
1 | P a g e

2015 OSIsoft TechCon

Optimizing SQL Queries

for Performance using

PI OLEDB Enterprise

1 | P a g e

Table of Contents

Contents
Table of Contents .. 1

Optimizing SQL Queries for Performance using PI OLEDB Enterprise .. 2

Overview ... 2

Required Software .. 3

Part 1 Optimization walk through ... 4

Explanation ... 7

Tip.. 10

Part 2 Linked Server .. 11

Optimization hint 1 ... 14

Optimization hint 2 ... 23

Optimization hint 3 ... 24

Tip.. 26

OSIsoft Virtual Learning Environment .. 26

2015 TechCon Session

2 | P a g e

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

Overview

In this lab, you will learn a few techniques for creating truly performing SQL using PI OLEDB Enterprise.

This Lab will also point out what it takes to verify if queries that are automatically generated by 3rd

party tools have issues.

Part 1 Optimization walk through

Part 2 Investigating performance issues by a query generated by 3rd party Microsoft product

Not all of the features are completely explained in this tutorial. Please be sure to stay within the

workbook instructions for the best learning experience.

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

3 | P a g e

Required Software

• PI OLEDB Enterprise 2012 1.3.15

• MS SQL Server 2012

4 | P a g e

Part 1 Optimization walk through

This section will guide you through some PI OLEDB Enterprise query engine details and demonstrate how

to write a query in a way it is executed optimally. We will use PI SQL Commander to run the queries and

inspect the results and the execution times.

1. Launch PI SQL Commander from the windows task bar.

2. Right click on the AF Server PISVR1 in the Object Explorer and select Connect.

3. Connect to the AF Server by clicking OK.

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

5 | P a g e

4. You should see a green symbol by the connected server and it should contain four catalogs:

Configuration, MDB, NuGreen and System. We will now execute several queries to see the

differences in the execution time. Click New Query toolbar button to open a new query window.

5. Type the following query into the editor window and execute it by clicking Execute toolbar

button or by pressing Ctrl+E.

SELECT * FROM NuGreen.Asset.ElementTemplate

6. See the execution time in the bottom right corner of the result window.

7. Execute the query again and observe if the execution time changes.

8. Execute the following query twice and observe the execution times.

SELECT * FROM NuGreen.Asset.Element

Explanation

While the Element query took more or less the same, ElementTemplate second execution was

faster since the table is cached on the client side. The following tables get cached:

Asset.ElementTemplate, Asset.ElementTemplateAttribute, Asset.ElementTemplateCategory,

Asset.ElementTemplateAttributeCategory, EventFrame.EventFrameTemplate,

EventFrame.EventFrameTemplateAttribute, EventFrame.EventFrameTemplateCategory,

EventFrame.EventFrameTemplateAttributeCategory.

2015 TechCon Session

6 | P a g e

9. Execute the following two queries and compare the execution times.

SELECT * FROM NuGreen.EventFrame.EventFrame

--

SELECT Name FROM NuGreen.EventFrame.EventFrame

Note: You may want to execute each query multiple times and calculate the average execution

time in order to get more appropriate result and minimize the influence of caching. This also

applies to all following queries.

Explanation

The amount of data transferred to the client in the first case is greater than in the second one.

We often see applications request data they do not need/use. Request always only those

columns you need. It may be quite straightforward in the example above, but the same rule

applies for subqueries. Try executing the following queries a few times.

SELECT eh.Path, eh.Name

FROM NuGreen.Asset.ElementHierarchy eh

JOIN (SELECT * FROM NuGreen.Asset.Element) e

 ON eh.ElementID = e.ID

--

SELECT eh.Path, eh.Name

FROM NuGreen.Asset.ElementHierarchy eh

JOIN (SELECT ID FROM NuGreen.Asset.Element) e

 ON eh.ElementID = e.ID

The time difference is really small but in average the second query is a bit faster. The differences

can be significant when we would not work on a local environment (everything is on one PC). It

would also grow with the size of the database.

