backup 
interface will remain backup. 

Resolution Ensure the account the interface is running under has read and write permissions for 
the folder and file. The “log on as” property of the Windows service may need to be set 
to an account that has permissions for the folder and file. 

 





 

PI Interface for GE iFix 155 

Appendix B. PI SDK Options 

To access the PI SDK settings for this Interface, select this Interface from the Interface drop-

down list and click UniInt – PI SDK in the parameter category pane. 

 

Disable PI SDK 

Select Disable PI SDK to tell the Interface not to use the PI SDK. If you want to run the 

Interface in Disconnected Startup mode, you must choose this option. 

The command line equivalent for this option is /pisdk=0. 

Use the Interface’s default setting 

This selection has no effect on whether the Interface uses the PI SDK. However, you must 

not choose this option if you want to run the Interface in Disconnected Startup mode. 

Enable PI SDK 

Select Enable PI SDK to tell the Interface to use the PI SDK. Choose this option if the 

PI Data Archive version is earlier than 3.4.370.x or the PI API is earlier than 1.6.0.2, and you 

want to use extended lengths for the Tag, Descriptor, ExDesc, InstrumentTag, or PointSource 

point attributes. The maximum lengths for these attributes are: 

Attribute Enable the Interface to use 
the PI SDK 

PI Data Archive earlier than 3.4.370.x 
or PI API earlier than 1.6.0.2, without 
the use of the PI SDK 

Tag 1023 255 

Descriptor 1023 26 

ExDesc 1023 80 

InstrumentTag 1023 32 

PointSource 1023 1 

However, if you want to run the Interface in Disconnected Startup mode, you must not 

choose this option. 

The command line equivalent for this option is /pisdk=1. 

 





 

PI Interface for GE iFix 157 

Appendix C. FIXtoPI Configuration Transfer Utility 

Overview 

A utility is provided to transfer configuration information contained in the Intellution 

database to points in the PI Data Archive. This utility must be considered as an aid rather than 

a total solution for configuring the PI Data Archive to work with the Intellution database. 

The utility is a command line program called FIXToPI.exe. 

The utility transfers the configuration information of the active raw data points in the 

Intellution database and formats them in a text file of appropriate commands for entry into the 

piconfig program. 

The text file is named FIXToPI.scr, and it may be used in either of two ways. The first 

method is to run the piconfig utility with input redirected from this file. The second method is 

to use the @INPUT command of the piconfig utility. 

The configuration transfer utility is designed to transfer information contained in Analog 

Input, Analog Output, Analog Register, Digital Input, Digital Output, Digital Register, and 

Multiple Digital Input blocks. If you want to archive information contained in other than 

those blocks, this must be done manually. In addition, the “Register” type blocks are 

configured as PI input points and thus will be read by the interface instead of being able to 

write to the Registers. If the client wants to configure “Register” type blocks as PI output 

points, the point must be edited manually in piconfig. 

The utility must be run on a FIX SCADA node, as it uses FIX functions that will not work on 

a simple View node. 

The program is designed to be flexible, allowing the transfer of all the information contained 

for the above type blocks as a default, and allowing you to restrict that transfer in a manner of 

your choosing. 

 You can choose to allow the program to transfer configuration information from the 

SCADA node that the utility is running on and all the attached SCADA nodes, or you 

can choose to restrict it to any subset of those nodes. 

 You can choose to allow it to transfer all tags of the types described above, or you 

can restrict that to any subset of those types. 

 You can choose to allow transfer of all tags on the specified nodes, or you can 

exclude certain tagnames based on a simple pattern-matching scheme. 

 You can also choose to only include tagnames that match a particular pattern. The 

pattern-matching scheme is simple – it is the one used in MS-DOS to match 

filenames; the ‘?’ character matches any character, the ‘*’ character matches all 

characters from that point on, and any other character is an exact match. Note that the 

pattern matching is case sensitive, so “ONE” is not the same pattern as “one”. 



FIXtoPI Configuration Transfer Utility 

158  

The utility creates a unique digital set for each unique digital set in FIX when building the file 

to create the PI points. The digital set names assigned to the digital sets all start with the 

prefix dmFIXds. The suffix XXXX is appended where XXXX is a value from 0000 to 9999. 

The first digital set will be named dmFIXds0000, the second digital set will be named 

dmFIXds0001, etc. You should edit the digital state set names in the file where appropriate. 

All digital output points are assigned a source tag with the same name as the tag name. This 

should be edited and the appropriate source tag name used. 

User Instructions 

The format of the command line for using the utility is: 

FIXToPI /p=<pointsource> [/n=<node> [/n=<node>…]] [/t=<type> [/t=<type> …]] ^ 

[/I=<include pattern> [/I=<include pattern> …]] ^ 

[/e=<exclude pattern> [/e=<exclude pattern> …]] 

Parameters 

Parameter Description 

/p=x 

Required 

The PI point source that you would like these points to have. 
This is a required parameter, and if not included, the program 
will exit with nothing done. 

/n=name 

Optional 

Name of a node. This parameter may be repeated for each 
node that the user wishes to include in the list of nodes. If no 
parameter of this type is specified, the program defaults to all 
nodes accessible by the machine on which the program is 
running. 

/t=type 

Optional 

Name of a block type. This parameter may be repeated for 
each block type that the user wishes to include in the list of 
block types. These can be any of 
“AI”,”AO”,”AR”,”DI”,”DO”,”DR”,”MDI, “AA”, “DA”. If no 
parameter of this type is specified, the default is to include all 
the above in the list of types. 

/e=exclusion_pattern 

Optional 

Pattern to match to the FIX block name to exclude from 
configuration transfer. The parameter may be repeated for 
each pattern the user wishes to exclude. If any of these types 
of parameters appears, the utility attempts to match each block 
name as encountered, and if the pattern match succeeds, the 
configuration information is NOT transferred. If multiple 
patterns are included, if the block name matches ANY of the 
patterns, the configuration information is NOT transferred. 

/I=inclusion_pattern 

Optional 

Pattern to match to the FIX block name to transfer 
configuration information. This parameter may be repeated for 
each pattern that the user wishes to include. If no parameter of 
this type is specified, the default is to include all the tags with 
the exception of the above exclude list. 

If one or more of these parameters are included, the 
configuration information is transferred for any block whose 
name matches any of the patterns in the list. 

Note: Exclude processing is done before include processing, and therefore, if a 
block name matches the pattern of something on the exclude list, it will not be 
subjected to include list processing. 



