

Cyber Security and Using **OSIsoft to Become Compliant**

William E. McEvoy, Northeast Utilities

Transmission Information Technology Business Service Manager

Dennis K. Kilgore, DLL Solutions, Inc. President

Northeast Utilities - Background

- Fortune 500 diversified energy company located in Connecticut with operations throughout the Northeast
- Serving customers Connecticut, Western Massachusetts, and New Hampshire

Electrical Distribution Service Areas

 Generation, Transmission / Distribution, and Natural Gas subsidiaries

Northeast Utilities - Statistics

- Service Territory
 - 11,000+ square miles
 - 2 million+ customers
- Transmission & Distribution
 - 3,000 miles of transmission lines
 - 32,000 miles of distribution lines
 - 513 substations

History with OSIsoft

- EMS Upgrade & PI Project '03 / '04
 - Areva EMS system upgrade
 - CONVEX Control Center in Connecticut
 - PSNH Control Center in New Hampshire
 - 150 miles apart
 - Implement PI at each location to replace legacy historians, backfilling 5 years of data to new PI systems
 - Also implement PI for Transmission Business Unit "centralized" server
 - 150,000 licensed data streams amongst 3 servers

Redundancy and Availability

- EMS Redundancy is required for secure operations of the Bulk Power System
 - Both control centers have A&B Systems
- EMS System Availability Statistics are critical to the management of these systems
 - EMS Availability commitment is 99.9%
- Parallel PI servers and API nodes at each site

PI in the Control Center – Log Tool

PI in the Control Center – Activity

PI in the Control Center – Station Log

PSNH SCADA PI Statistics

- All internal apps use web services and PI-OLEDB
- ~20k streams
 - Value & Status
 - Alarm &Event
 - SOE, using
 PI BatchFile
 auto creates
 tags as
 needed

Who is NERC?

- North American Electric Reliability Council
 - Sets standards for the reliable operation and planning of the bulk electric system
 - Monitors, assesses, and enforces compliance with reliability standards
 - Reliability standards compliance is *currently* voluntary, but the Energy Policy Act of 2005 will change that soon enough...

NERC 1300 Cyber Security Standards

- 41 core "requirements" divided into 8 categories
 - ~3 can benefit through this implementation
 - ~8 must be considered for this system to be compliant
- Effective 1-June-2006
 - Compliance assessment begins in 3Q2007
 - Begin Work, Substantially Compliant, Compliant, and Auditably Compliant
 - Many requirements do not need to be "AC" until 3Q2010

Critical Infrastructure Protection

CIP#	Title / Scope	Req's		
002	Critical Cyber Asset Identification			
003	Security Management Controls	6		
004	4 Personnel and Training			
005	Electronic Security	5		
006	Physical Security	6		
007	Systems Security Management	9		
008	Incident Reporting / Response Planning	2		
009	Recovery Plans	5		

Assets Under NERC 1300

NU Cyber Security Initiative

- Kicked off it's Cyber Security Compliance Project Team in January 2006
 - Executive Sponsor
 - Oversight Committee
 - Program Manager
 - Critical Asset and Critical Cyber Asset Identification Teams
- Completed CIP-002 Requirements
- Kicking off CIP-003 to CIP-009 compliance teams September 2006

IT Monitor Project Objectives

- Provide situational awareness of PSNH ESCC infrastructure health
 - Network equipment, servers, desktops, RTU's
- Support SCADA availability reporting
- Easy navigation through the information
- Tag and display templates to simplify ongoing maintenance

Project Challenges

- IT vs. the world
 - Access to "their" equipment
- Security Integrity
 - Monitoring it without degrading it
- Actionable Information
 - You can't watch everything all the time

SCADA Architecture

Production System (A/B)

e-terraBrowser Consoles (9) (5) Dispatch SCADA Consoles

Industrial Data Center Architecture

- 1 PI Server
 - On the business LAN with the EMS PI servers
 - Also serves as API node for business LAN
- 3 API Nodes
 - Control Center Network
 - Development Network
 - DMZ Network
- ~ 6,000 data streams of IT information

IT Monitor Interfaces Being Used

- Performance Monitor
 - A single instance on each API node monitoring all computers on that network
- SNMP
 - "Managed" network devices and computers that don't support PerfMon
- Ping
 - Simple, periodic, heartbeat metric
- TCP Response
 - Application connectivity for Web, FTP, PI, and IP Terminal Servers
- Windows EventLog
 - Security audit events and critical system messages

IT Organizer

- Part of the MCN Health Monitor and IT Monitor
 - Integrated into PI-SMT
- Simplifies and centralizes IT Monitor configuration
 - Tag and ProcessBook Display templates
 - Provides "Role" association capability

ProcessBook and IT Overview

 Links displays to network elements, greatly simplifying navigation and access to contextual information

RtAnalytics Adds Value

- Monitor RTU Communication Link Status
 - We ACE'd it!
 - Created a calculation that generates batches for every service interruption
- Create Actionable Information
 - Analysis Framework does the work
 - Red, Yellow, Green it's that easy

Advanced Computing Engine

- ACE calculation that uses PI-OLEDB provider
 - Parse EMS SysAct messages in PI string tag
 - Open / Close batches based on trigger messages
- Allows at-a-glance identification of what communications errors currently exist
- Enables analysis and reporting of overall comm. system availability, worst offenders, most intermittent, etc.

