

Oscar Rotava

Process Engineer, PhD

The corporate deployment of SIGMAFINE at PETROBRAS' 11 refineries

Agenda

- The Company
- REPLAN/REVAP/RPBC Refineries
- Presentation objective
- Mass balance KPIs
- The way reconciled datum are used
- Conclusion

PETROBRAS HIGHLIGHTS

- 13th petroleum company in the world
- Headquarters in Rio de Janeiro Brazil
- US\$ 43.3 billion yearly income (2004)
- US\$ 7.2 billion net profit (2004)
- US\$ 8.7 billion yearly investment (2004)
- 36,500 employees
- 161,000 shareholders
- 1,661,000 bpd oil production
- 1,797,000 bpd refining capacity
- 11 Refineries, 2 fertilizer plants (in Brazil)

PETROBRAS

- 5 Refineries abroad (3 in Argentina and 2 in Bolivia)
- Unparalleled offshore technology (Twice honored with the deep-water oil production prize by OTC)
- Largest number of ISO-9000/14000 certificates in Brazil
- Shareholder of the 4 major petrochemical plants in Brazil

REFINERIES IN BRAZIL

REFINERIES WITH SIGMAFINE OPERATIONAL

REPLAN

- 60000 m³/day (375000 barrel/day) 20% of Petrobras refining capacity
- 2 Crude + Vacuum Distillation Units
- 2 FCC Units
- 2 COKE Units
- 2 Diesel Hydrotreating Units
- 3 Sulphur Recovery Units
- 2 Hydrogen Generation Units
- 13 Treatment Units for Naphtha, Kerosene, LPG, Fuel Gas

REFINERIES WITH SIGMAFINE OPERATIONAL

REVAP

- 40000 m³/day (250000 barrel/day)
- 1 Crude + Vacuum distillation Unit
- 1 FCC Unit
- 1 Deasphalting Unit
- 3 Diesel/Kerosene Hydrotreating Units
- 1 Sulphur Recovery Unit
- 1 MTBE
- 1 Hydrogen Generation Unit
- 5 Treatment Units for Naphtha, Kerosene, LPG, Fuel Gas

REFINERIES WITH SIGMAFINE OPERATIONAL

RPBC

- 27000 m³/day (170000 barrel/day)
- 3 Crude + 2 Vacuum distillation Units
- 1 FCC Unit
- 2 COKE Units
- 1 Alkylation Unit
- 1 Catalytic Reform Unit
- 1 Aromatic Recovery Unit
- 1 Diesel Hydrotreating Unit
- 2 Sulphur Recovery Units
- 1 Hydrogen Generation Unit
- 9 Treatment Units (Naphtha, Kerosene, LPG, Fuel Gas)

SIGMAFINE IN PETROBRAS

- 2000 Bid to buy mass balance system (won by SOTEICA – an OSI partner)
 - 6 projects turn-key
 - 5 in-house projects
 - 2-3 projects every year
- 2003 Decision made to hire SOTEICA to operate the system at some refineries
- June 2004 First Mass Balance Workshop
- April 2005 Second Mass Balance Workshop

Presentation objective

- To share some achievements due to implementation of SIGMAFINE
 - Hard work and perseverance

"There are no facts, only interpretations."

Friedrich Nietzsche

KPIs

- DX Data quality indexes
 - DX0 the percentage of the unchecked mass flowing through the plant (target 10~20%) (non redundant)
 - DX1 the overall percentage of imbalance in the cross-checked measurements (target 4~10%)
 - DX2 the overall percentage of correction applied to the individual measurements within the cross-checked balances (target 2~5%)
 - DX3 the overall percentage of tolerances for the individual measurements within the crosschecked balances (target 2~5%)

Utilization of reconciled data at REVAP and REPLAN

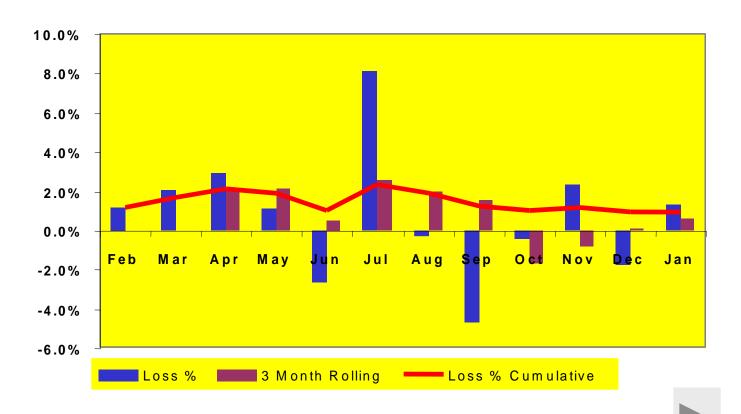
- Oil loss accounting
- Fuel consumption
- Production accounting support (financial)
- Maintenance support
- Production accounting support (mass balance)
- Test run data reconciliation
- Refinery KPIs follow-up
- Team training
- Optimization group support