 

PI Interface for GE iFix 159 

Sample Command Lines 

To transfer all tags on node SCADA1: 

FIXToPI /p=E /n=SCADA1 

To transfer all the analog points for all connected SCADA nodes: 

FIXToPI /p=G /t=AO /t=AI /t=AR 

To transfer the Digital Input block information on node “LOCAL” with names beginning 

with the letters ‘I’ or ‘J’ 

FIXToPI /p=x /I=I* /I=J* /n=LOCAL /t=DI 

To transfer all configuration information of all blocks on all connected nodes except for the 

blocks with names containing a ‘1’ as the first character, anything in the next two characters, 

“CHK” as the next three characters and anything after that. 

FIXToPI /p=k /e=1??CHK* 

Sample FixToPI.scr File 

After the Utility has been run, the user should first edit the file FIXToPI.scr prior to creating 

the PI points and digital sets. The following example output shows the file that will be created 

in order to create a PI point for each FIX point type. 

FIX Tag Name FIX Point Type 

AI1  AI 

AO1  AO 

AR1  AR 

DI1  DI 

DO1  DO 

DR1  DR 

MDI1 MD 

AA1  AA (supported but not shown) 

DA1  DA (supported but not shown) 

Sample Output 

Sample output from the utility is: 

@table pids 

@mode create, t 

@istructure set,state,... 

dmFIXds0000,OPEN,CLOSE 

dmFIXds0001,OPENUP,CLOSEUP 

dmFIXds0002,state0,state1,state2,state3,state4,state5,state6,state7 

@endsection 

@table pipoint 

@ptclass classic 

@mode create, t 

@istructure 

tag,pointsource,descriptor,pointtype,digitalset,ptaccess,dataaccess, 

archiving,scan,instrumenttag,location1,location2,location4 

DAVID:DI1,E,Digital Input 1,Digital,dmFIXds0000,o:rw g:rw w:rw,o:rw g:rw 

w:rw,1,1,”DAVID,DI1,D_CV”,1,0,1 

DAVID:DO1,E,Digital Output 1,Digital,dmFIXds0001,o:rw g:rw w:rw,o:rw g:rw 

w:rw,1,1,”DAVID,DO1,D_CV”,1,1,1 



FIXtoPI Configuration Transfer Utility 

160  

DAVID:DR1,E,Digital Register 1,Digital,dmFIXds0000,o:rw g:rw w:rw,o:rw g:rw 

w:rw,1,1,”DAVID,DR1,D_CV”,1,0,1 

DAVID:MDI1,E,,Digital,dmFIXds0002,o:rw g:rw w:rw,o:rw g:rw 

w:rw,1,1,”DAVID,MDI1,M_CV”,1,0,1 

@endsection 

@istructure tag,sourcetag 

DAVID:DO1,DAVID:DO1 

@endsection 

@table pipoint 

@ptclass classic 

@mode create, t 

@istructure 

tag,pointsource,descriptor,pointtype,zero,span,typicalvalue,engunits, 

excdev,excmin,excmax,compdev,compmin,compmax,ptaccess,dataaccess,archiving, 

compressing,scan,instrumenttag,location1,location2,location4 

DAVID:AI1,E,Analog Input 1,Float32,0.000000,100.000000,50.000000,,1.000000, 

0, 600, 2.000000, 0, 28800,o:rw g:rw w:rw,o:rw g:rw 

w:rw,1,1,1,”DAVID,AI1,F_CV”,1,0,1 

DAVID:AO1,E,Analog Output 

1,Float32,0.000000,100.000000,50.000000,ao1,1.000000, 0, 600, 2.000000, 0, 

28800,o:rw g:rw w:rw,o:rw g:rw w:rw,1,1,1,”DAVID,AO1,F_CV”,1,1,1 

DAVID:AR1,E,Analog Register 

1,Float32,0.000000,100.000000,50.000000,,1.000000, 0, 600, 2.000000, 0, 

28800,o:rw g:rw w:rw,o:rw g:rw w:rw,1,1,1,”DAVID,AR1,F_CV”,1,0,1 

@endsection 

@istructure tag,sourcetag 

DAVID:AO1,DAVID:AO1 

@endsection 

@bye 

After the editing has been done, the last step is to use the text file generated by this utility to 

generate points in the PI Data Archive itself. There are two methods of doing this. The first 

involves standard input redirection, which means that you run the piconfig utility but, instead 

of accepting input from the keyboard, you redirect that input so that it comes from the file. 

 Piconfig < FIXToPI.scr 

The second way of using this file is to use the @INPUT command of the piconfig command 

set. To do this, start the piconfig utility: 

 Piconfig 

Then, at the command prompt, enter the command @INPUT followed by the file name: 

 (Ls - ) Piconfig>@INPUT FIXToPI.scr 

In both cases, ensure that you prepend the correct path information if this file is not in the 

current subdirectory. 

Note: FixToPI utility is not a point auto-synchronization program. After it is run and 
changes are made later in FIX point database, it is your responsibility to check that 
the changes are still compatible with PI Data Arhive point attributes and, if 
necessary, the PI Data Archive point database is appropriately modified. 

 



 

PI Interface for GE iFix 161 

Appendix D. Cluster Failover 

Principles of Operation 

 

 Cluster Failover Configuration Diagram 

Interface-level failover is supported through Microsoft Cluster Services (MSCS). A cluster is 

composed of two or more nodes. Each member of the cluster has a copy of the interface 

installed and running, with only one node sending data to PI at any given time. Microsoft 

provides a Cluster Administrator program which is used for configuration and management 

of failover resources. A system failure (hardware or software) on the active cluster node will 

cause the Cluster Administrator to initiate a failover. On failover, ownership of a cluster 

resource is shifted from the node of failure to another available cluster node. In this way, it is 

ensured that only one cluster node owns the active interface at any given time.  

Failover activity does not apply with respect to alarm/event message data collection. If 

enabled, alarm/event data will be collected on each interface node independent of cluster 

failover. However, it is strongly recommended that a separate copy of the interface be run 

specifically for collecting this type of data to maximize performance. 

Cluster Administrator 

Cluster Group:  pi-eda 

Group Resource:  apionline 

Resource Owner 

apionline 

Is the interface running? 

pi-eda 

Is apionline running? 

apionline 

Is the interface running? 

pi-eda 

Is apionline running? 

