

Regional Seminar Series Cincinnati

Improving Boiler Water Chemistry

Caitlin Kilkka, Energy Coordinator IV Brian Hollaway, Supervisor SCADA Support American Electric Power

October 7, 2009

Business Value – Improving Water Chemistry

The Challenge: Making Boiler Water Chemistry a Priority

"We use the PI system to monitor and track the water chemistry at our power plants to drive a culture of continuous improvement for Boiler Water Chemistry."

Doug Hubbard, Manager - Generation Chemistry
 Standards and Control

Customer Business Challenge

- Reduce Tube Leak Outages
 Caused By Poor Water Quality
- Benchmark Water Quality Performance For All Boilers in Fleet
- Drive A Culture of Continuous Improvement for Boiler Water Chemistry

Solution

- Use PI-ProcessBook to Monitor Real Time Water Chemistry
- Use PI-DataLink to Report and Track Water Quality Performance
- Use PI-Notifications to Alert on Abnormal Operating Conditions

Customer Results / Benefits

- Benchmarking Process Provides Assessment of Each Unit's Chemistry Program
- Alerts Reduce Duration of Abnormal Chemistry Events
- Automated Reporting Eliminates Manual Data Entry

AEP - Who We Are - By Assets

AFP AMERICAN® ELECTRIC POWER

- One of the largest U.S. electricity generators (~ 38,000 MWs) with a significant cost advantage in many of our market areas
- Largest consumer of coal in the Western Hemisphere
- Operations within four RTO's
 - PJM
 - SPP
 - ERCOT
 - MISO
- A leading consumer of natural gas
- Major wind power purchaser/reseller
- 39,000 miles of transmission
- 186,000 miles of distribution
- Coal transportation
 - 7,000 railcars
 - 2,230 barges and 53 towboats
- 5 million customers

PI History - Where Have We Been

- AEP began installing PI servers in 1993
- Five servers installed between 1993 1998
 - Conesville 5, Conesville 6, Conesville 4, Sporn 5,
 Muskingum 5
- Bank License 40,000 Tags (1998)
- Corporate PI server installed in 1999
- Most plant PI servers installed after 1999
- Plant's Question How Do You Justify PI?
- AEP "All you can Eat" Contract 2004
- Current Contract 2007-2009

AEP's Current PI Footprint

Servers

- 4 Corporate PI Servers (HA)
- 49 Plant PI Servers (Several HA)
- 2 Plant Simulator PI Servers
- 3 Transmission PI Servers
- 2 IT Monitor PI Servers
- 60 Total PI Servers

PI Tags

- AEP total tag usage is about ~ 770,000 tags
- Plant PI servers have over 460,000 Tags
 - Plants server tag counts range from 75 tags to over 70,000 tags
- Corporate PI server has over 100,000 tags
- IT Monitor server has over 100,000 tags
- Transmission PI servers have over 50,000 tags

Processbooks

More than 1200 Installed

The Cost of Leaks

- Tube failures are a major source of forced outages
- Costs include
 - Cost of repair
 - Cost of start-up
 - Cost of lost production
- Monitoring water chemistry can help protect steam generator from corrosion and deposition.
 - Deposition (solid contaminant build-up) can be detected by monitoring hotwell condensate conductivity
 - Corrosion (loss of metal or pitting) can be prevented by avoiding water pH below 7.0
- Goal: Zero chemistry-related tube failures

PI-ProcessBook for Real-time Monitoring

Mountaineer Water Chemistry

Unit Net Load

Unit 1 1273

*Indicators along graphs are not precisely calibrated.

PI-DataLink for Daily Reports

- Excel VBA refreshes PI Points, compiles error messages, and creates e-mail in Lotus Notes.
- Saves 10-15 minutes every morning
- Enables simultaneous snapshot
- Automation eliminates typos and provides consistent phrasing
- Can run on a timer

Limits

hi ▼

30

0.3

0.3

10

30

0.3

0.3

10

30

0.3

high

10

10

0.6

hi ▼ bad u ▼ Message

Water

▼ Chem V ▼ lo ▼

9.188

6.496

0.405

0.203

9.069

5.904

-0.250

0.999

7.970

7.657

0.804

Click HERE to compile the

Water Chemistry Snapshot

e-mail.

