

Regional Seminar Series Cincinnati

Asset Optimization using PI and AF

Nancy Shifflet Optimization Analyst NiSource Gas Transmission and Storage Charles Harrison
Optimization Team Leader
NiSource Gas Transmission and Storage

October 7, 2009

NiSource Gas Transmission & Storage

Employees: 1,571

Total Payroll: \$98 million **Operating States:** 17

Miles of Pipe: approximately

14,000

Compressor Stations: 100 Total Horsepower: About 1.1

million

Annual Deliveries: About 1

trillion cubic feet

Number of customers: 72 LDCs

and a variety of commercial

users

Storage Fields: 37 in four states

Total Storage Capacity: 590

billion cubic feet

Total Working Gas: 253 billion

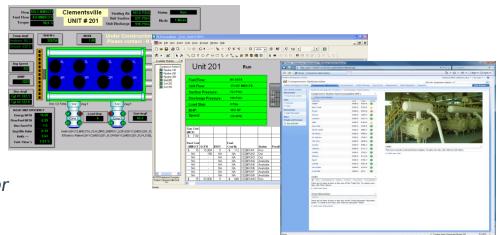
cubic feet

Peak Day Deliveries: 7.4 billion

cubic feet (4.5 bcf from storage)

State taxes paid annually:

\$58.6 million



Business Value – Asset optimization using PI and AF

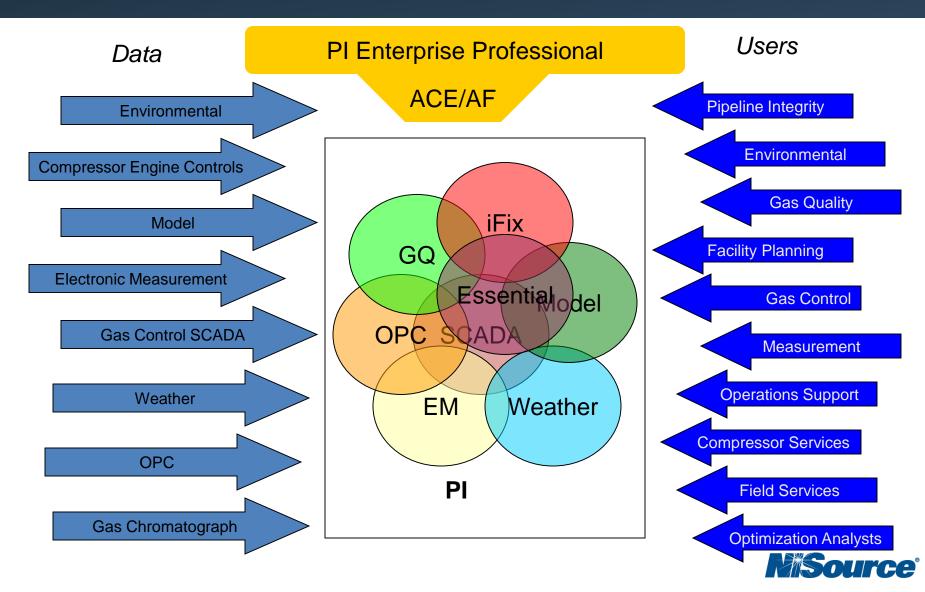
The Challenge: Optimizing the performance of our fleet of gas compressors in service at 100 stations over 14,000 miles of pipeline

"Never in the history of our business have we needed to optimize how our assets perform as much as we do in today's business environment. At \$10 an MCF for gas for fuel for our compressor stations we spend \$600MM US Dollars a year."