Cluster Node 1 

Cluster Node 2 

Shared Cluster Disk 



Cluster Failover 

162  

Setting up interface failover requires creating cluster groups and resources. These 

configurations are accomplished using the Cluster Administrator (see section Group and 

Resource Creation Using Cluster Administrator. The interface installation will distribute the 

program apionline into the install directory whose purpose is to run as a cluster group 

resource. On startup, the interface checks to see if the designated apionline cluster resource is 

running. If this is true, it tells the interface the local node owns the cluster group resource and 

is responsible for sending data to PI. Whichever cluster node owns the group resource is also 

the node where the active interface runs. 

The apionline program serves two purposes: it indicates to the interface that it is currently 

active and it also prevents the Cluster Administrator from having an active node where the 

interface is not running.  

The interface will query the Cluster Administrator to see if the apionline service is active. 

Since apionline is configured as a cluster group resource, it will only be active if the Cluster 

Administrator designates the local node as the group resource owner. In turn, when the 

apionline service is active, it checks to see that the interface service is running. If at any time 

the interface service terminates, apionline will shut itself down, thus initiating a failover. In 

this way, apionline prevents the Cluster Administrator from designating a node where the 

interface is not running to be owner of the cluster resource group. 

The interface has the option of running in either warm or hot failover mode. Warm failover 

means an inactive interface will not request data updates from Intellution but otherwise 

functions normally (processing point edits, alarm/event data collection, etc.). Hot failover 

means an inactive interface will request data updates but does not send them to PI. The 

advantage of running in hot failover mode is you minimize the risk of missing data on 

failover. However, to minimize loading on inactive cluster nodes, we recommend running in 

warm failover mode.  

The interface can be configured to operate with a preference for running on a particular 

cluster node. This is referred to as running with primary node bias. In this configuration the 

interface will attempt to run on the primary node whenever possible. This behavior may be 

preferred if one of the cluster nodes has proven to be more stable or otherwise performs better 

than the others. 

The Intellution software must also be installed on each cluster node. Redundancy should be 

enabled on both nodes so they share the same point database. See Appendix E: FIX 

Redundancy and the PI IntFix Interface for detailed configuration. 

Cluster Failover Configurations 

Configuring APIOnline 

The interface installation kit will distribute the apionline files (apionline.bat and 

APIOnline.exe) into the interface install directory. Configuring apionline is a three step 

process. The first step is to configure the apionline.bat file so it includes the name of the 

interface service used for failover. The second step is to install the apionline program to run 

as a service. The last step is to define apionline as a cluster group resource. 



 

PI Interface for GE iFix 163 

The name of the interface service is specified in the apionline.bat file. This file requires 

two parameter definitions. The first parameter is the name of the apionline executable file. 

The /proc parameter is used to define the interface service. For example, if the interface 

service is installed as PI-EDA and the apionline executable file is APIOnline.exe, the 

apionline.bat file would contain the following: 

REM Sample apionline.bat 

APIOnline.exe /proc=PI-EDA 

Apionline uses the same parameters for each node it runs on. This means that you must have 

the same installation directory and executable file name on each cluster node. For example, if 

on one node the installation directory is: 

c:\Program Files\pipc\interfaces\pi-eda\PI-EDA.exe 

Then on the other cluster nodes, the installation directory, pi-eda, and interface name, PI-

EDA.exe, must match. Here is an example of how this might look on another cluster node: 

d:\pipc\interfaces\pi-eda\PI-EDA.exe 

However, to keep things simple it is recommended that the same name and installation path 

be used across all systems. 

The apionline application must also be installed as a service. Installing a program to run as a 

service is done from the command prompt at the path where the program resides. The 

following is an example of installing the apionline service: 

d:\pipc\interfaces\pi-eda>apionline /install /depend tcpip 

The apionline.bat and APIOnline.exe file should reside in the same directory. By 

default, these files are located in the interface install directory, however this is not required. 

After apionline has been installed as a service, the files should not be moved without first 

removing the service, then reinstalling the service after relocating the files. The following is 

an example of removing an installed apionline service: 

d:\pipc\interfaces\pi-eda>apionline /remove 

The final configuration step requires that a unique cluster group be created for each unique 

instance of apionline. Each group should have its own copy of apionline defined as a 

resource. Resources are moved between cluster nodes by group. See Group and Resource 

Creation Using Cluster Administrator for information on how to setup cluster group 

resources.   

Running Multiple Instances of the Interface 

Running multiple instances of the interface on each cluster node requires a unique instance of 

apionline for each instance of the interface. Each copy of apionline must also belong to a 

unique cluster group and be installed to run as a service. Running multiple instances of the 

interface is useful for tracking problems or for distributing interface loading.  

To differentiate between copies of apionline, append an integer to the name. This integer gets 

passed to the corresponding interface through the /RN interface parameter. For example, to 

run two copies of the interface, two copies of apionline are needed on each cluster node. The 

following table displays a list of the files and configuration parameters required for each 

cluster node to run in this configuration: 

 



Cluster Failover 

164  

Program Executable Configuration File Required Configuration Parameters * 

apionline1.exe apionline1.bat apionline1.exe /proc=PI-EDA1 

PI-EDA1.exe PI-EDA1.bat /FO /RN=1 /ID=1 * 

apionline2.exe apionline2.bat apionline2.exe /proc=PI-EDA2 

PI-EDA2.exe PI-EDA2.bat /FO /RN=2 /ID=2 * 

This is not a complete listing of the necessary interface startup parameters to run the 

interface. Please see section Startup Command File for a complete listing and definition of 

the available parameters.  

The final configuration step requires that a unique cluster group be created for each unique 

instance of apionline. Each group should have its own copy of apionline defined as a 

resource. MSCS moves resources between cluster nodes by group. See Group and Resource 

Creation Using Cluster Administrator for information on how to setup cluster group 

resources. 

Buffering Data on Cluster Nodes 

Buffering is fully supported on cluster nodes. In order to take advantage of buffering, 

bufserv.exe should be installed on all participating cluster nodes at the time of PI API 

installation. No special configurations are required to enable buffering on a cluster node. It 

should be noted that there is a risk of incurring a substantial amount of out-of-order data in 

the scenario where a failover occurs at a time when both interfaces are disconnected from the 

PI Data Archive (thus buffering data). Upon reconnection, each cluster node will send 

buffered data simultaneously, which will result in out-of-order data. This will cause the 

PI Data Archive to increase resource consumption, particularly the PI Archive Subsystem, as 

it attempts to process these out-of-order events. For a complete discussion about how to 

configure buffering, see section Buffering. 