Conclusion

- Mass balance is an important tool to organize and give quality to datum
- Allows important applications to be developed
- More users to tell/share experiences

Thank you to SOTEICA, OSIsoft and BR

- IT people developed some programs to help eliminate mistakes in the
 - Opening and closure of transactions.
 - Choice of product code (now, once the node is defined product code is assumed automatically)



- SIGMAFINE model has few HC loss models.
 Project is beginning at RPBC to include the remaining models.
- Part of the loss might not be real but a result of lack of data quality: outdated densities, quantities forgotten in the mass balance. To check this feature, implies having to evaluate the HC losses.
- Corporate DB must receive measured values of custody transfer measurements and tank levels.
 Process flows must incorporate imbalances
- How to handle running tank operations?

Mass Balance before Sigmafine

Loss Study - REFAP Feb/01 - Jan/02 (Loss % Cumulative = 1.09%)

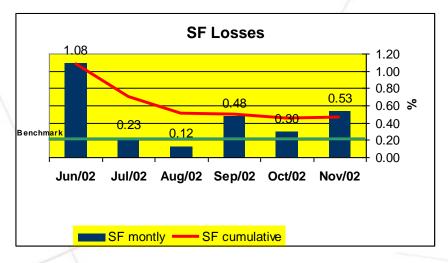
Mass Balance before Sigmafine

REFAP accounted Loss, Feb-01 to Jan-02

	tonnes	%	On Input
Crude Measurement	0	0.0%	0.00%
API drainage evaporation	2,144	2.6%	0.03%
Flares	226	0.3%	0.00%
Tank Evaporation	197	0.2%	0.00%
Flare pilots & purge	0	0.0%	0.00%
Crude Water Method	10,794	13.1%	0.14%
Inert Gas Blanket	0	0.0%	0.00%
Refinery Liquid Effluent	0	0.0%	0.00%
Process fugitives	0	0.0%	0.00%
Cooling towers	0	0.0%	0.00%
	0	0.0%	0.00%
	0	0.0%	0.00%
	0	0.0%	0.00%
	0	0.0%	0.00%
	0	0.0%	0.00%
	0	0.0%	0.00%
Accounted Loss	13,361	16%	0.18%
Unaccounted Loss	68,864	84%	0.91%
Total Loss	82,224		1.09%

Oil Loss figures after SIGMAFINE implementation

Accounted losses - Estimates


	Crude	Evaporation			Losses (ton)		Losses (%)	
	Measurement	API	Tanks	Flare	Accounted	Total	Accounted	Total
Jun/02	929	68	16	180	1193	7,745	0.17	1.08
Jul/02	582	120	16	5	723	1,294	0.13	0.23
Aug/02	920	35	16	5	976	796	0.15	0.12
Sep/02	912	120	16	6	1053	3,350	0.15	0.48
Oct/02	1,007	100	16	260	1383	2,226	0.18	0.30
Nov/02	793	60	16	35	904	3,487	0.14	0.53
Total	5,143	503	96	491	6,233	18,899	0.15	0.47

Oil loss figures after Sigmafine implementation

REFAP Mass Balance Follow up

	Sigma Fine							
	Monthy			Loss % Cumulative				
	Inputs	Losses	%	Inputs	Losses	%		
Jun/02	715,848	7,745	1.08	715848	7745	1.08		
Jul/02	565,009	1,294	0.23	1280857	9040	0.71		
Aug/02	639,548	796	0.12	1920406	9836	0.51		
Sep/02	698,228	3,350	0.48	2618634	13186	0.50		
Oct/02	749,267	2,226	0.30	3367902	15411	0.46		
Nov/02	654,793	3,487	0.53	4022694	18899	0.47		

Oil loss report summary

- Gross errors detection
- Modeling improvement
- Feedback for refinery and corporate production accounting
- Oil loss KPI follow up

Applications:

- Daily and variable period refining margin
- Estimation of inventory cost
- Unit yield and gross revenue

- Priority list of flow meters requiring calibration or replacement or place/position changed
- LIC cascading to a FIC Leak of LCO by the FIC control valve. LCO has two destinations: hydrotreater unit and LCO/diluent tank. LCO was being downgraded from diesel to fuel oil diluent - gain of US \$ 6.6 million/year.

- Support the development of plant models to be used in simulators
 - Test run datum are reconciled and then used to determine the model tuning parameters
- List of flow meters requiring reevaluation of density value in their calculation

- ROCE
- APP Production profile adequacy
- IIE Energy consumption index
- IEA Environmental emissions index
- IEH Liquid effluent index
- MR Refining margin

- Determined several flow meters requiring calibration, which affected unit yields
- Corrected coke accounting, which was made in wet bases, suffering the influence of rain regime
- Main issue: the discovery of the LCO (diesel) downgrading to fuel oil diluent

