

OSIsoft High Availability PI Replication

Denis Vacher, PI Server Team Harry Smith, PI SDK Team

OSIsoft.

Introduction

High Availability (HA)

"Ability of a system to tolerate faults and continue to provide service according to its specifications"

Dr. Kalinsky "Design Patterns for High Availability"

- For mission-critical applications, this means:
 - 1. Data availability
 - 2. No unplanned downtime
 - 3. Acceptable performance under load
- The PI System has High Availability features today
 - Already a robust platform, but single points of failure exist
 - Can you really afford any downtime?

Agenda

- 1. The PI System Today
- 2. PI Replication Overview
- 3. Setup & Administration demoi
- 4. User Experience
 - Seamless Connection
 - Automatic Fail-over
- 5. PI Replication Future
- 6. Bigger Picture: High Availability PI System
- 7. Platform Release 1

POWER

Existing HA Features

- Distributed Data Collection, Storage
 & Computation
- PI to PI Interface + PI Auto Point Sync
- Support for Online PI Server Backup
- Support for Microsoft Cluster Technology
- Integration with 3rd party Fault Tolerant/HA solutions

PI Server Replication

What you asked us to provide:

- Ability for Clients (ProcessBook) to select among Replicated Servers
- 2. Changes to Configuration Data (points, modules) regularly synchronized between Replicated Servers
- 3. Near-Identical Time-series Data distributed from PI Interfaces (within compression specs)

PI Server Replication

What you will get:

- 1. Ability for Clients (ProcessBook) to select among Replicated Servers

 any PI SDK based
 - + load balancing
- 2. Changes to Configuration Data (points, modules) regularly synchronized between Replicated Servers

or in real-time

3. Near-Identical Time-series Data distributed from PI Interfaces (within compression specs)

(+ no changes to your displays!)

automatically

PI Replication Architecture

- PI Server
 - Collection of identical PI Servers exposed as one (Collective)
 - One Primary Server accepts configuration changes (e.g. points, modules) and produces a change log
 - Secondary Servers automatically synchronize with the Primary change log
- Interface Nodes
 - Identical time-series data distributed to all PI Servers by new buffering services
- Client Access Layer
 - Transparent PI-SDK connection management
 - Existing and new Clients benefit from High Availability

PI Replication Architecture

PI Replication Benefits

- Seamless connection and failover to replicated servers from any PI-SDK client
- No change to your displays, spreadsheets, and portal pages
- System scalability, load balancing
- Support for systems of all sizes
- No specialized hardware requirement
- Geographic availability, e.g. disaster recovery
- Administration comparable to a single PI Server

Platform Release Timeline

VALUE NOW, VALUE OVER TIME

Setting up PI Replication

- 1. Install new buffering service on interface computers
- 2. Create server collective
 - a. Upgrade and configure PI on the Primary Server
 - b. Install PI Server on secondary computers
 - c. Create a backup of the Primary Server
 - d. Restore backup on secondary computers
 - e. Start secondary PI Servers
- 3. Deploy new PI-SDK on client computers

Demo – Setting up PI Replication

Demo – Setting up PI Replication

Switch to Demo Screen

User Experience

- End Users
 - PI Client connects to the appropriate PI Server
 - PI Client automatically switches connection on disconnection
 - No change to existing displays (PB, DataLink, WebParts)
- Administrators
 - Configuration changes to primary server, replicated to secondary servers
 - SMT used to manage collective and individual PI Servers

Scenario 1: Unexpected Failure

- Availability across Uncontrollable Faults
 - Network outage, hardware failure, software defect
- Sequence of Events
 - 1. Failure of one PI Server
 - 2. Timely failover of connected clients to another PI Server
 - 3. Data is buffered on Interface nodes
 - 4. Problem resolved, PI Server back online
 - 5. Buffered data is automatically recovered

Demo 1 – Unexpected Failure

Demo 1 – Unexpected Failure

Switch to Demo Screen

Scenario 2: Planned Maintenance

- No Downtime for Routine Maintenance
 - OS/Security Patch, PI Software Update, Hardware Upgrade
- Sequence of Events
 - 1. Shut down one PI Server
 - 2. Immediate fail over of connected clients to another PI Server
 - 3. Data is buffered on Interface nodes
 - 4. When maintenance is complete, restart PI Server
 - 5. Buffered data is automatically recovered

Demo 2 – Planned Maintenance

Demo 2 – Planned Maintenance

Switch to Demo Screen

PI Replication Summary

Features

- Synchronization of PI Server configuration
- Transparent PI-SDK failover, simple load balancing
- Identical real-time data distribution

Value

- High Availability to your PI System
- Peace of mind for Administrators
- Direct support for existing PI Clients
- Simple, scalable and flexible architecture

PI Replication Future

Concurrent HA Developments

High Availability Platform Release 1

Q3 2006

- PI Server 3.4.375 release
- PI SDK 1.3.4 release
- Standard PI Interface Fail-Over
- Standard PI Interface Disconnected Startup
- Enhanced Interface Buffering Services
- New System Management Tools
- PI Clients leveraging HA Services

One Last Thing...

 How much does it cost to upgrade from a single PI Server to a 2-node HA System*?

(*) assuming you are on the Software Reliance Program (SRP)

In Other Words...

Conclusion

- Replication is a natural extension of the PI System, offering a cost-effective solution for High Availability
- Simple, Enterprise, Available (SEA)
 - Simple setup, configuration and operation
 - Leverages existing infrastructure and grows with your Enterprise
 - System Availability on planned maintenance and unexpected failure

Thank You!

Denis Vacher <u>dvacher@osisoft.com</u>
Harry Smith <u>harry@osisoft.com</u>