Group and Resource Creation Using Cluster Administrator 

Before this step, make sure that MSCS is installed and configured. Test and verify that 

Clustering is functioning correctly prior to creating groups and resources for interface 

failover. Some steps for verifying correct cluster configuration are discussed at the end of this 

section. Apionline should also be installed and configured as described in section Configuring 

APIOnline.  

Cluster Group Configuration 

Note: Interfaces must not be run under the Local System account if you are using 
Cluster Failover.  The service must be configured to run under an account that has 
administrator privileges. 



 

PI Interface for GE iFix 165 

Installation of Cluster Group 

From the desktop, click Start->Programs->Administrative Tools(Common)->Cluster 

Administrator. Click File->New->Group. Enter the name of the group and description. 

 

Click Next. Do not add any nodes to the Preferred owners box since owner preference is 

built into the interface through the cluster mode. Below, Grommit and Wallace are the 

cluster nodes. 

 

Click Finish. 



Cluster Failover 

166  

Right click the group you just created and select Properties. Fill out the name of the cluster 

and the description. Leave the Preferred owners box blank since these are the nodes on 

which you prefer the group to run. Preferred ownership is built into the interface through the 

cluster mode. Therefore you should not set this from the Cluster Administrator. 

 

Set the Threshold and Period. Threshold is the maximum number of times you want to allow 

the group to fail over in the time specified by Period. 

 



 

PI Interface for GE iFix 167 

On the Failback tab, select Prevent failback because the failback mechanism is also built 

into the interface through cluster mode. 

 

Click Apply and then OK.  

Installation of the Resources 

Right click the group in Cluster Administrator, select New and then Resource. Type the 

name of the resource and description. For Resource type select Generic Service. 

 



Cluster Failover 

168  

Running this resource in a separate Resource Monitor is not necessary unless this resource 

seems to be causing problems and you are trying to isolate the problem.  

Click Next and verify that the cluster nodes are in the Possible owners list. These are the 

nodes on which the resource can run and, therefore, the nodes onto which the group can fail 

over. 

 

Click Next, skip Dependencies, and continue with Generic Service Parameters. 

 

The resource in the example above is called apionline1 and should have been installed as a 

service prior to cluster resource as described in the section Configuring APIOnline . 

Click Next and skip Registry Replication. Click Apply and OK.  



 

PI Interface for GE iFix 169 

Right click the resource and select Properties > Advanced to set the entries as below.  This 

indicates to MSCS to pass ownership of the resource to another cluster node before 

attempting to start it 

 

Click Apply and then OK. 

Repeat the group and resource creation process for each instance of the interface on the node. 

Now you are ready to configure the interface. 

Testing Cluster Configuration 

The following configuration procedure can help identify any problems quickly. This is 

written for just one copy of the interface on each node. If configuring multiple copies, the 

first 5 steps are only needed for the first copy of the interface tested.  When it says 

“matching” below, it means that PI-EDA3.exe looks for apionline3.exe and the 

apionline3 service and resource. 

1. Configure the interface on each node with a dummy pointsource, one which is not 

currently used by any points, or with a PointSource and ID number that do not 

match the PointSource and Location1 pair of any points. The goal is to bring up 

both interfaces with no points at all. Do not configure any failover-related 

parameters. 

2. Start both interfaces and check the log to verify that both of them come up 

completely with no points. Any errors reported in the log must be corrected before 

continuing with the next step. 

3. Use the Cluster Administrator to bring the matching cluster resource online by 

selecting the matching cluster group, then right-clicking on the resource and selecting 

Bring Online. Use the Task Manager to see that the matching apionline process is 

running on the node that Cluster Manager indicates owns the resource. For this 

configuration process, call that node OriginalOwner. 



Cluster Failover 

170  

4. Still using Cluster Administrator, fail over the resource by selecting Initiate Failure 

in the right-click menu of the resource. You should see the resource state go to Failed 

and then Online Pending and then Online, with the other node now the owner.  

Depending on your system, you may not see the intermediate states, but you should 

see the resource end up Online with the other node as the owner. If not, you have a 

configuration problem and you must correct that before continuing the test. 

5. Use Task Manager to verify that the matching apionline on the OriginalOwner node 

is no longer running and that the matching apionline service is now running on the 

other node (OriginalBackup node). If everything is good so far, move the resource to 

whichever node will be the primary node. 

6. Now use Cluster Manager to take the resource Offline, then shut down both copies of 

the interface. Use the PI ICU to configure both interfaces for production. Do not 

forget to reset the PointSource and /ID to the correct values. 

7. Bring up the interface on the node that does not currently own the group.  The log 

should include:  
Cluster resource not online, state 4, waiting 

8. Bring the resource online. The resource should failover to the node where the 

interface is running. After apionline is running on the same node as the interface, the 

log should include: 
Cluster Resource apionline1 on this node 

or possibly 
Resource now running on this node 

9. Bring up the second interface.  If the interface is configured with a cluster mode of 

primary node bias and the interface is currently running on the backup node, the 

resource will failover to the primary node. The log on the primary node will have one 

of the two messages listed in the last step. 

Failover should now be configured correctly.  Try failing the resource over a time or two, and 

shutting down one interface at a time to verify that the interfaces do what you expect. 

 



 

PI Interface for GE iFix 171 

Appendix E. FIX Redundancy and the PI IntFix 
Interface 

Principles of Operation 

Both FIX32 and iFIX support failover (starting from FIX32 version 6.15 and iFIX Dynamics 

version 2.0). The PI IntFix interface can take advantage of this functionality by running on a 

View node. A View node can look at a pair of SCADA nodes that have identical databases 

(and are connected to the same PLC) and obtain data from the currently active node. More 

information about Failover can be found in Intellution’s documentation for FIX32 or iFIX. 

Although FIX allows a backup SCADA configuration that involves two SCADA servers and 

no View node, PI IntFix, as of version 2.4.0, does not support this configuration.  

Note: iFIX does not synchronize the process databases on the SCADA servers. You 
must ensure that both databases are identical. It is also important that the failover-
paired SCADA nodes’ clocks are synchronized in order to ensure that the points get 
the same data regardless of which SCADA node the values are pulled from. 