PI ACE Context Configuration

- Currently 7 contexts parsing messages
- Properties define regular expressions for message parsing, SQL 'where clause' filters, and start-up recovery information

Communication Outages Batches

13-Apr-06 08:05:16 SCAN GROUP MNADNOCK C000 FAILED 13-Apr-06 08:05:16 SCAN GROUP MNADNOCK X336 FAILED 13-Apr-06 08:05:28 SCAN GROUP MNADNOCK X317 FAILED 13-Apr-06 08:05:28 SCAN GROUP CHESTNUT X317 FAILED 13-Apr-06 08:05:40 SCAN GROUP CHESTNUT X300 FAILED 13-Apr-06 08:05:41 SCAN GROUP MNADNOCK X300 FAILED 13-Apr-06 08:05:41 RTU MNADNOCK FAILED 13-Apr-06 08:06:26 SCAN GROUP CHESTNUT C000 FAILED SCAN GROUP MNADNOCK C000 FAILED 13-Apr-06 08:07:13 13-Apr-06 08:07:14 SCAN GROUP MNADNOCK X336 FAILED 13-Apr-06 08:07:16 SCAN GROUP MNADNOCK X300 FAILED 13-Apr-06 08:07:16 SCAN GROUP CHESTNUT X300 FAILED 13-Apr-06 08:07:49 SCAN GROUP MNADNOCK X317 FAILED 13-Apr-06 08:07:49 RTU MNADNOCK FAILED 13-Apr-06 08:07:49 SCAN GROUP CHESTNUT X317 FAILED SCAN GROUP CHESTNUT C000 FAILED 13-Apr-06 08:08:05 13-Apr-06 08:08:05 RTU CHESTNUT FAILED 13-Apr-06 08:39:01 SCAN GROUP MNADNOCK C000 ONLINE

Accelerated InfoQuest (AIQ)

- Interactive OLAP Tool
- Flexible analysis of underlying PI data

Accelerated InfoQuest Charting

Analysis Framework to the Rescue!

- AF turns the IT Monitor "instrumentation" data into actionable information!
- Models are used to define dependent relationships and logical groupings
- Every computer process, network device, communication link, and PI subsystem is monitored and has a "Health Rating" tag
- Our custom analysis plug-in calculates a simple "Normal", "Warning", "Trouble" health rating
- Maintenance is simple configuration no coding!

VER TIME OSISOFT USER CONFERENCES 2006

The Building Blocks of AF

- We defined 45 "Element Templates"
 - Each template is meant to describe a specific device type or process
 - Templates contain "Attributes" which can reference PI Points, Data Tables, or an AF Formula.
 - Attributes support automatic PI Point creation when new elements are created, which meets a core project objective
 - Templates implement "inheritance"
- Virtually every tag in the IT Monitor PI system is mapped to an attribute of an element

AF Templates and Elements

Element Attributes and Categories

 Analyzed PI values can interpolated or standard PI summary types (avg, total, min, max, delta, stdev)

Health Rating Limits Table

- Simple table to define the warning and trouble limits for each monitored attribute
- Allows the use of generic or specific matching for each element's attributes

Gen	eral T	able De	efine Table									
lealth Rating Limits												
	Model	Element	Template	Attribute	TroubleBelowLimit	WarningBelowLimit	WarningAboveLimit	TroubleAboveLimit 🛆	WarningStates	TroubleStates	DataAgeLimit	
				APPSETDISABLED	0	0	0	0		True	0	
Γ				InterfaceStatus	0	0	0	0		NOT RECEIVING DATA	0	
				PAIRAPPSETSTATUS	0	0	0	0	2	3	0	
				CompressionRatio	0.05	0.1	0.9	0.95			0	
ſ				OverflowQueueCount	-0.1	-0.1	1	2			0	
ſ				GPSSatMaxSigStrength	-0.1	-0.1	1	2			0	
ľ				FEPPairHealthRating	-0.1	-0.1	2	3			0	
ľ				PingLatency	-0.1	-0.1	3	4			0	

AF Models

- Over 50 "Models"
- The health of EVERY element and model is calculated once per minute
 - Each unique element is only calculated once
- It takes less than 9 seconds to analyze everything
- Excellent integration with ProcessBook!

Analysis Plug-In Configuration

- Analysis Mode
 - Best Case
 - Worst Case
 - Any Warning All Trouble
 - All Trouble
- Valid Categories
 - Allows selection attribute categories
- Analysis Parent
 - Defines which parent model will control execution

Health Monitoring Overview Screens

What About Compliance?

- NU's approach was two fold
 - Meet current requirements to provide strong EMS Availability Reporting to meet ISO-NE requirements
 - Develop a solid baseline Critical Cyber Asset Monitoring System to be used within our control centers and with the ability to expand to field critical cyber assets.

Lessons Learned

- As always, standards and conventions are critical
- Use empirical evidence to enlist support
- NERC 1300 is like ISO 9000 or FDA Validation
 - Define a corporate standard, follow that standard, and make sure that you can prove that you followed it
- Compliance is a constantly moving target, so your system must be able to easily adapt with little effort

The Path Forward

- More SNMP, SysLog, and NetFlow data
- CONVEX Control Center
- Enhancements to AF Model and Analysis

Thank You!

Questions?

- Special thanks to:
 - Dennis Mullen, PSNH
 - Ken Walker, PSNH
 - Mark Wunderli, PSNH
 - Faisel Ahmed, PSNH
 - Phil Ryder, Accelerated Information Technologies

R TIME OSISOFT USER CONFERENCES 2006