

Evolution of PI in an Expanding Utility's Strategy

John L. Ragone KeySpan

About Us

KeySpan is the largest generator in New York State

Our "Fleet" consists of:

- 4,250 MW Steam (14 Units)
- 1,950 MW Internal Combustion (61 Units)
- 250 MW Combined Cycle (1 Unit)
- 160 MW LM 6000 (4 Units)

VALUE NOW, VALUE OVER TIME

...located from New York City to Montauk Point

National Grid/KeySpan Acquisition

- Acquisition announced in February 2006
- Makes us the Third Largest Utility in the U.S.
- Combined Company Snapshot
 - 18,000 employees
 - 4.4 million electric customers
 - 3.4 million gas customers
- Total deal value \$11.8 billion

Corporate Strategy

Our Corporate Strategy is simple...

- Continue to maintain high levels of performance
- Keep costs down
- Maintain reliability
- Spend budget dollars where we will get the best payback.

How does PI help us with our Corporate Strategy?

It keeps us at the Top of Our Game.

PI Drives:

- Our Performance Analysis Engine
- Our E-notification System
- Distributed Control System (DCS) Historical Database
- Our Independent System Operator (ISO) Interface to the Control Rooms
- Our Performance Analysis Historical Database
- Monthly Heat Rate Packages

Pl's role is Mission Critical to meeting KeySpan's Corporate Strategy.

Business Challenges

Our working environment

- Increased competition
- Higher O&M costs
- Higher fuel costs
- Work force reductions
- Already running more efficiently than we have ever run before
- More stringent Ecological standards
- Paperwork and documentation requirements increasing everyday

How did we take.....

- Over 80 units that are run like individual feudal kingdoms
- Over 30 different OEM control and information systems
- 2 different Company cultures
- A hodgepodge of computer hardware
- A group of Operators that really don't think computers are ever going to really "catch-on"

OSISOFT USER CONFERENCES 2006

.....and craft a solid foundation that would meet our current and future needs.

Answer =

PI Database
PI ProcessBook
PI DataLink
PI DCS Interface
PI API
PI Training
PI to PI Interface

Solution Evolution

Prior to 1995

LAN based system using the Intellution Product (real-time operational data and calculations for Control Room Operators)

Limitations:

- Screen development complex
- Calculations cumbersome
- LAN based (no off site access)

Introduced WAN based communication using the Intellution Product.

Limitations:

- WAN access to historical data poor
- Calculations cumbersome

During the Port Jefferson Unit #3 Distributed Control System(DCS) upgrade to the ABB "Advent 300", we installed ABB's "Optimax" (Performance Calculation Engine). PI was the Database Core of the Performance Engine, providing direct real-time communication to the Distributed Control System and superior WAN access to the historical data.

- Established PI as our Departmental Performance Database and DCS Interface Standard.
- Upgraded all existing Server hardware,
 Operating System, and Application
 Software throughout the Enterprise.
- Installed PI Servers at all Plants and an Enterprise Server at our Headquarters.

PI Server Infrastructure

- Expanded Performance Improvement Team by 25% while the rest of the company reduced personnel by 15%.
- Trained new Team members
- Began "in-house" Customer PI Process
 Book training program.

VALUE NOW, VALUE OVER TIME

OSISOFT USER
CONFERENCES
2006

2003 - Present

- Implemented the "Performance Assessment Center" (PAC) powered by PI ProcessBook.
- Built PI ProcessBook Performance Analysis Toolbox.
- Established Standards for PI ProcessBook
 Control Room Base Point Load Interface
- Established Standards for PI DataLink Heat Rate Packages.

OSISOFT USER CONFERENCES 2006

Standard Architecture

Our Successes

Heat Rate Savings

\$6.7 Million

Independent System Operator (ISO) Regulation Penalty Disputes

\$2.5 Million

Independent System Operator (ISO) DMNC Testing

\$250,000

Vibration Operational Analysis

\$750,000

Our Tool Box

The "PAC"

Level 1 – "PAC" Fleet View

Level 1 – Fleet Trend Summary

E.F. Barrett

Far Rockaway

Level 2 – Station View

Level 3 – Unit View (Summary)

Level 3 – Unit View (Performance)

Level 3 – Unit View (Vibration)

Level 3 – Unit View (Performance)

Level 3 – Unit View (ISO Base Points)

Level 3 – Unit View (ISO Base Points)

Level 4 – System Diagnostics (Fleet Interface Summary)

Level 4 – System Diagnostics (Fleet Interface Trends)

The Future

Future

- SmartSignal EPI*Center
- Real time Turbine Performance Testing and Trend Notification
- Real time Boiler Feed Pump Testing and Trend Notification
- Development of a real time "what if" Distributed Control System (DCS) Simulator

OSISOFT USER CONFERENCES 2006