0.405219 SP1 - Hotwell Cation Conductivity | 0.405 @ 37 MW

-0.24956 SP2 - Hotwell Cation Conductivity -0.25 @ 21 MW

0.999005 SP2 - Sat Steam Conductivity 0.999 @ 21MW

PI-DataLink for Quarterly Benchmarking

- Engineering tracks quarterly water chemistry parameters to measure continuous improvement
- Report originally compiled through manual process of collecting data from plant personnel
- Process was revised in mid-2008 to use PI data extensively
- Use PI data to track key conductivity values and when cycle chemistry analyzers are out of service

PI-DataLink for Conductivity Hours

- Tracks conductivity values while unit is online
- When values increase into specified levels the amount of time is recorded and converted to a score

The limits for each analyzer and level are shown below:

	Level 1	Level 2	Level 3
Analyzer	Hours	Hours	Hours
Boiler Specific Conductivity (umho)	30.0 - 35.0	> 35.0 - 40.0	> 40.0
Hotwell Cation Conductivity (umho)	0.30 - 0.35	>0.35 - 0.40	> 0.40
Saturated Steam Cation Conductivity (umho)	0.25 - 0.30	>0.30 - 0.35	> 0.35

The scored hours that the analyzers are in each level are shown below

	Level 1	Level 2	Level 3	
Analyzer	Hours	Hours	Hours	Points
Boiler Specific	0	0	0	0
Conductivity (umho)	U	U	U	U
Hotwell Cation	10	7	1	20
Conductivity (umho)	12	/	4	38
Saturated Steam Cation	46	2	1	62
Conductivity (umho)	40	2	4	02

PI-DataLink for Tracking Analyzer Status

- PI data is used to determine if any analyzers were out of service while unit was online
- Amount of time analyzer is out of service is recorded and converted to a score

Sample	Analyzer	Out of Service Hours	Total Unit In Service Hours	% Out of Service	Score
Econ Inlet	рН	0	1808	0	0
	Specific Conductivity	0	1808	0	0
	Cation Conductivity	0	1808	0	0
	Dissolved Oxygen	0	1808	0	0
Deaerator Inlet	Dissolved Oxygen	0	1808	0	0
Cleanup Effluent	Cation Conductivity	0	1808	0	0
	Sodium	1800	1808	100	3
	Silica	120	1808	7	1
HP Heater Drain	Dissolved Oxygen	0	1808	0	0
Hotwell	Cation Conductivity	0	1808	0	0
	Specific Conductivity	0	1808	0	0
	Sodium	0	1808	0	0
Main Steam	Cation Conductivity	4	1808	0	0
	Specific Conductivity	0	1808	0	0

Total Score: 4

PI-Notifications for Real-time Chemistry Events

 If key chemistry parameters step outside a certain range, immediately send text messages to engineer and plant process supervisor

Key parameters include pH level and conductivity measurements

Enables faster response to critical conditions

Clear Benefits of Using PI System

- Data collection has become faster and more consistent
 - One day per plant x 20 plants \rightarrow One day for all
 - Consistent process across fleet
- Problems are identified instantly... rather than a day or two after the fact
 - Reduces problem severity
 - Helps avoid some tube leaks
 - Extends boiler tube life
- Enables key indicators to be monitored 24/7
- Helps engineering communicate the importance of water chemistry and highlight areas for improvement

Moving Forward

- Intent moving forward is to use PI to track more parameters along with conductivity values
- Develop a benchmarking program for our Gas-powered Combined Cycle Units
- Develop further displays that can be used by employees with limited plant/engineering experience

Thank you

© Copyright 2009 OSIsoft, Inc.

777 Davis St., Suite 250 San Leandro, CA 94577