

Carolyn Przybylski

Sr. Manufacturing Systems Engineer

Chris Gaffney

Systems Administrator

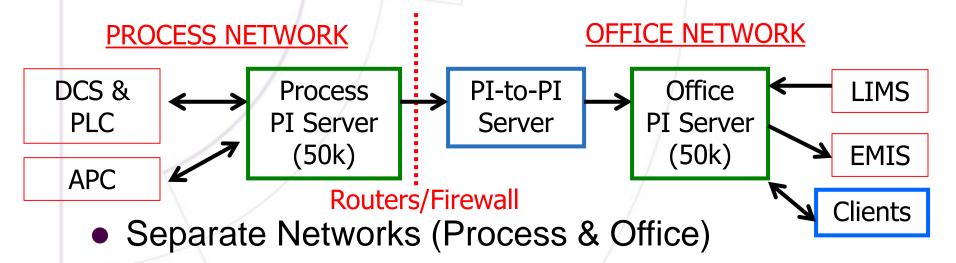
AGENDA

- Introduction
- Software Evaluation
- Basic Steps of Implementation
- Examples
- Results
- Future Plans

INTRODUCTION

- Carolyn Przybylski (sha–BILL–skee)
 - Started with Cytec in 1987; Process Engineer -> Production Engineer -> Process Control Engineer -> Sr. Manufacturing Systems Engineer
 - PI Systems Manager (6 years)

Chris Gaffney


- Started with Cytec in 1996 as Systems Administrator
- MCSE (MS Certified Systems Engineer)
- CCNA (Cisco Certified Network Associate)
- IT Monitor Systems Manager

Cytec Industries – Fortier Plant

- New Orleans, LA
- Chemical Manufacturing plant -
- Continuous Processes (24/7/365)
- 440+ Cytec employees & 150+ contractors onsite

PI SYSTEM LAYOUT

- Two 50K tag servers with PI-to-PI interface
- Interfaces:
 - 6 DCS (GSE D/3 & Yokogawa)
 - 20+ PLC (Square D, Allen Bradley)
 - 2 Advanced Process Control (APC) Systems
 - Laboratory Mgmt System (LIMS)
 - Environmental Mgmt System (EMIS)

NETWORK LAYOUT

PROCESS NETWORK

- 5 Windows servers
- 30+ Cisco switches
- 1 Unix
- 6 VMS servers
- 19 PC/workstations

OFFICE NETWORK

- 40+ Windows servers
- 80+ Cisco switches
- 400+ PCs

Routers/Firewall

Method to Monitor Network

- Using What's Up Gold (WUG) to alert when servers and critical applications went down (react quickly)
- WUG log files & server Event logs provided some valuable information, but strictly reactive
- In order to be <u>Pro</u>-active, needed a method to capture and view history as well as see current trends to:
 - identify & troubleshoot problems before shutdowns occurred
 - justify infrastructure upgrades
 - perform capacity planning

Software Evaluation:

- BMC Software BMC Patrol
- Concord eHealth
- HP OpenView
- IP Switch WhatsUp Gold
- OSI IT Monitor
- Disclaimer: The functionality and cost of these software packages may have changed since 4Q2002 when we performed our evaluation

Software Evaluation: AREAS OF COMPARISON

Evaluated each software in the areas of:

- Functionality
 - Historical recording capability
 - Data manipulation/configuration
 - Custom Graphic & Trend creation (ease & flexibility)
- Training required (system mgmt & client use)
- Cost (software purchase & implementation time)

Software Evaluation: FUNCTIONALITY

- Except for WUG, all met the minimum functionality requirements.
- WUG, BMC Patrol, eHealth, & OpenView had autodiscovery feature for initial graphic creation
- IT Monitor had highest flexibility in data manipulation & configuration (ex/comp filters, scan frequency, calc tags, etc.)
- Since each software met our basic functionality requirements (except WUG), the decision would be heavily based on areas of training & cost