10. Execute the following two queries and compare the execution times.

SELECT Path, Name

FROM NuGreen.Asset.ElementHierarchy eh

WHERE EXISTS

(

 SELECT 1

 FROM NuGreen.Asset.ElementAttribute

 WHERE ElementID = eh.ElementID

)

--

SELECT DISTINCT eh.Path, eh.Name

FROM NuGreen.Asset.ElementHierarchy eh

JOIN NuGreen.Asset.ElementAttribute ea

 ON ea.ElementID = eh.ElementID

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

7 | P a g e

Explanation

The correlated subquery (SELECT 1…) in the first query is executed for every row from

Asset.ElementHierarchy table which makes it really slow. Try not to use correlated subqueries

(correlated queries are queries, which use values from the outer query).

11. Execute the following two queries and compare the execution times.

SELECT e.Name Element

FROM NuGreen.Asset.Element e

JOIN NuGreen.Asset.ElementTemplate et

 ON et.ID = e.ElementTemplateID

JOIN NuGreen.Asset.ElementAttribute ea

 ON ea.ElementID = e.ID

JOIN NuGreen.Data.Snapshot s

 ON s.ElementAttributeID = ea.ID

WHERE et.Name = N'Boiler' AND ea.Name = N'Manufacturer' AND s.ValueStr = N'NATCOM'

--

SELECT e.Name Element

FROM NuGreen.Asset.ElementTemplate et

JOIN NuGreen.Asset.ElementTemplateAttribute eta

 ON eta.ElementTemplateID = et.ID

JOIN NuGreen.Data.Snapshot s

 ON s.ElementTemplateAttributeID = eta.ID

JOIN NuGreen.Asset.ElementAttribute ea

 ON ea.ID = s.ElementAttributeID

JOIN NuGreen.Asset.Element e

 ON e.ID = ea.ElementID

WHERE et.Name = N'Boiler' AND eta.Name = N'Manufacturer' AND s.ValueStr = N'NATCOM'

Explanation

Starting with PI OLEDB Enterprise 2010 R3, the efficient "by value" searches for non-data

reference based template attributes (static attributes inherited from an element template) are

supported. This applies to Data.Snapshot table, user-created transpose functions, and function

tables if access via Asset.ElementTemplateAttribute table.

The first query uses access to snapshot data via Asset.ElementAttribute table which is not

optimized.

2015 TechCon Session

8 | P a g e

12. Execute the following two queries and compare the execution times.

SELECT ea.Name, a.Time, a.Value

FROM NuGreen.Asset.ElementTemplate et

JOIN NuGreen.Asset.ElementTemplateAttribute eta

 ON eta.ElementTemplateID = et.ID

JOIN NuGreen.Asset.ElementAttribute ea

 ON ea.ElementTemplateAttributeID = eta.ID

JOIN NuGreen.Data.Archive a

 ON a.ElementAttributeID = ea.ID

WHERE et.Name = N'Heater' AND (a.Time > N'1-Feb-2015' AND a.Time < N'10-Feb-

2015' OR a.Time > N'12-Feb-2015' AND a.Time < N'22-Feb-2015')

--

SELECT ea.Name, a.Time, a.Value

FROM NuGreen.Asset.ElementTemplate et

JOIN NuGreen.Asset.ElementTemplateAttribute eta

 ON eta.ElementTemplateID = et.ID

JOIN NuGreen.Asset.ElementAttribute ea

 ON ea.ElementTemplateAttributeID = eta.ID

JOIN NuGreen.Data.Archive a

 ON a.ElementAttributeID = ea.ID

WHERE et.Name = N'Heater' AND a.Time > N'1-Feb-2015' AND a.Time < N'10-Feb-2015'

