

High Availability PI A Better Way to Manage a PI **System**

Harry Smith - Development

Chuck Thompson - Field Service

Sam Jenkins - Field Service

Massive Highly Available Systems

HA-PI Purposeful Design

HA-PI is for ...

HA-PI is for ...

HA-PI is for ...

Upgrades are not always timely

But the results are worth it

PI Replication Architecture

PI Replication Summary

Features

- Synchronization of PI Server configuration
- Transparent client failover, simple load balancing
- Fanning of real-time data to multiple servers

Value

- High Availability to your PI System
- Peace of mind for Administrators
- Direct support for existing PI Clients
- Simple, scalable and flexible architecture

PI-HA Components

Pl Server

- Replication specific features:
 - Configuration change logging & replication services
 - Monitoring services & troubleshooting tools
- Performance, reliability features
- SDK
 - Automatic failover mechanisms for existing SDK clients
 - Advanced HA services OSI clients
- Bufserv
 - Fanning of data to multiple servers
- Bufss
 - Guarantees identical archive data between replicated servers
 - Increased buffering capacity, efficiency & throughput
- SMT
 - Collective Manager HA monitoring & administration

Limitations

- No automatic replication of non interface data
- No replication of batch records
- Post processed data calculated independently
- PI ACE management requires primary

PI Replication Future

Straight talk from the Pros

How High Availability Pl can work in a test Environ

Chuck Thompson - Field Service

HA – It's Simple

HA is not quite this simple....

....but neither is HA so complicated as all this.

How HA & PR1 can work in a test environ

 In the test – you continue to use the existing PI3 server

Preparing for the test

You'll need -

- One or more test servers
 - Standard hardware and operating system is all that's required
- Upgrade underlying PI-API & PI-SDK on your interface nodes
 - If you can use a secondary or test interface node, you may want to consider this
- Consider upgrading your interface to the latest version
- Use SMT or ICU on the interface node to setup and monitor the test

Setting up for the test

Start your upgrades at the PI server

- Prepare the new server (O/S, network, etc)
- Use documented procedure for moving PI to a new server)
- Upgrade PI clone to latest version
- Update PI management tools to latest version and apply patches, if any
- Use PI collective manager to promote your PI clone into a collective with one member
- Optionally add in additional test PI servers to your collective

Continue with interface nodes

- If the interfaces aren't already on interface nodes, move them off of the PI server
- Upgrade PI-API & PI-SDK
 - Easy way to do this is to install latest SMT or ICU
- Optionally upgrade your interface(s) to latest version
- Set up N-Way buffering using latest PI-API Buffering version
 - PI-ICU makes it easy to implement buffering and to set your interface(s) dependencies

The Test

- What's running?
 - At the test PI3 server(s) you have PR1 version of PI
 - The interface nodes should be buffering data to both old and new PI3 servers
 - The snapshot and archive data of existing PI3 server and test PI3 server should be identical
- Copy some of your existing applications (ProcessBook files, DataLink spreadsheets) and use PR1 client versions to test against data from test PI3 server

The Test

Next Steps

- Test client applications against the test server
 - Allow key users to switch to the test server
 - If you have more than one server in your collective, test failover
- Test your local procedures, e.g. backup, O/S patches, and other system management or maintenance tasks
- With OSI's Tech Support, Training, and Field Service – resolve any issues or problems you encounter

Test as long as you like

- Both systems operational
 - If you don't like the test, abandon the test
 - Just shutdown and uninstall the test PI server(s)
 - Remove additional server(s) from buffering configuration on each interface node
- Configuration changes made to existing system during the test are not reflected in the test system during the period of parallel operation

A time line

Obtain & Prepare Test Server(s)						T			T
Clone existing PI server						14.8		8	
Install PI on test server	113								
Backup Existing PI server			1 1	11 3	- 5	- 17 - 8		15	
Overlay files, run utilities on test server									
Upgrade test server	18				- 3	11 9		0	
Create Collective using test server				2 ==					
Prepare interface nodes									
upgrade PI-API & PI-SDK									
Upgrade interface(s)	- 2					14.3		8	
Set up N-Way Buffering									
The Test	18		40.00	7 3	-3			15	
Confirm buffering to both servers		b - 12							
copy and test existing applications									
key users access test server									
verify local procedures	1			7	111				
resolve issues with OSI assistance									
Test Successful? Next steps									
Uninstall PI from test server(s)									
Make a new clone from existing server			-00-0						
make your collective	13			1 3	- 3	17.8		3	
point users at new collective									
remove old server from buffering on interface nodes									

Test successful! What next?

- Uninstall PI from test server(s)
- Make a new clone from the existing PI server (e.g. move PI to new server)
- Make your PI collective
- Point users at new collective
 - Upgrade to PR1 versions
- Remove old PI server from buffering on interface nodes

Benefits

- Test on a clone of your PI system without disrupting your user community or data
- Version Management
 - It becomes easier to stay current apply changes to secondary node and test
 - Updates can be applied to a single collective member without having to take an outage of entire PI system
 - This opportunity applies not only to OSI software releases but more especially to updates from Microsoft, your Anti-Virus vendor, backup system, etc.
- Test applications on parallel test system before "going live"
- Test system management features and local procedures against test system using live data

Summary –

It's time

- You have a 2 or 3 year old version of PI on Windows and you have been putting off upgrades, patches, etc
- If you have PI3 server on UNIX, this would be a good time to switch to PI3 server on Windows
- HA and PR1 are there, OSI built them for all to use
- HA is already at work for dozens of customer's critical systems

Useful Resources

- OSI's PI3 System Manager II class, Advanced Skills
 - Large portion of the class gives practical hands on with redundant interface and HA PI server
- OSI has field service to provide on-site assistance and help in planning.
- Contact your OSI sales person for questions on licensing & quotes for field service

High Availability Pl Experiences From the Trenches

Sam Jenkins - Field Service

High Availability Solves Problems

High Availability Solves Problems

High Availability Case Studies

- Case Study A
 - Traditional High Availability Scenario
 - Rapid Deployment
 - Managed PI Environment
- Case Study B
 - High Availability Solves a Unique Problem

Case Study A

Case Study A

OSIsoft

- Managed PI Environment
 - API N-Way Buffering used to send local Performance Monitor data between servers in the collective

Case Study A

- Rapid Deployment
 - High Availability Architecture Implemented at 8 sites in 5 Weeks
 - Collective Manager Simplifies Collective Creation

Case Study B

Case Study B

- Initial Problems
 - Users at Plant 2 cannot reliably access Pl system
 - Plant 2 data archival constantly delayed

Case Study B: Solution 1

Troublesome WAN Connection

Case Study B: Solution 1

- Solution 1 Problems
 - All client applications needing data for Plant 2 must be redirected to new server
 - Additional task of splitting existing PI server required

Case Study B: Better Solution

Case Study B: Better Solution

- Implement High Availability
 - One member of the collective resides at each plant
 - Collective named to match that of the existing PI server so existing client applications don't need reconfiguration
 - Users connections at each plant set to prefer their local PI server collection member

Case Study B: Result

- Each server continues to archive and buffer data locally during network disruptions and forwards the data to other collective members as they become available
- Avoided cost of splitting existing PI server and reconfiguring client nodes
- PI data is highly available

Conclusions

- There are many uses for High Availability
 - Traditional HA
 - Managing version upgrades
 - Solving unique implementation challenges

VOYAGE2007

Thank You