Software Evaluation: TRAINING REQUIRED

- Full training required for all of the software packages except IT Monitor
- No additional training was needed for IT Monitor
 - Extensive experience with:
 - creating PI tags, graphics and reports for existing 2 PI servers
 - PI server configuration and software installs
 - PI Interface Configuration Utility (ICU) & wizards for PI-SNMP & PI-PerfMon very intuitive
 - This was a BIG plus for IT Monitor since additional costs are not incurred for training or vendor assistance

Software Evaluation: COST

- Software costs ranged from K\$50 to over K\$100
- On the low end was IT Monitor: cost was based on number of nodes (servers/switches) and tags (data streams) and included six interfaces for all nodes
- On the high end was OpenView: cost based on size of historical database in addition to number of nodes
- BMC Patrol & eHealth were in the middle range
- Cost higher for BMC Patrol, eHealth, & OpenView due to individual agent purchase required for EACH node

Software Evaluation: AND THE WINNER IS...

- We were leaning towards in the training issue and lead to the our own sorthare package instead
- OSI offered a discount was conditional to the salesman made to the

 But seriously folks: IT Monitor was the best fit for us on the basis of functionality, training, and cost

Software Evaluation: INTANGIBLES

- IT Monitor server is not as "critical" as our process data historians
 - We can tolerate brief outages of the IT Monitor server
 - Therefore, the IT Monitor server can be used as a real-time test server for PI server application installs and upgrades before applying to our process data PI servers
- IT Monitor does not require an agent to run on the monitored nodes
 - Agents could possibly increase server overhead
 - Would not have to spend time installing another application or service on server nodes

IMPLEMENTATION STEPS

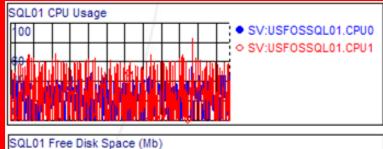
- Determine tag naming convention
 - Very difficult since many more parameters available than for process data
 - still struggling with this
- Build tags and displays for all servers
 - CPU, Disk, Memory, uptime, processes, ping
 - Started with wizards for tag definitions
 - Downloaded templates from OSI's website for some tag definitions and graphics, then customized/created new displays as needed
- Started same process for switches

		SER	VER G	RAPHIC	MENU				
PI Servers	CPU MEI	M DISK(S)	PING	D	trollers	CPU	MEM	DISK(S)	PINC
PI01 Office Side PI			•	DC01	rimary DC				
Pl02 Process Side Pl			_	DC02	ackup DC				
PI03 PI-to-PI	■ / ■			DC03	ackup DC				
Pl04 Acid Yokogawa Interface				File/Print/A	p/Backup Servers				
PI05 IT Monitor	, – –			BAK01	etwork Backups				
PI06 PLC Interfaces	/ . .			BK01	AS / DHCP				
APC Serve s				FP01	ile / App				
ANAPC Acrylo APC		000		FP02	ile / App				
SFAPC Acid APC				FP03	rint / DHCP				
Applicatio Servers				SQL Serve	<u>.</u> /*		•		
ACS01 TACACT / RADIUS					IMS (lab)			_	
APP01 CCure				SQL01	Icon / Payroll / Web Apps	ī	_		
APP02 DNS & FTP				501.03	rism2000 & Plantware	-	_		i
BJS Batch Job		_		SQL03	npact	_	_		i
ELEC Electrical						_	_	_	
IIS01 Intranet				DMS Serve				_	
MGT01 Management				_DMS01_	ocument Management	_	_		
PDOC01 Process Doctor				_DMS02_	ocument Management			_	
SAFER Safer Weather Data				_DMS03_	ocument Management	_	-	•	
TS01 Fortier Terminal				_DMS04_	ocument Management				
SVR07 Mtc Apps			/ a	Virtual Mad	ine Host Servers				
	_			VMH01_	irtual Machine Host				
EGEND: NORMAL WARNING	ALAR	M BAD	VALUE	VMH02_	irtual Machine Host				
	Α.			VMH03_	irtual Machine Host				

