

Monitoring and Controlling a Scientific Computing Infrastructure

Jason Banfelder Vanessa Borcherding Dr. Luis Gracia

Weill Cornell Medical College

Overview

- Overview of operations
 - Scientific research
 - Computational infrastructure
- Building a monitoring framework with IT Monitor and PI
- Conserving power used by compute clusters
- Future challenges

Scientific Research

- Develop, integrate and maintain computational and other technological resources to support...
 - Dept. of Physiology and Biophysics
 - Institute for Computational Biomedicine
 - Computational Genomics Core Facility
- ...at the Weill Medical College of Cornell University
- Research, educational, and clinical mission
- Roughly 75 people to support

Christini Lab, Weill Cornell Medical College

High Performance Computing

- Simulations of biological systems
 - Molecules, tissues, cells, organs
- Analysis of large datasets
 - Genomes, other -omes
 - High-throughput experiments
 - Corpus of biological literature
- Imaging & Viz (MRI, confocal microscopy, ...)
 - Clinical and basic science
 - Immersive visualization (CAVE Q4'07)
- Other services
 - Desktop, print, videoconference

Desktop Environment

- Not possible or desirable to standardize
- Operating System Distribution
 - ▶ 60% Windows XP
 - 35% Mac OS X*
 - ▶ 5% Linux (RedHat, Debian)
- Need to support all of them

Compute Resources

- 750+ processors; 2+ Tflop/sec
 - 208 node/416 processor Linux cluster
 - ▶ 90 node/186 processor Linux cluster*
 - 24 processor IBM pSeries (48G memory)
 - ▶ 16 processor SGI Altix
- Fairly heterogeneous environment
 - Primarily Dell/Intel (~95%); some IBM, SGI
 - Primarily Linux (Red Hat); some AIX, IRIX

Storage Resources

- Mainline storage and cluster storage
 - 40+ TB raw spinning disk
 - 14 RAID arrays
 - Apple FibreChannel (Brocade and QLogic switches)
 - Dell SCSI direct attach
 - Some SGI
- Server Backup is LTO3 tape based
 - Two libraries (robots)
 - Four drives
- Desktop backup is disk based
 - Retrospect

Application Resources

- Scientific Software Library
 - ▶ 100+ programs/versions
 - Open Source and Commercial
- LAMP+ stack
 - Redundant Apache servers
 - Web app server (Tomcat/Java)
 - Oracle 10g Enterprise

Physical Plant

- Three Server Rooms
 - Cornell University Ithaca Campus
 - 208 node cluster was too power/HVAC intensive to house on NYC campus
 - Fully equipped for remote management
 - Lights out facility, one visit last year
 - NYC Campus
 - 125 kVA server room (10 cabinets) [12.5 kW/cabinet]
 - 300 kVA server room (12 cabinets) [25 kW/cabinet!!!]
- At full load, we can draw over 1 MW to run and cool!

Managing the Infrastructure

- All of the above built and maintained by a group of three people.
 - Automation required
 - Don't want to standardize too much, so we need to be very flexible

Why IT Monitor and PI?

- IT Monitor / PI selected to be the central repository for health and performance monitoring (and control).
 - Able to talk to a diverse set of devices
 - Printers, servers, desktops
 - Network switches
 - Building management systems
 - ...pretty much anything we care about
 - Pick and choose the parts you want to use, you build the solution
 - Ping, SNMP, HTMP interfaces, ODBC
 - Very strong, proven analytics
- Vendor specific solutions are (expensive) islands

Project 1: The Big Board

Overall Systems Health

- Want a quick, holistic view of our key resources
 - Core infrastructure
 - File servers, web servers, app servers
 - Backup servers
 - Cluster utilization
 - Node statuses and summary
 - Physical plant
 - Temperature monitoring

Data is Available to Everyone

Adobe Flash/Flex used for display

Why IT Monitor / PI? (revisited)

Is this affected by that?

 This can only be answered if all your data is in the same place.