Customer Business Challenge

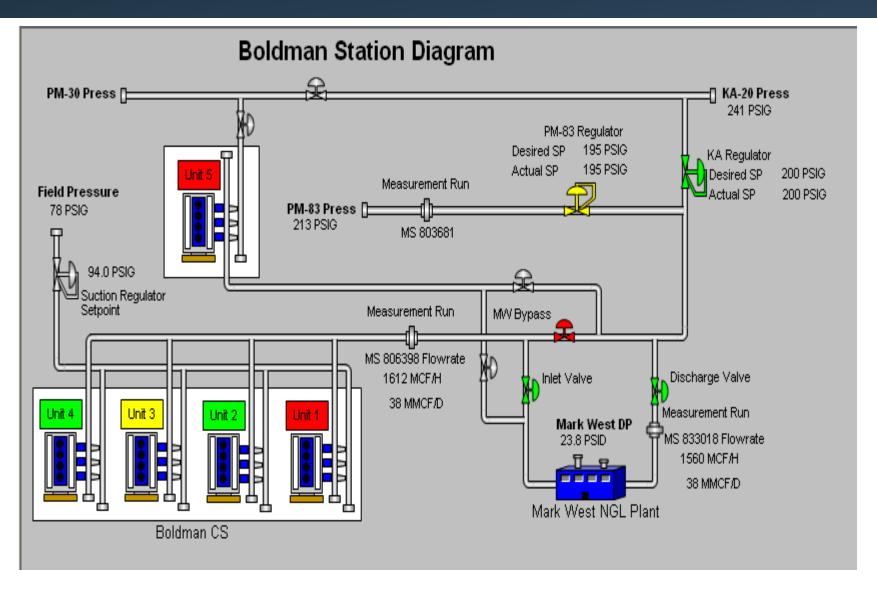
- Performance Measurement
- Real Time Discovery of Performance Degradation
- Unit to Unit Comparison

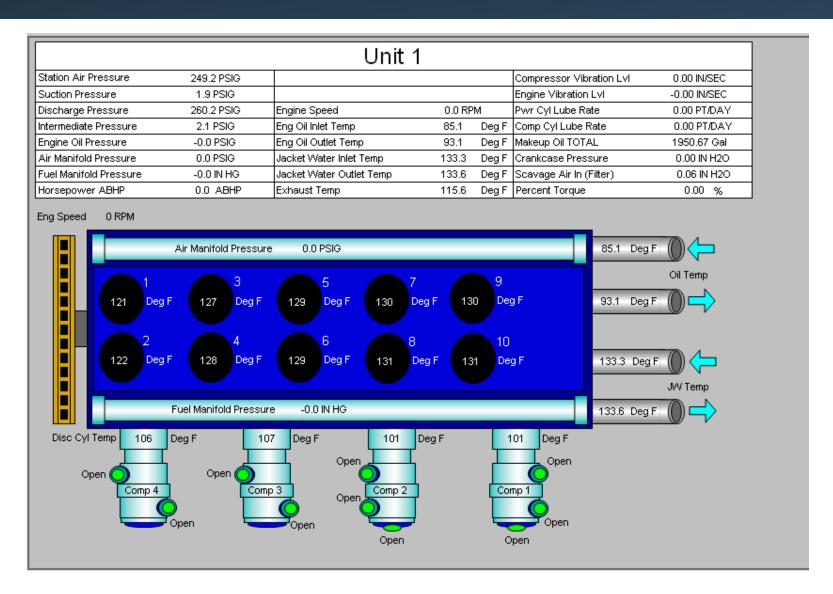
Central Diagnostic Monitoring and Analytics


- Centralized Diagnostic
 Monitoring
- Transform NGT&S Operating Expertise into PI Analytics
- KPI Dashboards

Results / Benefits

- Reduction in Compressor Engine Fuel Consumption
- Increase in Compressor Engine Operating Range
- Improved Compressor Engine Reliability