Menu

SQL01 SERVER STATUS

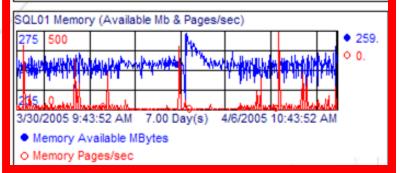
	CPU, Disk an	d Memory	
Volume C:	479 Free Mb	% Processor Time (10m a	vg): 13.32
Used Space: Disk Read Time %:	0.00	# of Processes:	51
Disk Write Time %:	0.87	Memory Available Mb:	258
Volume E:	9736 Free Mb	Pages per sec:	14
Used Space: Disk Read Time %:	0.54	System Uptime (Days):	16
Disk Write Time %:	0.00	CPU Usage (%)	
Volume F:	63976 Free Mb	CPU0	46.82
Used Space:	<u> </u>	CPU1	42.12
Disk Read Time %:	0.00		
Disk Write Time %:	100.00		



Full Name: USFOSSQL01 IP Address: 164.84.116.13

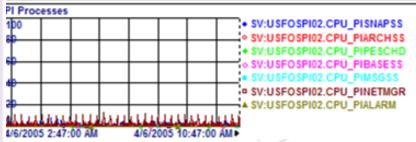
Building Location: Admin Data Center Rack Location: RCK4

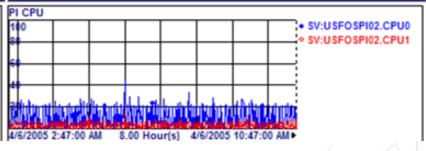
Operating System: Server 2000 Redundant Server: none


Function: Falcon, Payroll, Webboard and other applications

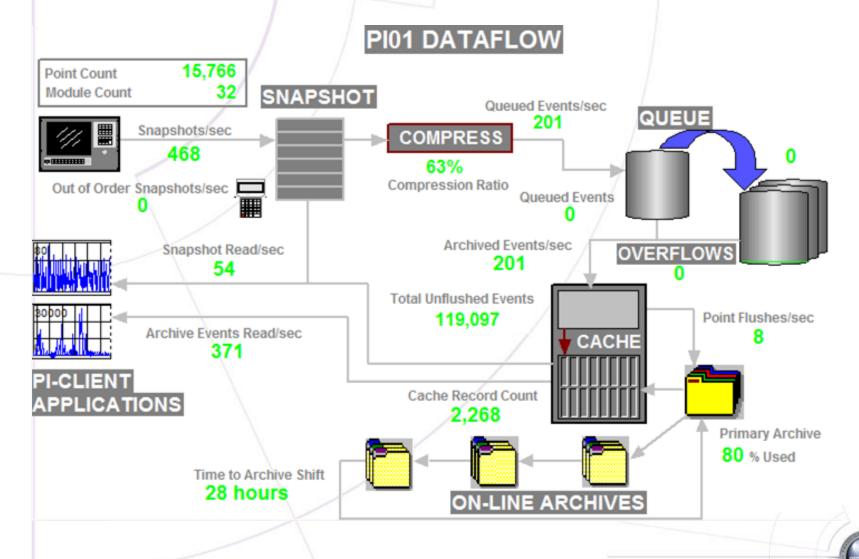
3/30/2005 9:43:52 AM 7.00 Day(s) 4/6/2005 10:43:52 AM

