

The Journey from Historian to Business Intelligence

Jeff Campbell, Engineering Manager, Scrubgrass Generating November 2, 2016

Scrubgrass Generating

- Located in Northwest PA
- Constructed in 1993
- 85 mw Fluid Bed boilers
- Designed to burn waste coal
- Sells power to PJM grid
- 35 employees

A New Business Challenge

- Plant payment structure changed from fixed payment to market based
- Power pricing changes every 5 minutes
- The plant needs to adjust load to react to pricing

A Simple Project

- Give control room a cost management tool
 - Show real time production cost
 - Show optimal run point for price
 - Show how costs are built up (troubleshooting tool)
- Requirements
 - No daily hand entry of information
 - No "monthly average" shortcuts on cost buildup
 - Results instantaneously available to ops

Tags Required to Calculate Real Time Price

Energy Manager (E-mail) DCS (56 PI tags) (HTML) EIA -Day Ahead Price -Load -Natural gas price -Day Ahead Load -Material flows -Coal Price -Boiler temp & press (HTML) PJM Finance (Manual Entry) PI Server -real time price -Commodity Prices Performance -system loads -Maintenance Cost Equations **Boiler Curves Excel Forecast** ProcessBook (Excel) Models **KPI**

OSIsoft Components

- DCS interface existing process tags
- HTML Interface Gas \$, PJM \$, system loads
- PI Performance Equations 63 tags configured on PI Server
 - Effective full power hour calc
 - Target and actual cost calcs
- PI DataLink Links tags to analysis spreadsheets
- PI ProcessBook Control room & Admin visualization
- Excel spreadsheet macros (Developed in-house) downloads characteristic curve coefficients to PI Tags
- Visual Basic E-mail downloader (Developed in-house)

Calculation Process

- Use PI DataLink to create process data curves in Excel
- Calculate curve derivatives to create incremental cost curves
- Export incremental curves to PI Tags (automated excel macro)
- Use PI Performance Equations to calculate target and actual costs

Resulting PI ProcessBook Display

Ash Return Cost 4.5 \$/ton Ammonia Cost 940 \$/Active ton Fuel Oil Cost 1.61 \$/gal Variable O &M Cost 1.79 \$/Mwh Emissions Cost 86.00 \$/ton	NOV commodity Costs	Production Costs	Commercial Availability 105 % Available	Net Heat Rate 13156 bt Gross Heat Rate 11351 bt Corrected Turbine Heat Rate 8781 bt
Current Fuel Cost Current Limestone Cost Current Ammonia Cost Current Fuel Oil Cost #1 Boiler Wear #2 Boiler Wear #1 Boiler Emissions #2 Boiler Emissions Variable O &M Cost	1061.38 \$/hr 325.10 \$/hr -0.30 \$/hr 0.00 \$/hr 22.99 \$/hr 24.44 \$/hr 4.55 \$/hr 6.07 \$/hr	15.58 \$/MWh 4.74 \$/MWh 0.00 \$/MWh 0.00 \$/MWh 0.66 \$/MWh 0.73 \$/MWh 0.13 \$/MWh 0.18 \$/MWh	Target Margin 203 \$/Hr 10 Min Avg Margin 414 \$/Hr	Target Load 70 Net Mw Net Output 68.1 MWe
Total Cost Target Cost	1563.62 \$/hr 1784.26 \$/hr	22.95 \$/Mwh	Day Ahead PJM 27.31 \$/MWh	Day Ahead Load 57 Net Mw
Energy Revenue DA Energy Revenue RT Energy Revenue TOTAL		Target Revenues 390.71 \$/hr 1947.38 \$/hr	Real Time PJM 31.14 \$/Mwh	Real Time Load 11.1 Net MW
Margin (Gross Margin + VOM)	315 \$/nr 🔻	Green = operating & manpower Drange = operating cost covered Red = loss	RT Hour Average 29.51 \$/Mwh PJMPriceRT_MCC Failed PJMPriceRT_MLC -0.04 \$/Mwh	RT Target Load 13.2 Net MW

Forecasting using merged data streams

- Next week's weather looks like it will be a loss so we'll take a boiler off line.
- This 20 second check took 2 4 hours without the PI System

- The merged data shows pricing will be higher than expected next week... so we'll keep the boiler on line.
- That 20 second check translates into \$160K additional revenue for the week

Long range forecasts

- With Gas price, system loads, and boiler curves all in the PI System, it becomes possible to perform long range operational forecasts.
- This helps with scheduling of outages, fuel, and manpower.

Conclusions

- Merging market and process data allows end users to spend time analyzing results – instead of synchronizing databases.
- The resulting merged data reveals new trends not seen on individual streams.
- Everyone in the plant now knows how much \$\$\$ they will make, are making, and have made with no lag.
- This is a main reason Scrubgrass is still operating.

The Journey from Historian to Business Intelligence..

COMPANY and GOAL

Scrubgrass Generating Plant Generates power by reclaiming abandoned coal piles.

Scrubgrass needed Real time feedback on revenue and costs

CHALLENGE

Calculate plant revenue and margin real time

- Finance data is separate from process data
- Finance results lag 2 months behind production
- Incompatible data formats for external market data

Consolidated 6 data sources to allow real time cost calculations

- PI DataLink tag upload and download
- PI ProcessBook visualization

RESULTS

Plant now has a tool to guide them to optimal run conditions

- HTML interface purchased
- In house development of cost tools (engineering department)
- Resulted in decision to continue running facility instead of mothballing

Contact Information

Jeff Campbell

Jeff.Campbell@Scrubgrass.com

Engineering Manager

Scrubgrass Generating Company

Questions

Please wait for the microphone before asking your questions

Please don't forget to...

Complete the Survey for this session

Thank You

