

Building Business Solutions Using the RtPM Platform

Ray Hall

RtPM is the Platform for Your Business Imperatives

- RtPM System Overview
- RtPM Integration Points
- RtPM Best Practices
- RtPM Example Incremental Gain
 - Standard Operating Conditions
 - Enterprise Data-Mart
 - Batch System of Record
 - Specification vs. Actual
 - Notification
 - Operating Conditions rollup

RtPM Platform Overview

Incremental Value Today

RtPM System Review

RtPM System Overview: Interfaces

RtPM System Overview: Server Functions

RtPM System Overview: Context

RtPM System Overview: Data Access

RtPM System Overview: Clients

RtPM System Overview: Analysis

RtPM System Overview: SMT

RtPM System Overview: Sophisticated Configuration

RtPM System Overview: Programming Interfaces

Best Practices: RtPM

Configure

- Easier to Maintain
- Easier to Validate
- Closer to End User
 - Promotes Knowledge Capture/Management

Develop/Program

- Farther Reach
- The Danger of "A Small FORTRAN Program"
- Commitment to Maintenance
- Validation/Quality Require Commitment to Development Process

Best Practices: Data

- PLAPI
 - Nostalgic for the 90's
- PI SDK
 - General programming environment, COM, Highest Affinity with PI, Batch
- PI OLEDB
 - Make data available to the relational client applications
- PLAF
 - Highest Affinity with AF/Foundation Database

Best Practices: Context

- AF Database
 - Flow relationships
 - Models
- Module Database
 - Batch
 - Hierarchy
- Custom
- Impact of Foundation

Best Practices: Calculations

- Performance Equations
 - Simple, configurable logic
 - Inputs are limited to that available to PI
- Totalizer
- ACE
 - Inputs from any system
 - Module-relative
- AF
 - Model-relative
 - Asset-relative
- Custom
- Impact of PIANO

Best Practices: Reports

- DataLink
 - Environment Many Users Already Know
 - Simple
- RtReports
 - Regulatory Requirements or Approvals
 - Web
- Custom

Best Practices: Alarms

- AlarmView
 - Hierarchical display
 - OPC alarms, reasons
- RtAlerts
 - Remote delivery (e-mail, pager)
 - Web
- Custom
 - Specific integration

Best Practices: Web

- Active View
 - Needs VBA or ProcessBook Synergy
- RtWebParts
 - Concerns about deployment, client footprint
- Web Services
 - Participation in SOA
- Custom
 - Integration into existing system

Example: Standard Operating Conditions

Problem:

- A way to measure operating performance against expectations
- To summarize this based upon equipment hierarchy
- A way analyze the problems to determine root-cause
- To visualize this for quick analysis
- Present Rules for "rollup" are predictable
- Determine one "type" of asset

Challenge:

- Equipment is already defined in another system
 - And, this equipment is subject to change
- Operating performance based upon limits from another system

Example: Standard Operating Conditions

Solution:

- PI system to collect real-time data
- Module Database to define a hierarchy
- ACE programs to:
 - Read real-time values from PI
 - Read limits from external system
 - Calculate equipment performance
- ACE programs to roll-up performance according to a hierarchy
- Process Book screens to display the detail of each process unit

Example: Standard Operating Conditions

Example: Enterprise Data-Mart

Problem:

- Multiple Sites, without a consistent tag structure
- Want to provide consolidated access to these systems to a wide variety of users
- Want to put all the systems into a common model
- Want to have applications that are common across the sites
- Do not want to load the individual systems

Example: Enterprise Data-Mart

- Solution:
 - PI System at each plant
 - PI System at a corporate site
 - Move the data to the corporate site
 - PI-PI interface today
 - (Coming: PI System replication)
 - MDB hierarchy to organize the points
 - Use Aliases to make all data consistent
 - (Coming: Foundation project for modeling)
 - RtWebParts for broad exposure of the data