 

Note: FIX32 version 7.0 and iFIX 2.1 have been tested at OSIsoft for failover support 
and PI-EDA compatibility with FIX redundancy. The redundancy system tested 
consisted of pure FIX32 or pure iFIX combinations, i.e., two FIX32 SCADA nodes 
and one FIX32 View node, or two iFIX SCADA nodes and one iFIX View node. The 
average time the View node took to fail over from one SCADA node to the other was 
about 20-30 seconds. This is reflected in the data gap in the PI Archive. 

This section describes the setup of the View node and the failover-pair SCADA nodes and PI 

point configurations so that PI IntFix can seamlessly collect data regardless of which SCADA 

node is active. Configurations are slightly different depending on whether the system is 

FIX32 or iFIX. 



FIX Redundancy and the PI IntFix Interface 

172  

FIX32 Redundancy Setup 

FIX32 View Node 

In the Configure/Network dialog box, enter remote node names with which the View node 

communicates.  

Note: Only the primary node of the pair SCADA nodes needs to be entered here. 

Click the Configure button. 

Enter the backup node name for this remote SCADA node. 

FIX32 Primary SCADA Node 

 

In the Configure/SCADA screen enter the database name. This database must reside both on 

the primary SCADA node and the backup SCADA node with the identical point definitions. 

Define Partner SCADA in Redundancy box.  



 

PI Interface for GE iFix 173 

Then in the Configure/Network dialog box, 

 

Enter the View node name and the SCADA partner node name in Configured Remote 

Nodes box. Then highlight the SCADA partner node, that is, this node’s backup node, and 

click Configure. Enter its backup node’s name in the redundancy box. Since this is the 

backup node’s backup, it would be the primary node’s name. 

FIX32 Backup SCADA Node 

Do the same thing as on the primary node, except that the local node name is the backup node 

name, Partner SCADA is the primary node, and the remote node’s backup node is the backup 

node. 



FIX Redundancy and the PI IntFix Interface 

174  

FIX32 View Node’s Network Status Display 

In FIX View, when nsdredun.odf is opened the currently active SCADA node is 

displayed. This is the SCADA node from which the interface will be getting point values. For 

details about how to set this up, see the FIX32 documentation. 

 

FIX32 Node %windir%\system32\drivers\etc Host File 

View node and both SCADA nodes must all have host files with the View node name, 

primary and backup SCADA node names, and IP addresses. For example, 

xxx.xxx.xxx.1 FIXVIEW 

xxx.xxx.xxx.2 FIXPRMRY 

xxx.xxx.xxx.3 FIXBAKUP 

PI Point Configuration for FIX32 Tag 

All configuration settings are the same as when no redundancy is required, except that the 

node name in the InstrumentTag attribute must be the primary node name. 



 

PI Interface for GE iFix 175 

iFIX Redundancy Setup 

iFIX View Node 

In System Configuration Utility (SCU) Configure/Network dialog box, enter the logical 

name that the View node is to communicate with in the Remote Node Name box and click 

Add. The logical node name appears in the Configured Remote Nodes list. 

 

Click Configure and select Enable Logical Names check box. Enter the local node name of 

the primary node in the Primary Node box. Enter the local node name of the backup node in 

the Backup Node box. 

 



FIX Redundancy and the PI IntFix Interface 

176  

iFIX Primary SCADA Node 

In the SCU Configure/LocalStartup dialog box, enter the logical name for the primary node 

and the backup SCADA pair. 

 

In the SCU Configure/SCADA screen enter the backup SCADA name. 

Then access the SCU Configure/Network dialog box and enter the logical name for this 

SCADA and its backup SCADA node in the Remote Node Name box. Click Add.  

Click Configure and select the Enable Logical Names check box. Enter the local node name 

of the primary node in the Primary Node box. Enter the local node name of the backup node 

in the Backup Node box. 

Return to the SCU Configure/Network dialog box and add the View node name in the 

Remote Node Name box.  

iFIX Backup SCADA Node 

Do the same as on the primary node, except that the local node name is the backup node 

name, and the Partner SCADA name in Configure/SCADA is the primary node name. The 

Configure/Network setting is identical to that of the primary SCADA node. 



 

PI Interface for GE iFix 177 

iFIX Network Status Redundancy Display 

You can configure the NetworkStatusRedundancyDisplay.grf file to show which 

SCADA node is currently active. The interface gets its data from this active node. 

 

iFIX Node %windir%\system32\drivers\etc Host File 

View node and both SCADA nodes must all have host files with the View node name, 

primary and backup SCADA node names, and IP addresses. For example, 

xxx.xxx.xxx.1 FIXVIEW 

xxx.xxx.xxx.2 FIXPRMRY 

xxx.xxx.xxx.3 FIXBAKUP 

PI Point Configuration for iFIX Tag 

All configuration settings are the same as when no redundancy is required, except that the 

node name in InstrumentTag attribute must be the logical SCADA node name for the 

failover, known as redundancy, SCADA pair. 

 





 

PI Interface for GE iFix 179 

Appendix F. OSI_iFIXmonitor Program 

Introduction 

Any program that uses the Intellution EDA library for iFIX, like this interface, can prevent 

iFIX itself from starting. This hazard is inherent in the implementation of the EDA library. 

After a program loads the EDA library and calls it, the EDA library acquires resources whose 

existence will prevent iFIX from starting if it is not already running. Once acquired, the 

resources held by the EDA library cannot be released programmatically and are only released 

when the program terminates. If iFIX stops while any programs that have called the EDA 

library are running, iFIX will refuse to restart until these EDA client programs terminate and 

consequently release the EDA library resources. 

To avoid the situations that prevent iFIX from starting, an EDA client program must 1) wait 

until iFIX is known to be running before the EDA library is loaded or called, and 2) terminate 

if it detects that iFIX has shut down after the EDA library has been called.  

The first requirement implies that an EDA client program must be able to determine whether 

iFIX is running without using the EDA library.  

The second requirement is significant for an EDA client program that is a Windows service 

and needs to run continuously, like the PI IntFix interface. The second requirement implies 

that another program is needed to restart the service after it is obligated to terminate because 

iFIX has stopped. 

The OSI_iFIXmonitor program, which is included in the interface installation kit, addresses 

these requirements for OSIsoft programs that use the EDA library: both the PI IntFix 

interface and PI AutoPointSync (PI APS) when any instances of the PI IntFix interface are 

registered for automatic point synchronization. 

To operate correctly, OSI_iFIXmonitor must be configured as an iFIX task so that iFIX starts 

OSI_iFIXmonitor when iFIX itself starts. The section Configuring OSI_iFIXmonitor 

Program has instructions for configuring OSI_iFIXmonitor as an iFIX task. 

