Managing Reliability and the Markets with PI

PI System Users Conference OSI Software, Inc. April 2-5, 2000

Jim Detmers
Director, Engineering and Maintenance
California Independent System Operator

Some Facts About the California ISO

- Consists of PG&E, SCE, and SDG&E Service Territories.
- Covers 124,000 square miles.
- 21,000 Circuit Miles of Transmission
- Approximately 600+ Generators
- 45,000 Megawatt Summer Peak Load
- 164 Billion KWh of Energy Delivered to 27 Million Californians.
- Consumers Use Over \$23 Billion of Energy Annually.

De-Regulating the Electric Industry in California

How the California ISO was Formed

Sept. '96 Dec. '96

Jan. '97

AB 1890

goes into

effect

May '97

July.-Oct. '97 Oct. '97-Mar.'98 Mar. '98

AB 1890 signed

ISO Restructuring Trust established

\$191 million credit facility for ISO start-up and development

costs

Vendor Contracts Signed

Mar. '97

First Staff is Hired

ISO staff & **Executives** hired

> Initial **Applications &** infrastructure delivered

Operational Dry Run

> Staff **Training**

The ISO's Basic Functions

• Assure that the Transmission Grid is Reliable.

 Access to the Transmission Grid is Open and Non-discriminatory.

• Electricity Markets Function Efficiently and Effectively.

The ISO Reliability Requirements

- Maintain National and Regional Reliability Standards.
 - Operating Reserve
 - Frequency Response and Bias
 - Control Performance
 - Control Surveys
 - Backup Power Supply

- Automatic Generation Control
- Time Control
- Inadvertent Interchange
- Control and Monitoring Equipment

- Maintain Operating Transfer Capability (OTC) between other Control Areas
- Maintain Operating Limits in the Local Area Transmission System.

"Reliability through Markets"

Forward Energy Markets

Day Ahead

Hour Ahead

Ancillary Services Markets

Regulation - Spinning - Non-Spinning - Replacement

Real-Time Markets

Out-of-Market Calls (OOM)

Emergency Measures

From Schedule to Reality

One Hour in the Market

Regulation (AGC)

10 Minute Market

Balancing Energy

Balancing Energy Ties

Uninstructed Deviation

Reliability Must Run

Hour Ahead Energy Market

Day Ahead Energy Market

The Tools That Make It Work

INITIAL ISO COMPUTER SYSTEMS:

- Scheduling Infrastructure (SI)
- Scheduling Applications (SA)
- Energy Management System (EMS)
- Meter Data Acquisition System (MDAS)
- Balance of Business System (BBS)

•ADDITIONAL COMPUTER SYSTEMS:

- •Plant Information System (PI)
- Generator Communications Project (GCP)

Why Use PI?

- Historical Operational Data.
- Reliability and System Security
- Compliance with Market Bids
- Market Analysis

Examples of Using PI

Real-time

- Regulation Response.
- Trend System Loads.
- Monitor Critical Transmission System Components.

After the Fact

- Retrieve Operational Data.
- Analyze Transmission System Disturbances.
- Reliability Management System (RMS) reporting.

"Real-Time" Example: ISO Regulation

The Dynamics of Regulation

Provides Real-Time Difference Between Load and Generation

- Maintains Frequency and Interchange Schedules.
- Unique Ancillary Services Market.

Regulation Market Bids are Dispatched Directly from the ISO.

"Real-Time" Example: ISO Regulation

The Problem with Regulation

- New Market Environment Greatly Increased Regulation Requirements.
- Regulation Costs California Consumers up to \$1,000,000 Each Day.
- Regulation is Complex and Difficult to Analyze.
 - Multiple Generation Suppliers Bid to Provide Service
 - Market Determines Which Units Will Provide Regulation Each Hour
 - Dynamic Load Determines Regulation Need

CALIFORNIA ISO

Regulation is Bid in Market

"Real-Time" Example: ISO Regulation

Using PI to Find the Regulation Problem

- Process Book Trends of Each Generator on Regulation
- Hourly Deviations Between Set-Points and Actual MW Output
- List of Generators Based on their Ability to Deliver Regulation
- Real-Time Updates of Generators Selected by the Market
- Net Regulation Trend Display.

"Real-Time" Example: ISO Regulation

PI Trend - Good Regulation Response

CALIFORNIA ISO

"Real-Time" Example: ISO Regulation

CALIFORNIA ISO

"Real-Time" Example: ISO Regulation

CALIFORNIA ISO Improper Regulation Response

California ISO

"Real-Time" Example: ISO Regulation

"Real-Time" Example: ISO Regulation

Solving the Regulation Problem

The Regulation Problem was Caused by Generators Not Responding to Control Signals. To Solve This Problem, the ISO is:

- Establishing Direct Communications with the Generators
- Correcting Improper Conversions for the AGC Set-Point Signal.
- Penalizing Units Deviating from Schedules because of Spot Prices.

"Real-Time" Example: ISO Regulation

Results of Solving the Regulation Problem

- Correcting Regulation Problems Improves System Reliability.
- Reducing Regulation Requirements Enhances Market Competition.
- Reduced Requirements Result in Savings up to \$300,000 a Day.
- The PI System Easily Paid for Itself After a Few Weeks of Operation.

On September 30, 1999, under-frequency was experienced in the Western United States for about two hours.

It appeared that the California transmission system was the cause of the event because:

- Higher than Expected Loads.
- Overloads on a Major Intertie Between Oregon and California.
- Shortage of Operating Reserves.
- Interruptible Load Shedding in California was Implemented.

Using PI to Analyze the Disturbance

Develop Trends For:

- Load
- Frequency
- Area Control Error (ACE)
- Flows on the Overloaded Transmission Lines
- Regulation Reserves.

ISO Load September 30, 1999 Incident

California ISO

"After the Fact" Example: Disturbance Analysis

PI Trend of Frequency and Load

ISO ACE and Frequency September 30, 1999 14:45-17:00 PAST Incident

California ISO

"After the Fact" Example: Disturbance Analysis

PI Trend of Frequency and ACE

Results of the Analysis

PI is a Valuable Tool for Determining the Causes of System Disturbances and Teaching Us How to Prevent Them from Occurring Again.

 Losses of Generation Outside of the California System Initiated the Event.

Conclusions

- PI can Be Used to Improve the Efficiency of the Markets and Reduce Costs to Consumers.
- PI can Be Used to Determine the Cause of Problems and Help to Improve System Reliability.
- PI has helped the ISO Realize its Mission Statement of "Reliability Through Markets" and to Meet ISO Corporate Goals.