How PI Stretches

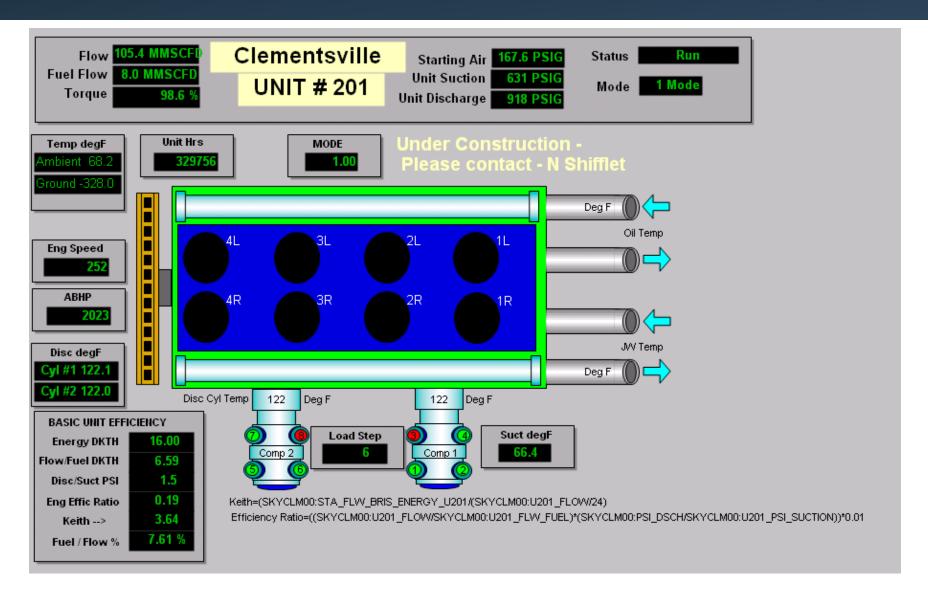

Compression

Compression

Compression

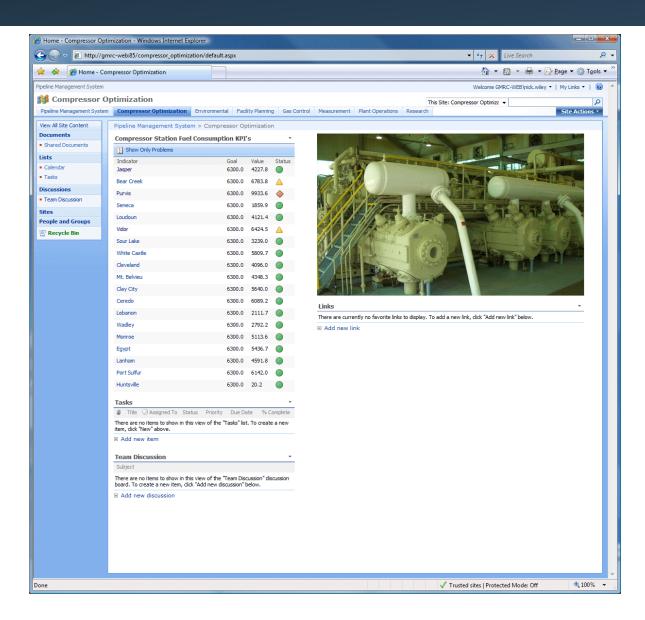
Cleme	entsville	
Station	Overview	ı

Station Flow: 1226.0 MMS CFD Stanton Flow: 1151.0 MMS CFD


Unit	Flow	Suct psig	Disc psig	Suct F	Disc F
1-7	425.3	682	873	67.2	104.2
209	0.0	-2	0	84.9	88.3
210	801.0	683	880	68.1	105.7