OSI_iFIXmonitor registers with iFIX to receive notification before iFIX shuts down. When 

OSI_iFIXmonitor is notified that iFIX is about to stop, OSI_iFIXmonitor terminates. This is 

an oversimplification, as will be explained later in this appendix. 

Because OSI_iFIXmonitor is started by iFIX and terminates before iFIX shuts down, a check 

for the existence of a running OSI_iFIXmonitor process can be used by other OSIsoft 

programs as an indication of whether iFIX is running. This method is independent of the 

Intellution EDA library. 



OSI_iFIXmonitor Program 

180  

As discussed earlier, any program that calls the EDA library must terminate when iFIX stops. 

In the case of programs that are Windows services and expected to run continuously, the 

services need to be restarted by some means. Since OSI_iFIXmonitor start up and shut down 

are coordinated with iFIX, OSI_iFIXmonitor is aware of events that affect these services. 

Therefore, several configurable options for controlling services have been built into 

OSI_iFIXmonitor. Specifically, OSI_iFIXmonitor can be configured to stop and optionally 

restart selected services when OSI_iFIXmonitor is notified that iFIX is about to stop. 

OSI_iFIXmonitor Command-line Parameters 

In its most basic mode, OSI_iFIXmonitor starts when iFIX starts and terminates when 

notified that iFIX is about to stop. The existence of a running OSI_iFIXmonitor process 

indicates that iFIX is running and, conversely, the absence of a running OSI_iFIXmonitor 

process indicates that iFIX is not running. 

OSI_iFIXmonitor supports configurable options for controlling services that use the 

Intellution EDA library. The configuration of these options can be controlled by command-

line parameters, loaded from the Windows registry, or both. OSI_iFIXmonitor merges the 

services configured in the registry with the services configured on the command line. If the 

same service is configured in both the registry and on the command line, the configuration 

options from the registry have precedence. 

Since configuring an iFIX task requires manual interaction with the iFIX System 

Configuration Utility (SCU) and changes do not take effect until iFIX is stopped and 

restarted, OSI_iFIXmonitor is usually added to the iFIX task list once with no command-line 

parameters. OSI_iFIXmonitor loads configuration options from the registry, which can be 

changed at any time without requiring iFIX or OSI_iFIXmonitor to be stopped and restarted. 

The PI ICU control for the IntFix interface and the PI APS configuration control for the 

Intfix_APS connector provide the means to configure OSI_iFIXmonitor registry settings for 

managing the respective services. PI ICU and the PI APS Configuration Utility are the 

recommended tools for configuring OSI_iFIXmonitor options. 

In unusual situations, configuring OSI_iFIXmonitor by command-line parameters may be 

necessary. All command-line parameters are optional. The command-line parameters are 

listed in the table below.  

All command-line parameters are case insensitive. 

The leading / in most parameters is the Windows convention for switches. For consistency 

with UniInt, OSI_iFIXmonitor also recognizes leading – for switches. 

OSI_iFIXmonitor processes options, left-to-right. 

Parameter Description 

servicename Any parameter that does not begin with a / or – is assumed 

to be the name of a service that OSI_iFIXmonitor manages.  

Multiple servicename parameters can be specified.  

All valid services are started when OSI_iFIXmonitor starts. 
Invalid service names will be rechecked for validity at 
shutdown. The delay before starting each service is 
controlled by the rightmost /delay parameter that 

precedes each servicename parameter. 

When notified that iFIX is stopping, the list of services from 
the registry is refreshed. All services in the list are 
revalidated. Finally, all valid services are stopped and 



 

PI Interface for GE iFix 181 

Parameter Description 

optionally restarted. The action taken for each service 
during shutdown processing is controlled by the rightmost 
/stop or /restart parameter that precedes each 

servicename parameter. 

/stop When notified to stop, all services that follow this parameter 
(until superseded by a /restart parameter) are stopped 

and not restarted. 

/restart 

Default 

When notified to stop, all services that follow this parameter 
(until superseded by a /stop parameter) are stopped and 

then immediately restarted. 

This is the default handling for a service at shutdown. 

/delay=seconds 

Default=0 

When starting services during initial startup, delay the 
specified number of seconds before starting the services 
that follow this parameter.   

/reg[ister] All parameters are processed to determine the list of service 
names and the startup delay and shutdown handling 
applicable to each service. The configuration settings for the 
services are stored in the registry. No other processing is 
performed (no services are started or stopped). 

/unreg[ister] All parameters are processed to determine the list of service 
names. Configuration settings for these services are 
removed from the registry. No other processing is performed 
(no services are started or stopped). 

/monitor[debug]=list Enable logging of additional information from 
OSI_iFIXmonitor to the log file. The list for this parameter 

is a comma-separated list of the following type codes: 

Log all types. Equivalent to /monitor=3,4,5,6. 

Write log messages to stderr in addition to the log file. This 
code is only useful when OSI_iFIXmonitor is running in a 
command window. 

Log additional information while processing the command-
line parameters. 

Log additional information about registry operations. 

Log additional information when starting services. 

Log additional information when stopping or restarting 
services. 

/client[debug]=list Enable logging of additional information from client 
programs (the PI IntFix interface or PI APS) to the log file. 
The list for this parameter is a comma-separated list of 

the following type codes: 

Log all types  Equivalent to /client=2,3,4. 

Log additional information when dynamically loading or 
unloading the EDA library. 

Log additional information when searching for the 
OSI_iFIXmonitor process. 

Log additional information when checking the state of the 
OSI_iFIXmonitor process. 





 

PI Interface for GE iFix 183 

Appendix G. Terminology 

To understand this interface manual, you should be familiar with the terminology used in this 

document. 

Buffering 

Buffering refers to an interface node’s ability to store temporarily the data that interfaces 

collect and to forward these data to the appropriate PI Data Archives. 

N-Way Buffering 

If you have PI Data Archives that are part of a collective, PIBufss supports n-way buffering. 

N-way buffering refers to the ability of a buffering application to send the same data to each 

of the PI Data Archives in a collective. (Bufserv also supports n-way buffering to multiple 

PI Data Archives in a collective; however, it does not guarantee identical archive records 

since point compression attributes could be different between PI Data Archives. With this in 

mind, OSIsoft recommends that you run PIBufss instead.) 

ICU 

ICU refers to the PI Interface Configuration Utility. The ICU is the primary application that 

you use to configure PI interface programs. You must install the ICU on the same computer 

on which an interface runs. A single copy of the ICU manages all of the interfaces on a 

particular computer. 