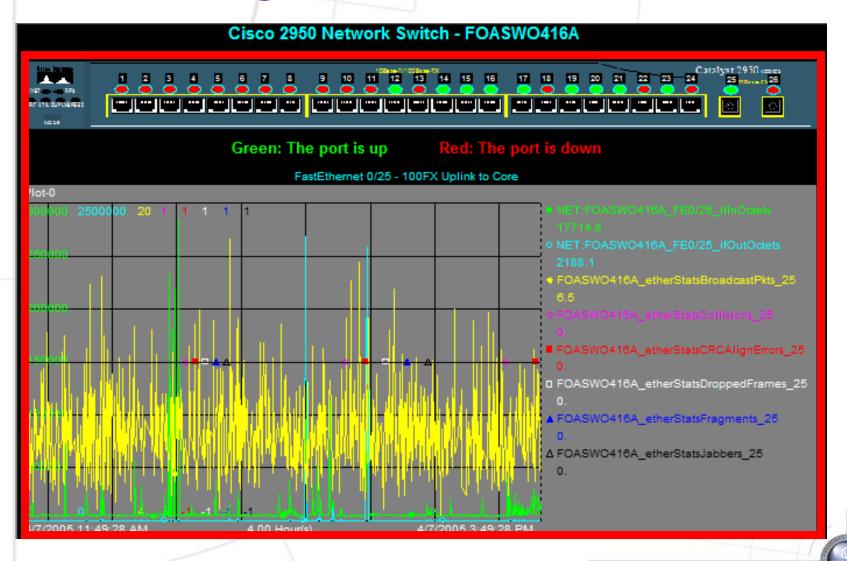
- Free Megabytes on C:\
- O Free Megabytes on E:\
- Free Megabytes on F:\

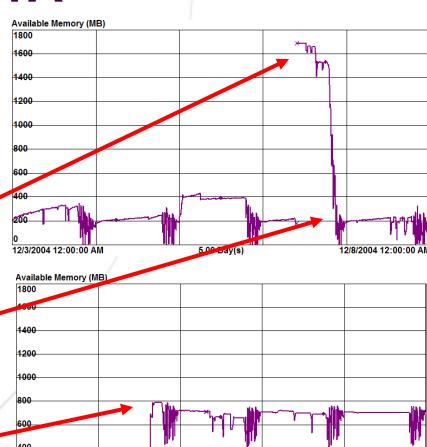



Menu

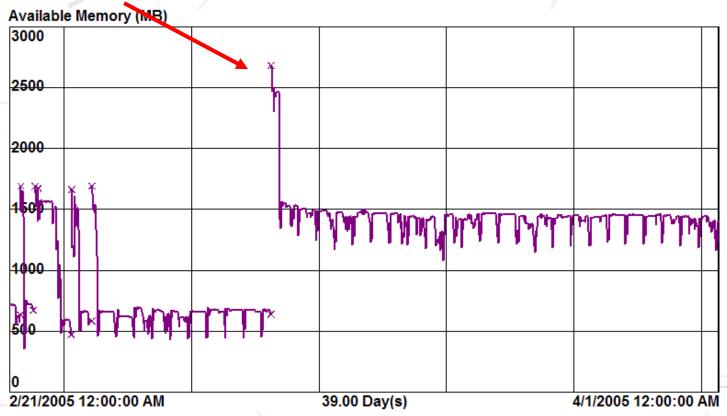
PI02 SYSTEM OVERVIEW


PI Se	ervices	
Archive Subsystem Out-of-Order Events/Sec 0	Base Subsystem Point Count	10394
Events Cascade/Sec 0	Module Count	7
Archived Events/Sec 302	/	
Time to Archive Shift (hours) 44	Total Data Streams	10401
Snapshot Subsystem	Network Manager	
Out-of-Order Snapshots/Sec 0	Total Connections	44
Snapshot Events/Sec 368	Total Messages Sent/Sec	46
Queued Events/Sec 302		
Update Manager	PI Server PING Status	
Pending Events 3423	PI01	•
Consumer Count 19	P102	ă
New Events/sec 367	P103	×
		•