UNION ALL

SELECT ea.Name, a.Time, a.Value

FROM NuGreen.Asset.ElementTemplate et

JOIN NuGreen.Asset.ElementTemplateAttribute eta

 ON eta.ElementTemplateID = et.ID

JOIN NuGreen.Asset.ElementAttribute ea

 ON ea.ElementTemplateAttributeID = eta.ID

JOIN NuGreen.Data.Archive a

 ON a.ElementAttributeID = ea.ID

WHERE et.Name = N'Heater' AND a.Time > N'12-Feb-2015' AND a.Time < N'22-Feb-2015'

Explanation

The UNION and UNION ALL queries are executed in parallel. The WHERE condition can be split

into two where the first takes the first part of the OR clause and the second one the second one.

The queries are then executed in parallel and the results are concatenated at the end.

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

9 | P a g e

13. Execute the following two queries and compare the execution times.

SELECT e.Name, ea.Name, s.Value

FROM NuGreen.Asset.Element e

JOIN NuGreen.Asset.ElementAttribute ea

 ON e.ID = ea.ElementID

JOIN NuGreen.Data.Snapshot s

 ON ea.ID = s.ElementAttributeID

WHERE s.Value = N'NATCOM' and ea.Name LIKE N'Manu%' AND e.Name LIKE N'B%'

OPTION (ALLOW EXPENSIVE, IGNORE ERRORS)

--

SELECT e.Name, ea.Name, s.Value

FROM NuGreen.Asset.Element e

JOIN NuGreen.Asset.ElementAttribute ea

 ON e.ID = ea.ElementID

JOIN NuGreen.Data.Snapshot s

 ON ea.ID = s.ElementAttributeID

WHERE s.Value = N'NATCOM' and ea.Name LIKE N'Manu%' AND e.Name LIKE N'B%'

OPTION (FORCE ORDER, ALLOW EXPENSIVE, IGNORE ERRORS)

Explanation

Based on the restrictions defined by the WHERE clause the query engine makes a decision on

how to execute the join. It first requests the data from one table and then from the other one

using the data from the first table as an additional restriction. The query engine tries to estimate

which of the restriction is more restrictive (will lead to less rows in the result) and request the

data from such table first. It made here a wrong decision and requested data from Snapshot and

Element Attribute table first. You may help the query engine with the decision and use FORCE

ORDER option which forces the same order as the order of the tables in join.

The OPTION (FORCE ORDER) clause must be used with caution. If used inappropriately, the

execution plan might be less optimal when compared to the one that the query engine would

generate otherwise.

14. Execute the following two queries and compare the execution times.

SELECT Name, Path

FROM NuGreen.Asset.ElementHierarchy

WHERE Path LIKE N'%NuGreen\Houston\%'

--

SELECT Name, Path

FROM NuGreen.Asset.ElementHierarchy

WHERE Path LIKE N'\NuGreen\Houston\%'

Explanation

If % is used at the beginning of the search pattern, the query engine cannot index the values in

the search column and therefore needs to inspect all values. Try to avoid LIKE conditions with %

at the beginning.

2015 TechCon Session

10 | P a g e

Tip

PI OLEDB Enterprise optimization concepts are described in detail in PI OLEDB Enterprise SQL

Optimization white paper that can be downloaded from OSIsoft Tech Support web site

(https://techsupport.osisoft.com/). You can also download it using the direct link.

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

11 | P a g e

Part 2 Linked Server

In this part we will execute a query in a Microsoft product. The sample query we will use was developed

in SQL Commander. We will take a look at the execution time in PI SQL Commander and MS SQL Server.

We will investigate the execution time difference in both products. At the end we will take a look at

possible solutions to improve the performance of this query.

