

Nicoletta Aloi - IPLOM Massimo Galli - Pimsoft

Increasing refinery yields and profitability using RtPM

Agenda

- 1. Iplom refinery presentation
- 2. Performance management
- 3. From PI system to RtPM
 - 1. Planning
 - 2. Measuring & reconciling
 - 3. Calculating indicators
 - 4. Distributing information
- 4. Return on investment
 - 1. Yields profitability
 - 2. Organizational
- 5. Future steps

Iplom presentation

Refineries in Italy

IPLOM

Iplom presentation Iplom Refinery

Iplom DNA: a agile refinery

- Iplom is a independent refinery focused on efficiency to create profit
 - Serving a variegated range of customers
 - Producing both conventional and niche products (e.g. LL Sulphur fuel oil, CO2)
- Production management is based on:
 - Agility in taking business opportunities
 - Rapidity in taking business decision
 - Time to market: very brief period from crude purchase to product sell
- To support these objectives, given the constraint of a limited storage capacity, the company needs to manage production dynamically
 - 160 crude switches per year
 - Different plant operating modes

Performance Management

 A continuous and iterative approach in production management supported by a flexible environment:

- define production target
- assign plan to operations
- reconcile measures and calculate KPIs
- report and distribute performances
- evaluate to act and correct

Performance Management

- Applied to different timescales to give support to different company functions
 - Hourly:
 - to operating shift people
 - Daily:
 - to production and planning manager
 - Weekly/monthly:
 - to refinery manager

From PI System to RtPM

- 2001 Reconciling Refinery yields
 - PI System, Sigmafine3, PI-ProcessBook, PI-DataLink
- 2003 Integrating planning tools and calculating KPIs
 - PI ModuleDB, PI-ACE
- 2004 Distributing information across the company
 - PI-ICE
- 2005 Migration to Sigmafine4, evaluating RtPortal
 - Sigmafine4, RtWebParts

Functional overview

Running plan definition

 A "running plan" defines all the information needed at execution time to process a specific crude or crude mix to obtain desired products and qualities

Microsoft Excel - CHI(82)+LKI(18).GOA50STZ.XLS Define for a 🔊 File Modifica Visualizza Inserisci Formato Strumenti Dati Finestra PI PI-SMT Iplom ? _ |&| × crude or a crude mix D T G H
code! CSSISS Chalches IPLON 2885
code! LESSS Labels IPLON 2885
code!
code! GREGGIO APERET - CONCERN CONCE Committee ## C# -->
PORTATA 4,#00 t/4 GO ATE A HARMANIAN TO SERVICE TO 2- TAGLIO 8.8176 Calculate expected 7-200 theoretical yields and qualities using crude libraries and algorithms 45.5x 24.6x 2.816 1.7.6 6.616 Claud Paintlades Claud Paint [-C] Paur Paintlades Paur Paint [-C] H I D H STZ/ Pronto

Running plan definition/2

- Microsoft Excel as frontend: simple, powerful, flexible
- All running plan target data centralized and stored in the PI-ModuleDB
- Support multiple calculation templates
- Select which Sigmafine4 and layers will be enabled to ensure consistent reconciliation at execution time

Assign running plan to operations

- Shift chief declares crude switch from the control room using PI-ProcessBook
- PI-ACE automatic procedures setup all the systems for execution:
 - notify Sigmafine4 model enabling layers needed to reconcile current configuration
 - notify external systems:
 - send target values to advanced control system
 - notify accounting system

Reconciling measures

- Reconciliation is the first step to consolidate process data before calculating performances
- Sigmafine refinery plant model designed for yield reconciliation
- The model is composed of several (50) layers which can be combined to represent different plant configurations
- Reconciliation is done automatically every hour

Migration to Sigmafine4

- Some feelings about migration from Sigmafine3 to Sigmafine4
 - "Smooth" process helped by automatic conversion utilities
 - Powerful configuration and maintenance tools (Excel addin, AF Explorer)
 - Use advanced graphic functions available in PI-ProcessBook (dynamic symbol behaviour, layering, annotation by drag&drop, ...)
 - Use std tools (PI-ACE) to implement automatic reconciliation procedure