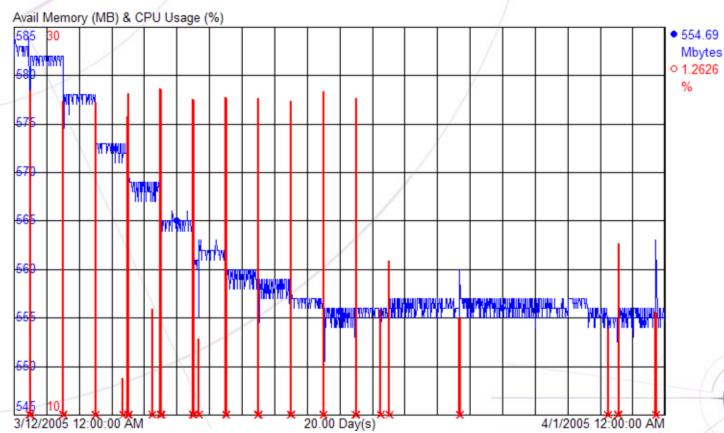

Volume C: (OS)	12423 Free Mb	% Processor Time (10m at	vg): 3,73
Used Space:	- V	# of Processes:	57
Disk Read Time %:	/ 0.00		
Disk Write Time %:	0.18	Memory Available Mb:	1317
	/	Pages per sec:	0
Volume D: (Apps)	16381 Free Mb	System Uptime (Days):	79
Used Space:	11/15	,	
Disk Read Time %:	0.00	CPU Usage (%)	
Disk Write Time %:	0.15	CPU0:	2.54
		CPU1:	1.27
Volume E: (Archives)	122453 Free Mb		
Used Space:			
Disk Read Time %:	0.00		
Disk Write Time %:	0.04		



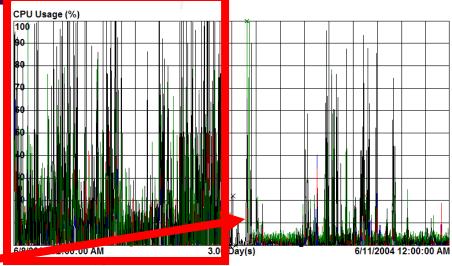
- SQL Server running several apps (Valve tuning, PI-PB, weather data I/F)
- Periodic crashes occurring without clues to why in event log
- Upon reboots, server had plenty of memory until next run of nightly reports
- SQL reports grabbing all available memory and not letting go
- Limited the amount of memory available to SQL so that it would be available for other apps

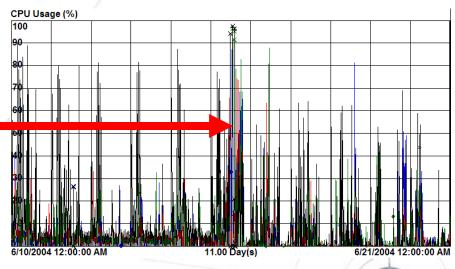

5.00 Day(s)

12/7/2004 12:00:00 AM

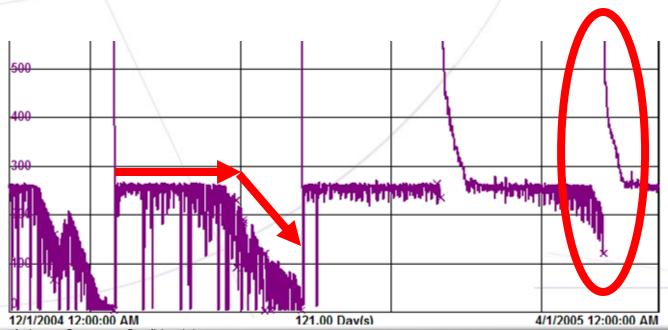

12/12/2004 12:00:00 AM

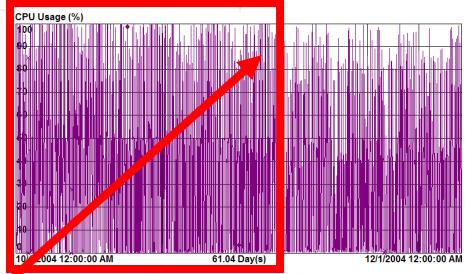
- Still experiencing server crashes after limiting available memory for SQL
- <u>Documented</u> results justified addition of more server memory, even though we already had 2 GB
- Added 1GB memory to server; no more problems