1. Launch or navigate to PI SQL Commander

2. Connect to the PISRV1 AF Server (the same we used in the first part of this learning lab)

3. Select the New Query toolbar button to open a new query window in PI SQL Commander

4. Copy the query below to the opened query editor in PI SQL Commander

SELECT ef2.Name EF_Name, e.Name E_Name, ea.Name EA_Name, v.Value

FROM [NuGreen].[EventFrame].[EventFrame] ef2

INNER JOIN [NuGreen].[Asset].[Element] e
 ON e.ID = ef2.PrimaryReferencedElementID

INNER JOIN [NuGreen].[Asset].[ElementAttribute] ea

 ON e.ID = ea.ElementID
INNER JOIN [NuGreen].[Data].[ft_InterpolateDiscrete] v

 ON ea.ID = v.ElementAttributeID

WHERE ef2.PrimaryParentID IN

 (SELECT TOP 1 ef1.ID
 FROM [NuGreen].[EventFrame].[EventFrame] ef1

 WHERE IsRoot = True

 AND StartTime > '1-Feb-2015'
 ORDER BY StartTime ASC)

AND v.Time = ef2.endtime

AND ef2.Name Like '%A' -- we just want the 'xxxx_A' child Event Frames

5. Execute the query and check the execution time

6. Launch SQL Server Management Studio (SSMS) from the windows bar

2015 TechCon Session

12 | P a g e

7. Connect to the default selected server (PISRV1)

8. Navigate to Object Explorer in SSMS and expand the Tables node in PISRV1->Server Objects-

>Linked Servers->LinkedAF->Catalogs->NuGreen node

You may notice that the PI System is already exposed to a SQL Server. This configuration enables

SQL Server to execute commands against PIOLEDB Enterprise.

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

13 | P a g e

9. Select the New Query toolbar button to open a new query window in SSMS

10. Take a look at the query below and check what are the differences with the query we used in PI

SQL Commander

SELECT ef2.Name EF_Name, e.Name E_Name, ea.Name EA_Name, v.Value

FROM [LINKED_AF].[NuGreen].[EventFrame].[EventFrame] ef2
INNER JOIN [LINKED_AF].[NuGreen].[Asset].[Element] e

 ON e.ID = ef2.PrimaryReferencedElementID

INNER JOIN [LINKED_AF].[NuGreen].[Asset].[ElementAttribute] ea

 ON e.ID = ea.ElementID
INNER JOIN [LINKED_AF].[NuGreen].[Data].[ft_InterpolateDiscrete] v

 ON ea.ID = v.ElementAttributeID

WHERE ef2.PrimaryParentID IN
(SELECT TOP 1 ef1.ID

 FROM [LINKED_AF].[NuGreen].[EventFrame].[EventFrame] ef1

 WHERE IsRoot = 1
 AND StartTime > '1-Feb-2015'

 ORDER BY StartTime ASC)

AND v.Time = ef2.endtime

AND ef2.Name Like '%A' -- we just want the 'xxxx_A' child Event Frames

To make it work in SQL Server we had to avoid any PI specific time literals and PI specific

functions (we could not use condition like “StartTime > ‘y’”), which are not known to SQL Server.

We also need to make sure that SQL Server knows where the database is coming from. The

changes made are:

a. the linked server name needs to precede the AF database name i.e.

[NuGreen].[Asset].[ElementAttribute] => [LINKED_AF]. [NuGreen].[Asset].[ElementAttribute]

b. the condition “IsRoot = True” needed to be changed to “IsRoot = 1”

11. Now copy the above query and paste it to previously opened query editor in SSMS. Execute the

query by pressing F5.

The same query that we used in PI SQL Commander is now completing with errors. It can mean

only one thing: SQL Server is doing something different.

2015 TechCon Session

14 | P a g e

12. Take a look at the message returned by the execution of the query in the message tab:

First we notice that the error was returned by PIOLEDB Enterprise itself. The second thing we

discover is that the ElementAttribute table was not restricted. In the message marked red we

can look at further details:
SELECT "Tbl1005"."ID" "Col1120","Tbl1005"."Name" "Col1121","Tbl1005"."ElementID"

"Col1118"

FROM "NuGreen"."Asset"."ElementAttribute" "Tbl1005"

ORDER BY "Col1118" ASC

Note: The table and column names may differ since it is generated by the SQL Server.