Calculating performances

- Actual yields calculated via PI-ACE based on reconciled values:
 - Per hour
 - Per shift
 - Per running plan
- Overall KPIs calculated via PI-ACE
 - Performance (positive when producing more valuable products than expected)
 - Deviation (gives indication of the distance between target and actual yields)

Reporting performances

Using planning tool to evaluate target vs. measured vs. reconciled

Evaluating performances

Using std tools (PI-BatchView) to analyze yield profiles

Distributing indicators across the company

Sharing information through PI-ICE cockpits

Performance

indicators

Yields

comparison

(teo.

hourly, shift,

campaign)

Evaluating RtPortal

Yields comparison (teo, hourly, shift, campaign) Pagina web part - Microsoft Internet Explorer Elle Modifica Visualizza Preferiti Strumenti ? - 💌 🙎 🐔 🔎 Cerca 🐈 Preferiti 🚱 🧟 🔻 🦫 🐷 🕒 🦓 cdrizzo al http://companyweb/lplom/Running%20plan%20-%20current%20view2.aspx ✓ S Val Collegamenti 🎁 Home page Documenti ed elenchi Crea Impostazioni sito ? Running plan corrente Modifica pagina condivisa . Runnin plan corrente Rese Teoriche (%) Orarie * Turno * Generali * Assetto corrente * Value Value batchid starttime Descriptor Value Value value 24/03/2005 VNS 13.6 16.3 24,4 14.3 01GREZZO (100).GOA10STZ 16.09.32 ECC 34.7 12.5 12.4 02FG_VN GLL 24.7 24.5 03_STABIL **YGO** 3,56 06_2TGHDS Tempo ultima riconciliazione 07_2TGFLUX HGD 18.5 19,7 35.7 VR5 26.21 24.7 08_2TG5TOC 24.5 25/03/2005 2.59.59 09_27GE112 ZOL 11_3TGHDS Transitorio terminato alle Performance generale Scostamento dal teerico * 12 STGSTOCK 13_3TGE113 24/03/2005 16.10.06 14_3TGE114 21_LVGOHDS 23_LVGHDSA 26_HVGOHDS 27_HYGOSTOC 31_CARR1701 33 CARR1702 39_LGDE115 40 LGD = 1.14032= 2.3101542_SIDE+HGD Intranet locale Operazione completata

KPIs representation

Current Running plan general info

Return On Investment

- The iterative approach of performance management keeps the company focus on reaching the target objectives
 - Online performance monitoring in control room allows to rapidly identify yield degradation due to incorrect operating parameters
 - Historical analysis allows the production manager to redefine better targets starting from the improved performance of the refinery

ROI: increasing yield profitability

e.g. Diesel yield

- Analyzing homogeneous data related to "sweet" crudes:
 - 2003 actual average diesel yield 37,4%
 - 2004 actual average diesel yield 39,6%
- Average actual diesel yield increased due both to investments on plants and to performance management
- Historical analysis on diesel yield showed that the average increase due to performance management amount to about 0.8% in the period 2003-2004
- This lead to a profit increase estimated in 1 M\$ per year

ROI: crude switch duration

- Monitoring reconciled vs. target helped shift people to better control crude switch operations
- This result in reduction of the time needed to complete crude switch and to reach the targeted performance
- Just considering the loss of diesel (degradation to fuel oil) during the crude switch, the estimated saving is about 0.3 M\$ per year

Organizational benefits

- The reduction of the deviation between planned and actual yields (e.g. diesel from 2.2% to 1.3%) demonstrated how sharing information and involving people helped to reach the refinery targets
- The smart integration reached using OSI infrastructure allowed to focus engineers on the real business objectives
- Performance management approach allowed to keep production and plant management under control with a lean organization

Future steps

- Performance management
 - Evaluation of blending efficiency to optimize the utilization of low-cost components
 - Composition tracking of complex operations between the coastal tanks and refinery to improve the quality of crude mix feed
- RtPM evolution
 - Introduction of RtPortal solution to distribute KPIs