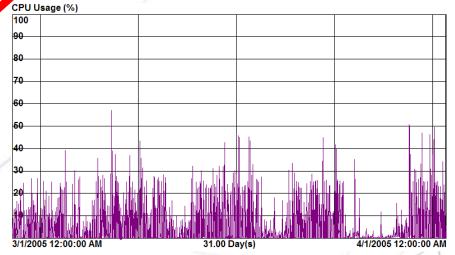

- Discovered slow memory leak on a Server 2000 machine that had step change drops when CPU spiked each day
- Happening on other servers, but not all only Server 2000 OS
- Problem due to AV scans on Server 2000 machines
- Changed AV scan settings to fix memory leaks



PI server


- Performance problems
 - morning reports maxing out CPUs
 - taking up to 10 minutes to run one particularly large report
- Justified new server using same PI UDS 3.3 (3.4 with multi-threading not available, yet)
 - Reduced CPU usage
 - same report runs in 30 seconds
- Upgraded to PI UDS 3.4 with multithreading:
 - same report now runs in 4 seconds
 - spread spikes out during peak usage periods
 - Impact most likely larger if done without hardware upgrade




- Experiencing server crashes on another server
- Memory stable for a while, then suddenly starts dropping
- Until root cause can be found, performing controlled/scheduled reboots at start of drop rather than waiting for crash
- Next step: create memory tags for individual processes to determine which process having problems

- Shipment Scheduling application server
 - Performance problems: very slow response over several months
 - Trends showed very high CPU usage
 - Increased memory from 500MB to 1GB; slight CPU improvement, but still high
 - Able to show that hardware was impacting performance & justified purchase of new server
 - Big improvement

RESULTS - Summary

- Server "dashboard" graphic
 - invaluable tool used every day to highlight problems before serious consequences
 - since it is easy to modify, it is kept up to date as servers added, deleted & changed
- All of the data viewed was available with Windows Performance Monitor in real-time, but...
- IT Monitor allowed easy view of historical data over long periods
 - key to finding SLOW memory leaks that are hard to see in short term
 - able to modify trends quickly & easily and to group items together on trends on the fly
 - key to discovering problems in a timely manner

RESULTS - Summary

Troubleshooting

- SQL reports grabbing all available memory and not letting go
- Server 2000 memory leaks upon AV scans
- Perform scheduled reboots per trend data to avoid crashes

Upgrade Justification

- New Shipment Scheduling application server
- New PI server

Capacity Planning

- Raid Sets: Purchases based on disk usage monitoring
- Server Consolidation
 - Previously had multiple under-utilized servers
 - Used IT Monitor to look at required resources and determine how much server consolidation was possible
 - Server consolidation project: annual savings of K\$25

FUTURE PLANS – Short Term

- Implement IT Monitor on all switches and routers
 - Individual graphics for each
 - Overview/dashboard graphic similar to server dashboard
- Implement PI-ModuleDB with PI-PB3 for faster graphical review
- Use SNMP interface to monitor Frame Relay (WAN)

FUTURE PLANS – Long Term

- Use SNMP interface to monitor:
 - SNMP enabled UPS units & PLCs
 - Wireless Network
 - Firewall/VPN
 - Existing Intrusion Prevention System
 - Performance of application specific processes (SQL, IIS, DMS) similar to existing monitoring of PI processes
- Use NetFlow interface for Layer 3 network application & security analysis
- Threshold exception notification/alerting?

QUESTIONS / COMMENTS?

Carolyn.Przybylski@cytec.com (504) 431-6468

Chris.Gaffney@cytec.com (504) 431-6250

Thank you for your time and interest!