Optimization hint 1

13. Let’s instruct the MS SQL Server to perform the join operation on the remote data source. To do

that, we can use a join hint for T-SQL (INNER REMOTE JOIN instead of INNER JOIN)

SELECT ef2.Name EF_Name, e.Name E_Name, ea.Name EA_Name, v.Value
FROM [LINKED_AF].[NuGreen].[EventFrame].[EventFrame] ef2

INNER JOIN [LINKED_AF].[NuGreen].[Asset].[Element] e

 ON e.ID = ef2.PrimaryReferencedElementID

INNER REMOTE JOIN [LINKED_AF].[NuGreen].[Asset].[ElementAttribute] ea
 ON e.ID = ea.ElementID

INNER JOIN [LINKED_AF].[NuGreen].[Data].[ft_InterpolateDiscrete] v

 ON ea.ID = v.ElementAttributeID
WHERE ef2.PrimaryParentID IN

(SELECT TOP 1 ef1.ID

 FROM [LINKED_AF].[NuGreen].[EventFrame].[EventFrame] ef1
 WHERE IsRoot = 1

 AND StartTime > '1-Feb-2015'

 ORDER BY StartTime ASC)
AND v.Time = ef2.endtime

AND ef2.Name Like '%A' -- we just want the 'xxxx_A' child Event Frames

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

15 | P a g e

14. Copy the above modified query and execute it in SSMS. The query returned another error:

We recognize that MS SQL Server wants to perform another join operation locally and it tries to

get the entire data source. This time it wants to pull the NuGreen.Data.ft_InterpolateDiscrete

data source to perform local filtering:

SELECT "Tbl1007"."ElementAttributeID" "Col1052","Tbl1007"."Time"

"Col1053","Tbl1007"."Value" "Col1054"

FROM "NuGreen"."Data"."ft_InterpolateDiscrete" "Tbl1007"

ORDER BY "Col1052" ASC,"Col1053" ASC

15. Let’s modify all inner joins to inner remote joins and let’s execute the query again

SELECT ef2.Name EF_Name, e.Name E_Name, ea.Name EA_Name, v.Value

FROM [LINKED_AF].[NuGreen].[EventFrame].[EventFrame] ef2
INNER REMOTE JOIN [LINKED_AF].[NuGreen].[Asset].[Element] e

 ON e.ID = ef2.PrimaryReferencedElementID

INNER REMOTE JOIN [LINKED_AF].[NuGreen].[Asset].[ElementAttribute] ea

 ON e.ID = ea.ElementID
INNER REMOTE JOIN [LINKED_AF].[NuGreen].[Data].[ft_InterpolateDiscrete] v

 ON ea.ID = v.ElementAttributeID

WHERE ef2.PrimaryParentID IN
(SELECT TOP 1 ef1.ID

 FROM [LINKED_AF].[NuGreen].[EventFrame].[EventFrame] ef1

 WHERE IsRoot = 1
 AND StartTime > '1-Feb-2015'

 ORDER BY StartTime ASC)

AND v.Time = ef2.endtime

AND ef2.Name Like '%A' -- we just want the 'xxxx_A' child Event Frames

16. The query executed properly but the performance is very poor compared to PI SQL Commander,

even we instructed MS SQL Server to perform all join operation on the remote data sources

17. We have the result but we do not have any feedback why the query was slower. We need to

check the PIOLEDB Enterprise log file to see further details. The log file help us to understand

how the query was sent to the OLE DB provider and how the query pieces were executed.

2015 TechCon Session

16 | P a g e

18. First we need to recreate the linked server with a new connection string specifying that the logs

should be collected. To do that please navigate to your desktop and open the

“Recreate_LINKED_AF.sql” file:

Please refer to the PI OLEDB Enterprise 2012 User Guide.pdf to learn how to setup the logs.