Network Layout

- PI Server can only see head node
 - OK; head node knows what's going on anyway
- How does PI Server read the data we are interested in?
 - Node statuses and summary statistics

Data Collection and Dissemination Architecture

Project 2: Cluster Power Management

- Green computing...
 - Save power (and \$\$\$) by shutting down nodes that are not in use.
- ...but minimize impact on performance
 - Maintain a target number of stand-by nodes ready to run new jobs immediately.
 - Reduce latency perceived by end-users

The Cost of Power and Cooling

Powering HPC

- Density is increasing
 - ▶ 20+ kW per cabinet (standard designs were 2-4 kW only a few years ago)
 - Localized heat removal is a problem
 - HVAC failures leave very little time for response
- Load is highly variable
 - Harder to control

Dense Computing

Our Cluster

- 90 compute nodes
 - 3 'fat' nodes; 2 'debug' node
 - 85 nodes under CPM
- Power used:
 - In Use node: 250 W
 - Stand-by node: 125 W
 - Power Save nodes: 0 W
- With 50% usage and no standby nodes: power savings is 32%
- With 66% usage and 16 standby nodes: power savings is 11%

Historical Cluster Usage

Hardware Requirements

- Hardware Requirements
 - Chassis Power Status
 - Remote Power Up
 - PXE is a plus for any large system
- Dell Servers do all of this standard (and much more!)
 - Baseboard Management Controller
 - Dell Remote Access Card

IPMI + IT Monitor = Data + Control

```
[root@cluster clusterfi] # ipmitool -I lan -H 10.1.12.190 -U root -f
   passfile sensor list
Temp
              21.000
                           degrees C | ok | <u>120.0</u>
                                                     125.0
                                                             na
                20.000
Temp
                           degrees C | ok | 120.0
                                                     125.0
                                                             na
              1 23.000
Temp
                           degrees C | ok | 120.0 | 125.0
                                                             na
              1 23.000
                           degrees C | ok | 120.0
                                                   1 125.0
Temp
                                                             na
Temp
              1 40.000
                           degrees C | ok |
                                            na
                                                     na
                                                             na
              1 61.000
                           degrees C | ok | na
Temp
                                                     na
                                                             na
Ambient Temp
             1 16.000
                           degrees C | ok | 5.000 | 10.0
                                                            49.0
                                                                     54.0
Planar Temp
                20.000
                           degrees C | ok | 5.000
                                                     10.0
                                                                     74.0
                                                             69.0
CMOS Battery
                3.019
                           Volts
                                       ok l
                                            2.245
                                                     na
                                                                     na
                                                             na
```

Lifecycle of a Compute Node

- CPM uses a finite state machine model
- Tunable parameters
 - Target number of standby nodes
 - Global time delay for shutdowns
 - Prevent churn of nodes

Lifecycle of a Compute Node

IU: In Use

SB: Standing by

PSP, PD, QR: Shutting down

PS: Power Save

PUP: Powering Up

BAD: Problems

UK: Unknown

UM: Unmanaged

	1	2	3	4	5	6	7	8	9	10
Nodes 081-090	PS	PS	PS	PS	PS	UM	UM	UM	UM	UM
Nodes 071-080	QR	QR	QR	PS	PS	PS	PS	PS	PS	PS
Nodes 061-070	PS	PS	PS	PS	IU	IU	IU	IU	IU	IU
Nodes 051-060	PS	PS								
Nodes 041-050	SB	SB	SB	SB	PS	PS	PS	PS	PS	PS
Nodes 031-040	SB	SB	ΙU	ΙU	ΙU	ΙU	IU	IU	Bad	SB
Nodes 021-030	ΙU	IU	ΙU	ΙU	SB	SB	SB	SB	SB	SB
Nodes 011-020	IU	IU	ΙU	ΙU	ΙU	ΙU	IU	IU	IU	ΙU
Nodes 001-010	SB	IU	IU	SB	SB	IU	IU	IU	IU	IU

Cluster Power Management In Action

Note correlation between temperature and cluster usage

Powered down

- Six Month Average:
 - ▶ 13.6 nodes shut down for power savings.
 - ▶ 16% of managed nodes
 - ▶ 8% power savings
- 15.06 MW*h annual savings
- \$3,000 annual power savings (\$0.20/kW*h)
- Probably double when considering HVAC
- Equipment life

Future Ideas/Challenges

- Tunable parameters
 - Function of time of day, day of week?
 - Based on past observations?
- Balance runtime of nodes
- Balance heat distribution in data center
 - Synchronize with HVAC rotation schedule and failures

Physical Plant

37

VALUE NOW, VALUE OVER TIME

Future Ideas/Challenges

- Integration with building systems
 - Detecting nascent problems is critical
 - Very fast temperature rises
- Integration with power companies
 - ► IT is being targeted as an 'easy' load to manage in an emergency
 - Variable power costs (over time, across locations)

Thank You

Q & A

Jason Banfelder jrb2004@med.cornell.edu

Cornell University