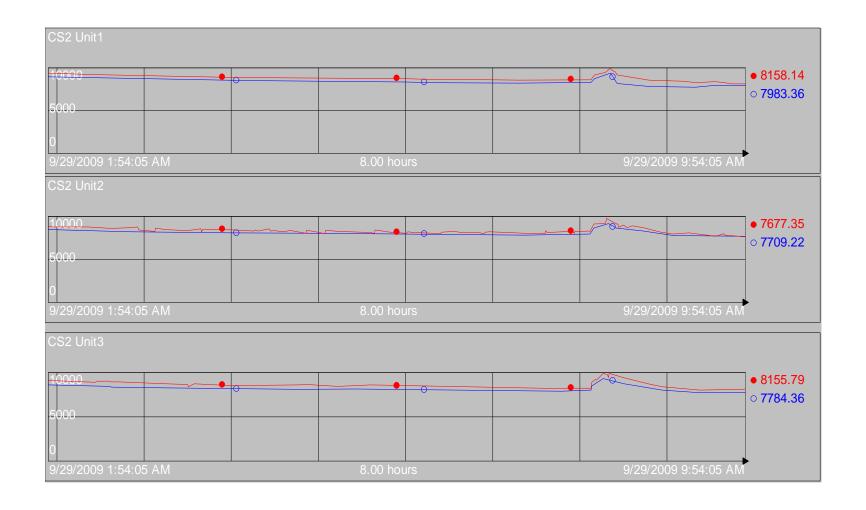
	100	200	300			Barom Pres	30.2 In Hg
Suct	688.0	924.0	688.0	PT 100 (Stanton)	875.8	Ambient	82.3 DegF
Disc	0.088	0.088	881.0	PT 200 (TETCO)	924.5	Starting Air	168.6 psig

GMW Engine Unit#	Tot Hrs	Mode	Status	Speed RPM	Suct psig	Disc psig	Horse Power	Torque	Fuel Flow	Suct Temp	Disc Temp C#1	Disc Temp C#2			Load Step	Unit Flow
Unit #1	329445	2	Axailable	0.0	200.8	201.8	0.0	0.00	0.2	88.1	88.0	88.4			8	0.0
Unit #2	328816	2	Out	0.0	-1.1	0.1	0.0	0.00	0.0	86.8	-328.0	-328.0			8	0.0
Unit #3	325592	1	Run	242.0	682.8	927.9	1950.9	98.63	7.8	67.8	113.1	113.0			5	124.7
Unit #4	302133		Run	250.9	682.8	877.1	2016.7	98.37	7.8	67.7	105.0	104.6			0	153.5
Unit #5	307976		Axailable	0.0	190.6	191.8	0.0	0.00	0.0	91.6	89.2	89.1			8	0.0
Unit #6	290872		Run	241.7	682.9	878.1	1930.6	97.40	7.6	68.0	105.9	104.6			0	147.7
Unit #7	316301		Available	0.0	209.9	211.0	0.0	0.00	0.0	90.6	89.4	89.2			8	0.0
Turbine Unit#	Tot Hrs		Status	Speed RPM	Suct psig	Disc psig	Horse Power		Fuel Flow	Suct Temp	Disc Temp	N1	N2	N3		Unit Flow
Unit #9			Available	-2.0	-2.0	0.0	-5.0		0.0	84.9	88.3	14.0	1.0	4.0		0.0
Turbine Unit#	Unit Hrs	Unit Starts	Status	PT RP M	Suct psig	Disc psig	Horse Power	GP RPM	Fuel Flow	Suct Temp	Disc Temp	Act T5	T5 Avg	PCD psig	%from Surge	Unit Flow
Unit #10	6823	27	Run	7653.1	683.1	880.0	10224.0	10313.1	809.0	68.1	105.7	10.0	1275.2	184.8	53.40	801.0


Efficiency

Compressor Station Fuel - KPIs (Concept)

Energy Cost -


(CF\$/mcf)*(7350BTU lhv/BHP hr)*(1cf/1000BTU hhv)*(1BTU hhv/0.915BTU lhv) *(BHP)*(1mcf/1000cf)

KPI - Model Heat Rate/Actual (PI-AF)

KPI - Model Heat Rate/Actual (PI-AF Element Relative Display)

AF in PI Datalink

	Unit1			
BHPHrs	CurrentHeatRate	Fuel		%
1726.32	8525.901392	14.9	OverRate by	9.02
	Heat Rate			
	7820.374118			

	Unit1			
BHPHrs	CurrentHeatRate	Fuel		%
1667.72	8276.85122	14.6	OverRate by	3.68
	Heat Rate			
	7983.359974			

Thank you

© Copyright 2009 OSIsoft, Inc.

777 Davis St., Suite 250 San Leandro, CA 94577