The file will be opened in SSMS in a new tab. Press F5 to execute the script. Make sure the script

was executed properly:

19. Now we can move back to the tab with our query:

Execute the query again by hitting F5 (this time PIOLEDB Enterprise is collecting logs).

20. Open the windows file explorer and navigate to C:\Temp\Log and open the PIOLEDB.log file

(please use NotePad++, which should be used by default in this lab).

Navigate to the bottom of the file to find the latest logs:

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

17 | P a g e

The outlined by red color numbers (14440, 7, 16064) are the process ID, thread ID and instance

ID. We will use this numbers as a reference, if a particular line is part of our query. Please make

sure you refer to your process ID, thread ID and instance ID, which you will find in your local log

file.

You can check the process ID of the MS SQL Server instance in the task manager.

21. Let’s look for all instances of a prepare query command in the log file. We can use the following

text as search pattern to find it (copy and paste it, and replace the highlighted numbers):

“14440\t7\t16064\tCommand\tICommandPrepare\tPrepare” (the \t symbol is equal to a tab

key). To open the find window in Notepad++ press Ctrl+F. In the next step make sure you are

using the extended search mode like in the screenshot below:

For this particular query we managed to find five instances of our search pattern:

a. SELECT "Tbl1001"."Name" "Col1035","Tbl1001"."EndTime"

"Col1036","Tbl1001"."PrimaryParentID"

"Col1037","Tbl1001"."PrimaryReferencedElementID" "Col1038" FROM

"NuGreen"."EventFrame"."EventFrame" "Tbl1001" WHERE "Tbl1001"."Name" like '%A'

ORDER BY "Col1037" ASC

2015 TechCon Session

18 | P a g e

b. SELECT "Tbl1009"."ID" "Col1027","Tbl1009"."StartTime" "Col1028" FROM

"NuGreen"."EventFrame"."EventFrame" "Tbl1009" WHERE "Tbl1009"."IsRoot"=(1) AND

"Tbl1009"."StartTime">'2015-02-16 00:00:00.0000000' ORDER BY "Col1028" ASC

c. SELECT "Tbl1003"."ID" "Col1043","Tbl1003"."Name" "Col1044" FROM

"NuGreen"."Asset"."Element" "Tbl1003" WHERE "Tbl1003"."ID"=?

d. SELECT "Tbl1005"."ID" "Col1056","Tbl1005"."Name" "Col1057" FROM

"NuGreen"."Asset"."ElementAttribute" "Tbl1005" WHERE "Tbl1005"."ElementID"=?

e. SELECT "Tbl1007"."Value" "Col1068" FROM "NuGreen"."Data"."ft_InterpolateDiscrete"

"Tbl1007" WHERE "Tbl1007"."ElementAttributeID"=? AND "Tbl1007"."Time"=?

We can see that the query was sent from MS SQL Server to PIOLEDB Enterprise in five

subqueries.

22. In the next step we may look at the number of executions (how many times each subquery was

executed by PIOLEDB Enterprise). We can find it by looking for this search pattern (copy and

paste it, and replace the highlighted numbers):

“14440\t7\t16064\tCommand\tICommand\tExecute\t\r”

23. When we look at the number of executions for each query, we discover that the first four

subqueries were executed only once (that is correct) but the last command was executed 21

times. We would expect that this command is executed only once but MS SQL Server passes the

filter parameter one by one because it has performed local filtering.

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

19 | P a g e

24. Second observation from the captured queries, is that we never saw the “Top” keyword sent to

PIOLEDB Enterprise. This means that the MS SQL Server did not pass this expression to the OLE

DB provider and it pulls the data source to perform the operation locally.