You can configure an interface by editing a startup command file. However, OSIsoft 

discourages this approach. Instead, OSIsoft strongly recommends that you use the ICU for 

interface management tasks. 

ICU Control 

An ICU control is a plug-in to the ICU. Whereas the ICU handles functionality common to all 

interfaces, an ICU control implements interface-specific behavior. Most PI interfaces have an 

associated ICU control. 

Interface Node 

An interface node is a computer on which  

 the PI API and/or PI SDK are installed, and  

 PI Data Archive programs are not installed. 

PI API 

The PI API is a library of functions that allow applications to communicate and exchange 

data with the PI Data Archive. All PI interfaces use the PI API. 



Terminology 

184  

PI Data Archive Collective 

A PI Data Archive Collective is two or more replicated PI Data Archives that collect data 

concurrently. Collectives are part of the High Availability environment. When the primary 

PI Data Archive in a collective becomes unavailable, a secondary collective member node 

seamlessly continues to collect and provide data access to your PI clients. 

PI Data Archive Node 

A PI Data Archive node is a computer on which PI Data Archive programs are installed. The 

PI Data Archive runs on the PI Data Archive node. In earlier documentation, PI Data Archive 

was referred to as the PI Server. (See PI Server Node.) 

PIHOME 

PIHOME refers to the directory that is the common location for PI 32-bit client applications.  

A typical PIHOME on a 32-bit operating system is C:\Program Files\PIPC.  

A typical PIHOME on a 64-bit operating system is C:\Program Files (x86)\PIPC. 

PI 32-bit interfaces reside in a subdirectory of the Interfaces directory under PIHOME.  

For example, files for the 32-bit Modbus Ethernet Interface are in  

[PIHOME]\PIPC\Interfaces\ModbusE. 

This document uses [PIHOME] as an abbreviation for the complete PIHOME or PIHOME64 

directory path. For example, ICU files in [PIHOME]\ICU. 

PIHOME64 

PIHOME64 is found only on a 64-bit operating system and refers to the directory that is the 

common location for PI 64-bit client applications.  

A typical PIHOME64 is C:\Program Files\PIPC.  

PI 64-bit interfaces reside in a subdirectory of the Interfaces directory under PIHOME64.  

For example, files for a 64-bit Modbus Ethernet Interface would be found in 

C:\Program Files\PIPC\Interfaces\ModbusE. 

This document uses [PIHOME] as an abbreviation for the complete PIHOME or PIHOME64 

directory path. For example, ICU files in [PIHOME]\ICU. 

PI Message Log 

The PI message log is the file to which OSIsoft interfaces based on UniInt 4.5.0.x and later 

write informational, debug and error messages.  When a PI interface runs, it writes to the 

local PI message log.  This message file can only be viewed using the PIGetMsg utility.  See 

the Message Logs section for more information on how to access these messages. 

PI SDK 

The PI SDK is a library of functions that allow applications to communicate and exchange 

data with the PI Data Archive. Some PI interfaces, in addition to using the PI API, require the 

use of the PI SDK. 



 

PI Interface for GE iFix 185 

PI Server Node 

In earlier documentation, the term “PI Server” was used as a nickname for the 

PI Data Archive and a PI Server node was a computer on which PI Data Archive programs 

were installed. While the PI Data Archive remains a core server of the PI Server product, the 

product name “PI Server” now refers to much more than the PI Data Archive. OSIsoft 

documentation, including this user manual, is changing to use “PI Server” in this broader 

sense and “PI Data Archive” to refer to the historian core. (See PI Data Archive Node.)  

PI SMT 

PI SMT refers to PI System Management Tools. PI SMT is the program that you use for 

configuring PI Data Archives. A single copy of PI SMT manages multiple PI Data Archives. 

PI SMT runs on either a PI Data Archive node or an interface node. 

Pipc.log 

The pipc.log file is the file to which OSIsoft interfaces based on UniInt versions earlier 

than 4.5.0.x write informational and error messages. When a PI interface runs, it writes to the 

pipc.log file. The ICU allows easy access to the pipc.log. 

Point 

The PI point is the basic building block for controlling data flow to and from the 

PI Data Archive. For a given timestamp, a PI point holds a single value. 

A PI point does not necessarily correspond to a “point” on the data source device. For 

example, a single “point” on the data source device can consist of a set point, a process value, 

an alarm limit, and a discrete value. These four pieces of information require four separate PI 

points. 

Service 

A Service is a Windows program that runs without user interaction. A service continues to 

run after you have logged off from Windows. It has the ability to start up when the computer 

itself starts up. 

The ICU allows you to configure a PI interface to run as a service. 

Tag (Input Point and Output Point) 

The Tag attribute of a PI point is the name of the PI point. There is a one-to-one 

correspondence between the name of a point and the point itself. Because of this relationship, 

PI System documentation uses the terms “tag” and “point” interchangeably.  

Interfaces read values from a device and write these values to an input point. Interfaces use an 

output point to write a value to the device. 

 





 

PI Interface for GE iFix 187 

Appendix H. Technical Support and Resources 

For technical assistance, contact OSIsoft Technical Support at +1 510-297-5828 or 

techsupport@osisoft.com. The OSIsoft Technical Support website offers additional contact 

options for customers outside of the United States. 

When you contact OSIsoft Technical Support, be prepared to provide this information:  

 Product name, version, and build numbers  

 Computer platform (CPU type, operating system, and version number)  

 Time that the difficulty started  

 Log files at that time  

 Details of any environment changes prior to the start of the issue  

 Summary of the issue, including any relevant log files during the time the issue 

occurred 

The OSIsoft Virtual Campus (vCampus) website has subscription-based resources to help you 

with the programming and integration of OSIsoft products. 

 

http://support.osisoft.com/
http://vcampus.osisoft.com/




 

PI Interface for GE iFix 189 

Appendix I. Revision History 

Date Author Comments 

21-Oct-97 MH First draft 

22-Oct-97 MH First version reviewed 

11-Nov-97 DM Data type revisions 

12-Nov-97 DM Local failure detection 

23-Jan-98 DM Added configuration transfer utilities 

09-Apr-98 DM Offloaded NTF components to ExDesc field in PI 

15-Apr-98 JFZ Re-added utility info from version 1.3 manual. 

13-May-98 DM Additional information on string tags 

16-Jun-98 Holly Fixed table of contents, page nums were all listed 
as 0 

17-Jul-98 Kyong-Ri Noted changes since version 1.4. 