Example: Enterprise Data-Mart RtPortal Internet **Explorer** Plant 1 RtWebParts **Thin Clients** RtBaseline Services •IIS **Trusted** PI Server **Connections** Existing tag names Plant N PI-PI PI Server PI Server Existing or new tags Module Database Existing tag names

Corporate PI Server

Example: Batch System of Record

Problem:

- Manufacturing in batch processes
- Currently using several batch control systems
- Need a common real-time view of batch processes
- Need to analyze batches
- Need a system of record for batch release
- Need to manage batch and continuous information
- Want to use one consistent system

Example: Batch System of Record

Solution:

- PI System for storing real-time data
- PI Batch for storing the batch events
- PIBAGEN to read events and convert to batch structures
- Event File Interface to read batch engine information
- RtReports for validated reports
- Process Templates for analysis

Example: Batch System of Record **RtPortal Delta-V** Internet **Explorer** RtReports Thin Client •IIS RtReports **Standard Interfaces Trusted Connections** Tracks Batch Events **Custom Batch System** PI Server **Smart Client** PI Batch ProcessBook Module Database BatchView **PIBAGEN** Process Templates Inspect Events PI Server Creates Batch Structure

Example: Specification vs. Actual

- Example: Specification vs. Actual
- Problem:
 - Manufacturing in a continuous process
 - Manufacture many different products or grades
 - Need to compare targets vs. actual values
 - Need to generate alarms based upon deviations
 - Need to generate SQC alarms

Example: Specification vs. Actual

Solution:

- PI System to track actual values
- ProcessPoint to house specification history
- ProcessPoint Com-Connector to expose specs as tags
- PI Alarms to determine deviations
- Alarm View to illustrate specs vs. actual values
- PI Datasheet Control to allow entry of values

Example: Specification vs. Actual

Example: Notification

Problem:

- In an enterprise there are...
 - Hundreds of processes
 - Thousands of systems
 - Millions of data values that continuously change
- Need to way to detect when "something is wrong"
- Need to provide this information in a way that promotes a top level view with drill-in
- Need to dynamically notify users, supervisors when problems are "significant"

Example: Notification

- Solution:
 - PI Server collecting information
 - PI Alarm subsystem to generate alarms
 - Allows definition and detection of "something is wrong"
 - AlarmView for organizing and drill-in of alarms
 - RtAlerts for defining and generating e-mails

Example: Notification

Example: Operating Conditions Rollup

Problem:

- Need a way to measure operating performance against expectations
- Need to summarize this based upon equipment hierarchy
- Need to analyze the problems to determine root-cause
- Need a way to mine this data for questions like:
 - "Are there more work orders issued when I run a different grade raw material?"
 - "What does it cost me in terms of maintenance to meet rush orders?"
 - "Why do I have to service a piece of equipment after we use a shipment of raw materials from one supplier vs. another?"

Example: Operating Conditions Rollup

Solution:

- PI system to collect data
- Alarm subsystem to generate alarms
- One mechanism to rollup alarms
 - ACE (sophisticated)
 - PE (simple)
- PIOLEDB provider to read the information
- SQL Server Analysis Services to analyze data

Example: Operating Conditions Rollup

So...What You Learned Today

- You have choice...which is good!
 - Configurable touch points
 - Programmatic touch points
- You can add incremental value to your enterprise assets today through, for instance,
 - Enterprise Data-Mart
 - Batch Analysis
 - Specification vs. Actual
 - Dynamic Alerting
 - Operating Rollup
- General guidelines exist to help you understand and choose the appropriate OSIsoft products to solve your business problems

Resources:

- RtApps document:
 - http://osisoft.com/rtapps.aspx
- "Tips from the trenches" by Bryan Owen
 - http://www.osisoft.com/presentations.aspx?id=733&event=uc2004
- Previous conference talks:
 - http://www.osisoft.com/Presentations.aspx
- Partners