25. Let’s navigate back to SSMS. We will now look if we can find the same information in the SSMS

tools. To do that, navigate to Query toolbar menu and select the “Include Actual Execution Plan”

26. Execute the query again by hitting F5 and take a look at the additional tab “Execution Plan”

2015 TechCon Session

20 | P a g e

27. Let’s quickly review the execution plan

All nodes with the name “Remote Query” (outlined red) are executed by the OLE DB provider.

The rest is executed on the SQL Server side.

28. We realize that all remote queries displayed in this view represent the same queries we

captured in the log file. Let’s hover over the second “Remote Query” node from the top. We can

see that the remote query does not contain the Top expression and that the Top expression is

present on MS SQL Server side:

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

21 | P a g e

2015 TechCon Session

22 | P a g e

29. Hover now over the bottom “Remote Query” node

We recognize that the remote query was executed 21 times.

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

23 | P a g e

Optimization hint 2

30. Let’s check the possibilities to work around the issues we found in the PIOLEDB Enterprise log

and the SSMS tool. First we will try to use a T-SQL function which will pass the entire query as is

to the OLE DB provider:
SELECT * FROM OPENQUERY(LINKED_AF, 'SELECT ef2.Name EF_Name, e.Name E_Name,

ea.Name EA_Name, v.Value

FROM [NuGreen].[EventFrame].[EventFrame] ef2

INNER JOIN [NuGreen].[Asset].[Element] e
 ON e.ID = ef2.PrimaryReferencedElementID

INNER JOIN [NuGreen].[Asset].[ElementAttribute] ea

 ON e.ID = ea.ElementID
INNER JOIN [NuGreen].[Data].[ft_InterpolateDiscrete] v

 ON ea.ID = v.ElementAttributeID

WHERE ef2.PrimaryParentID IN
 (SELECT TOP 1 ef1.ID -- we want the first event frame that started yesterday

 FROM [NuGreen].[EventFrame].[EventFrame] ef1

 WHERE IsRoot = True
 AND StartTime > ''1-Feb-2015''

 ORDER BY StartTime ASC)

AND v.Time = ef2.endtime

AND ef2.Name Like ''%A'' -- we just want the ''xxxx_A'' child Event Frames')

The OPENQUERY T-SQL function executes the specified pass-through query in second parameter

on the specified linked server in the first parameter. The OPENQUERY can be referenced in the

FROM clause of a query as if it were a table name.

31. Copy the query from above, paste it to SSMS query editor and execute it by hitting F5.

32. Notice the execution time. And also take a look and the execution plan tab:

We can see, that the only operation that MS SQL Server performed is the scan operation.

Advantages of this technique:

1. The entire query is executed remotely. No unnecessary data is pulled local beside the

actual result.

2. We can use PI specific functions and literals.

Disadvantages of this technique:

1. We cannot join local MS SQL Server tables with the tables from AF (in that case you

need to use the previous heterogeneous query example we were investigating and use

the Inner Remote Join hint to increase performance)

2015 TechCon Session

24 | P a g e

33. If we take a look at the log file, we will see that the entire query was passed to the OLE DB (we

even recognize the comment inside the query).

If we had another look at the internals of the execution in the log file, we would also see that

the query internally was executed in five pieces. The main difference beside that the Top

expression is present in PI OLEDB Enterprise command, each of this subqueries we have seen

previously would be executed only once.

Optimization hint 3

34. The second solution could be to wrap the query or parts of it into a PI SQL View and use this

View on the SQL Server side. This can for example help with data type incompatibilities or query

structures where you cannot give SQL Server a hint (the INNER REMOTE keyword is such a hint)

that prevents local filtering. Or if you would like to use PI specific functions or literals.

35. Navigate to PI SQL Commander and right click on the NuGreen->Data->Views node and select

the “Create View…” option:

Optimizing SQL Queries for Performance using PI OLEDB Enterprise

25 | P a g e

36. Replace the <view name> with a name “MyData” and replace the <query> with the query we

used before in PI SQL Commander. You can also copy and paste the query below.