08-Aug-98 Kyong-Ri Corrected descriptions in /L switch and logging tag 
sections.  Deleted Logging Tag section. Modified /L 
description to reflect the change in code which 
causes the interface to abort instead of hanging 
(v1.8). 

10-Sep-98 Kyong-Ri Corrected the error in manuals up to version 1.8.2 
regarding the delimiter after event=xxxx entry in the 
PI extended descriptor. Now both ‘,’ and ‘;’ are 
allowed to end NODE name and FIELD name. 
However, a comma must still be used to end event 
tag name. 

03-Dec-98 Kyong-Ri Added a more detailed message list under Trouble-
shooting section. Added comments on added 
features (optional local server time switch).  

29-Mar-99 Kyong-Ri Added descriptions of enhancement features. 

15-Apr-99 Kyong-Ri Modified explanation for eda error 1212. Included 
debug symbol installation instructions. Added 
descriptions of more debug switches in command 
line. 

03-Aug-99 Kyong-Ri Added explanation for new data type support (FIX 
float to PI digital mapping) . 

25-Jan-00 Kyong-Ri Added FIX redundancy information. 

03-Jul-00 Kyong-Ri Corrected Location1 range from 1 to 99 to 0 to 98. 

28-Jul-00 Kyong-Ri Added more comments about user queue in /qn 
section 

09-Aug-02 Pwilliams Updated for alarm/event msg data collection. 
Changed manual format to meet new standard. 

2-Oct-02 Chrys Updated to skeleton 1.11 



Revision History 

190  

Date Author Comments 

21-Apr-03 Pwilliams Added Appendix C: Cluster Failover. Included 
failover parameters in startup file section. 

11-Jun-03 Pwilliams Updated version on title page to 2.1.3.0 

13-Jun-03 Pwilliams Updated for new ICU, incremented version to 2.2.0. 
Moved FIX redundancy section to Appendix D. 
Revised command line startup switches section. 

18-Jun-03 Pwilliams Revised Point Attribute, Principles of Operation & 
Supported Features sections. Revised Hardware 
Diagram. Removed Logging section from Appendix 
A (now supported through debug startup switch). 
Revised Error Messages in Appendix A. 

19-Jun-03 Pwilliams Added alarm/event message data and redundancy 
subsections to Principles of Operation. Added 
diagrams for redundancy architecture to Principles 
of Operation section. 

16-Sep-03 Pwilliams Updated version on title page – no other changes. 

16-Mar-04 Pwilliams Incremented version on title page. Updated 
troubleshooting section for cases resulting in ‘No 
Data’. 

29-Jul-04 Pwilliams Incremented version on title page to 2.2.1.1. Fixed 
typo in Appendix C for /FM switch.  

19-Oct-04 Chrys Version 2.2.0.0 – 2.2.1.1 Rev B: Removed triplicate 
descriptions of command-line parameters; fixed 
headers and footers; fixed section breaks; added 
platforms to intro table 

27-Oct-04 Pwilliams Version 2.2.0.0 – 2.3.0.1 Rev A: Incremented 
version on title page. Added supported output PI 
point types to InstrumentTag section table. Added 
discussion about sub-second timestamps below 
table of supported features. 

2-Dec-04 MPKelly Updated to latest manual skeleton. 

22-Nov-05 Chrys Version 2.2.0.0 – 2.3.0.1 Rev B: Changed name of 
interface from PI-EDA to PI IntFix; updated TOC. 

19-Sep-06 Janelle Version 2.2.0.0 – 2.3.0.1 Rev C: Updated 
Supported Features table to include APS 
connector; fixed headers and footers; updated How 
to Contact Us page. 

17-Nov-06 Prowe Version 2.3.2.45, Rev D; Updated manual to 
Skeleton v2.5.3, applied template and spell 
checked document. 

5-Dec-06 Mkelly Version 2.3.2.45, Rev E; Fixed headers and 
footers. 

20-Feb-2007 Ldaley Version 2.4.0.0, Rev A: Added new features for 
coordinating interface execution with Intellution. 

27-Mar-2007 Pwilliams Version 2.4.0.0, Rev B: Updated data redundancy, 
UniInt features, Location5 & Convers 
implementations. 

18-Apr-2007 Mkelly Version 2.4.0.0, Rev C: Updated Configuring the 
Interface using the PI ICU, added new screen 
shots and updated the TOC, fixed headers and 
footers. 



 

PI Interface for GE iFix 191 

Date Author Comments 

18-Apr-2007 Pwilliams Version 2.4.0.0, Rev D: Fixed labeling of 
screenshots, updated failover tables, updated 
Location5 usage. 

22-May-2007 Janelle Version 2.4.0.0, Rev E: updated hardware 
diagrams; update ICU screen shots for Cluster 
Failover 

25-May-2007 Mkelly Version 2.4.0.0, Rev F: Added /UHT_ID=# to the 
command-line parameter table. 

18-Sep-2008 Pwilliams Incremented version to 2.4.3.0. 

09-Apr-2009 Pwilliams Incremented version to 2.5.0.0. Updated 
configuration of string tag for all alarm and event 
data collection. Added description for interface 
specific behavior with UniInt Phase 2 failover. 
Migrated to interface skeleton 3.0.10. Updated ICU 
screen shots. 

13-Apr-2009 Mkelly Version 2.5.0.0 Revision A; Fixed headers and 
footer, screenshots, hyperlinks, support features 
table, and other formatting problems. 

01-May-2009 Pwilliams Incremented version to 2.5.4.0. 

28-Feb-2011 Sbranscomb Version 2.5.4.0 Revision A; Updated to skeleton 
version 3.0.31 

10-Mar-2011 Pwilliams Version 2.6.0.x, Updated supported platforms. 
Update alarm data collection section to mention 
support for out of order data.  

19-Jul-2011 MKelly Version 2.6.0.x – 2.6.1.x; Upped the version 
number for rebuild with new UniInt 4.5.2.0. 

22-May-2012 DZhang Added iFIX 5.5 to compatibility testing list 

28-May-2013 DZhang In Supported Features, updated 64-bit OS support 
from No to Yes. This has been true since version 
2.6.1.26a. 

23-Oct-2014 MKelly Version 2.6.0.x – 2.6.1.x; Updated to skeleton 
3.0.39, updated all ICU Control screenshots, fixed 
hyperlinks.. 

 


