

An innovative solution for Business Intelligence

Adam Jeffries – Conchango Paul Verey - Capula

Background

- Our client collects a vast amount of data from its assets.
 However, this data is stored in multiple locations in
 various stages of manipulation, making whole scale data
 analysis problematic.
 - Disparate systems (some performing same function), leading to large numbers of interfaces, often highly complex in nature, and considerable maintenance overhead;
 - 'Silos' of data, leading to duplication of data (no single authoritative source available to all) and making it very difficult to aggregate or drill down to desired levels of detail, and making cross-asset and vendor comparisons very difficult;
 - Large number of Excel spreadsheets in use, leading to de-centralised data and intellectual capital, and in some cases compliance issues (e.g. Sarbanes-Oxley).
 - Current user visibility tools are "application based" and do not provide ease of user customization

Benefits

Safety

- Identification of trends (number of incidents)
- Positive behaviour modifications
- Common source of information
- · Company image within the industry

Environment

- Up to date information (environmental issues = costs)
- Analysis of spill thresholds (off shore / land)
- Integration with other portal information as to why spills are occurring
- · Provision of up to date information
- Obtaining best energy efficiency
- Forecasting values supports production chain, e.g.
 - Could reduce cost of chemicals needed
 - •Ensures they get maximum \$ return for oil produced
 - Identification of mature wells
 - •Reduce storage costs of slop tanks
- Trending over time
- Real-time Operational Excellence metrics
- Reduction of Well Production Chain constraints

OPEX per Barrel

- Tracking mechanism for Asset Managers & Line Supervisors etc.
- Transparency of operations information proactive management
- Real-time comparisons between assets
- Linkage with operational facility CAPEX reporting

• Early identification / forecasting ability (i.e. before a flare situation is reached)

- Improving % increase in production = increase \$ revenue
- Real time analysis of cause and effect (base business)
- Analysis of equipment efficiency (i.e. maintenance costs)
- CAPEX / OPEX impact investments are data driven

An 'agile' delivery

Logical Architecture

The Data Warehouse

- Some source systems are 3rd-party owned. Providing query-time table level access may invalidate existing support agreements with the application vendor.
- The source systems do not have the structure or capacity to support ad-hoc queries.
- The source systems hold a varying amount of history which will make medium or long term historical trending difficult.
- There is little or no integration between the systems, many of which are tactical in nature.
- The systems do not share standard business reporting hierarchies.
- Data warehouse provides an open platform for our client reporting (the single version of the truth for Business Intelligence data) that is one of the key project drivers.
- Allows us to leverage industry standard data model

Data Integration - PPDM

- There is a growing PPDM community within the energy industry
- Seer had a validated data model in place from day one
- All extensions to the core PPDM data model would be driven through our client to ensure other business units can leverage the work done as part of Seer.
- Seer is using PPDM 3.8a this allows us to take advantage of the new HES module, and to feed the client's requirements into the development of this module.
- PPDM have made two site visits to the UK to validate our use of the model. All changes have been approved in principle.

Common Hierarchy Service

- The Common Hierarchy Service was created to provide:
 - Facility to store the common data structures as defined by the business.
 - The tree of locations, organisational units, facilities and production entities that allow navigation around Seer.
 - Cross reference between the commonly used names of locations, fields, wells, products, loss causes etc. and those used by all client systems.
 - Provide a system of record for future applications and services in our client which require a definitive source of hierarchy information.

Hierarchy Data Sample

			<u> </u>		
Well	DISWin Code	DTI Name	Slot Number	Pre-Spud	Target
C1	UB6004	13/22a-C1	01	UI1	CUC
C2	UB6005	13/22a-C2	15	UP5	CUD
C3	UB5934	13/22a-C3		LP4	CLA
C4	UB6006	13/22a-C4	27	WSW1	CWA
C5	UB6023	13/22a-C5		UP2z	CUA
C6	UB5958	13/22a-C6Y		UP1	CUB
C7	UB6007	13/22a-C7		LP2	CLB
C8	UB6008	13/22a-C8	28	UP8	CUJ
C9	UB6009	13/22a-C9	16	UP4	CUI
C10	UB6010	13/22a-C10Y	26	UI3	CUG
C11	UB6011	13/22a-C11		LP3z	CLD
C12	UB6012	13/22a-C12	23	UI2	CUH

Common Hierarchy Service

- Will:
 - Integrate reference data from the identified systems of record.
 - Support the concept of views on the hierarchy for the purposes of personalisation and role-specific presentation.
 - Expose hierarchies via web services and data interfaces to Seer (and other) client systems.
 - Include an admin User Interface for administration of the service.
- The implementation of a common set of data structures would accomplish:
 - The ability to integrate data from client systems into Seer within a common structure. This is a pre-requisite for the provision of Business Intelligence.
 - The provision of a foundation to support the immediate data requirements of Seer quick-wins and Seer core platform must also be flexible enough to support data requirements across all the client's assets, systems and processes moving forwards.
 - The hierarchies defined in this process will become a central point of reference for other applications and systems within the client

OVER TIME

OSISOFT USER CONFERENCES 2006

Technologies used

- OSISoft RT WebParts
- SQL 2005
- ASP.NET Framework V2.0
- ASP.NET 2.0 WebParts
- Reporting Services user control
- SharePoint 2003 (WSS)
- SmartPart v1.1

VALUE NOW, VALUE OVER TIME

OSISOFT USI
CONFERENCE
2006

Real time consumer, real time provider

RtBaseline, RtAnalytics, RtPortal

- PI System
- Interfaces, ICU
- OLE DB
- Advanced Computing Engine
- RtWebParts, Connected Web Parts

PI Analytics

Initial Deliverables

- Production & Operations data
- Daily Production Report ("DPR")
- Facilities Process Graphics
- Loss Reporting Viewer
- HES Viewers
- POWER reporting (Team level participation data)
- IT operational reporting
- M&R splash page
- Standardised reporting

Management of Change

- Communications
 - Communication Plan
 - Seer Intranet site
 - Monthly Newsletter
 - Development Reviews
- System Governance
 - Data Integrity
 - Data Governance
- Plan and Timelines
 - Formal training plan for deployment
 - Alignment with IT Change Plan/Strategy Roadmap
 - Alignment with other major initiatives & change programmes

VALUE NOW, VALUE OVER TIME

OSISOFT USER CONFERENCES
2006

Next steps

- Concentrate on adding new functionality:
 - Maintenance & Reliability
 - Supply Chain & Logistics
 - Finance/Accounting
 - Subsurface
- Assist other Business Units by standardising architecture and using best of breed products