CREATE VIEW [NuGreen].[Data].[MyData]

AS

SELECT ef2.Name EF_Name, e.Name E_Name, ea.Name EA_Name, v.Value

FROM [NuGreen].[EventFrame].[EventFrame] ef2

INNER JOIN [NuGreen].[Asset].[Element] e

 ON e.ID = ef2.PrimaryReferencedElementID

INNER JOIN [NuGreen].[Asset].[ElementAttribute] ea

 ON e.ID = ea.ElementID

INNER JOIN [NuGreen].[Data].[ft_InterpolateDiscrete] v

 ON ea.ID = v.ElementAttributeID

WHERE ef2.PrimaryParentID IN

 (SELECT TOP 1 ef1.ID -- we want the first event frame that started yesterday

 FROM [NuGreen].[EventFrame].[EventFrame] ef1

 WHERE IsRoot = True

 AND StartTime > '1-Feb-2015'

 ORDER BY StartTime ASC)

AND v.Time = ef2.endtime

AND ef2.Name Like '%A' -- we just want the 'xxxx_A' child Event Frames

37. Execute the create statement.

Result will look similar to this:

2015 TechCon Session

26 | P a g e

Note: If you get the following error

[OSIsoft.AFSDK] Cannot modify Element 'Database Objects' in Element 'PI SQL' in Element 'OSIsoft'

because the current user does not have Write permission.

use PI System Explorer to verify/set write permission for your user to the Configuration

database and to the elements mentioned in the error message. You may also need to restart PI

SQL Commander using “Run as Administrator” option.

38. After the view was created we can now navigate back to SSMS and try to pull data from the

view and check the execution plan. To do that enter the query below in the query editor and hit

F5:

SELECT * FROM [LINKED_AF].[NuGreen].[Data].[MyData]

The execution time should be as quick as in PI SQL Commander and we will realize that the

query was executed in one “Remote Query”:

Tip

Independent which method you use to pull data with a third party tool, have always in mind the query

hints you learned in the first part of this learning lab.

OSIsoft Virtual Learning Environment

The OSIsoft Virtual Environment provides you with virtual machines where you can complete the

exercises contained in this workbook. After you launch the Virtual Learning Environment, connect to

PISRV1 with the credentials: pischool\student01, student.

OSIsoft Virtual Learning Environment

27 | P a g e

The environment contains the following machines:

PISRV1: a windows server that runs the PI System and that contains all the software and configuration

necessary to perform the exercises on this workbook. This is the machine you need to connect to. This

machine cannot be accessed from the outside except by rdp, however, from inside the machine, you can

access Coresight and other applications with the url: http://pisrv1/, (i.e. http://pisrv1/coresight).

PIDC: a domain controller that provides network and authentication functions.

The system will create these machines for you upon request and this process may take between 5 to 10

minutes. During that time you can start reading the workbook to understand what you will be doing in

the machine.

After you launch the virtual learning environment your session will run for up to 8 hours, after which

your session will be deleted. You can save your work by using a cloud storage solution like onedrive or

box. From the virtual learning environment you can access any of these cloud solutions and upload the

files you are interested in saving.

System requirements: the Virtual Learning Environment is composed of virtual machines hosted on

Microsoft Azure that you can access remotely. In order to access these virtual machines you need a

Remote Desktop Protocol (RDP) Client and you will also need to be able to access the domain

cloudapp.net where the machines are hosted. A typical connection string has the form

cloudservicename.cloudapp.net:xxxxx, where the cloud service name is specific to a group of virtual

machines and xxxxx is a port in the range 41952-65535. Therefore users connecting to Azure virtual

machines must be allowed to connect to the domain *.cloudapp.net throughout the port range 41952-

65535. If you cannot connect, check your company firewall policies and ensure that you can connect to

this domain on the required ports.

