

PI System in T&D and Wind Generation

Jon Peterson VP, Marketing OSIsoft

September 15, 2009

T&D and Wind Case Studies

T&D

- California ISO
- Phasor Measurement Units and Wide Area Measurement System
- PSE&G
- Wind Generation
 - Challenges
 - In market availability
 - MarketsS

California ISO

- Performance metric approach to regulation
 - Improve the Quality of Regulation Service
 - Rank Regulation Performance
 - Share information with Generator Owners
 - May Eventually Penalize Poor Performers
 - Improve Reliability
 - Better Response to System Emergencies
 - NERC Control Performance Standards
 - Reduce Costs
 - Improve Efficiency of Regulation Service

California ISO

- Approach—member requirements
 - Generators are integrated with CA ISO EMS
 - Two way communication
 - AGC Status
 - Generation set points
 - Performance trends
 - Certification of generators
 - Generator's ramp rate

Performance Metric Calculation

Calculated with PI-ACE

Performance Metric Calculation

$$PerfMetric = \frac{(SCEPerf + StatPerf)}{N} * 100$$

Where:

N=1 if StdDevRatio or Correlation fail (StatPerf = 1)

N=2 if StdDevRatio and Correlation are good

Regulation

Good Performer

Time.

© Copyright 2009, OSIsoft Inc. All rights Reserved.

Poor Performer--Response

PMUs and WAMS

- Phasor Measurement Units
 - Widely available
 - SEL, GE and others
- Wide Area Measurement System
 - Leverage PMU data installed on grid

PMU

- Frequency
- Voltage
- Real and Reactive Power
- Absolute phase angle
- Accessed via C37.118 protocol
 - OSIsoft Interface now available to all customers
 - Trained field service engineers for installation and configuration

Examples

Frequency Overview

Frequency Error

X-Y Plot of deviation of base station vs. reference

Frequency vs. Angle X-Y

PSE&G

Condition Based Maintenance

- Calculation Structure
 - \cdot CA = F1(M1) + F2(M2) + F3(M3) + ...
 - **Condition & Criticality**
 - Factors driven by data available
 - **Example Factors**
 - CM Cost & Count for Past 6 Months
 - Operation Count for Past 6/12 Months
 - Gas Analysis Change over time
 - Average Load over Time
- Peer Groups
 - Apply calculations by peer group
 - Voltage, Class, Type
 - Example Groups:
 - 26KV 69KV GCB
 - 138KV+ Power Transformer
 - LTC Vacuum Tanks

Prioritized summary report

Details—load tap change issue

Results

- LTC Stationary & Moving Contacts Burned
- Next PM Due 2015
- LTC & Transformer would have failed before next PM
- Conservatively Saved \$2M Transformer
- 2008 National Reliability Excellence Award
 - America's most reliable electric utility
 - 3rd time they received this award

Wind Generation and PI

- Industry primary challenges
 - Asset utilization
 - Availability
 - Efficiency
 - Sell power at highest rates
 - Grid integration
 - Forecasting
 - Scheduling
 - Trading
 - Warranty management

Wind Generation and PI

- Industry primary challenges
 - Enterprise integration
 - Heterogeneous assets
 - Security
 - NERC CIP
 - Regulations and Compliance
 - Reporting

Value of Availability

Hours	TurbineClass (kW)	Capacity Factor	Availability	Annual Expected Output (kWh)*	Busbar Price /kWh	Annual Cash Flow per WTG
8760	600	33%	100%	1,734,480	0.0425	\$ 73,715.40
8760	1000	33%	100%	2,890,800	0.0425	\$ 122,859.00
8760	1500	33%	100%	4,336,200	0.0425	\$ 184,288.50
8760	2000	33%	100%	5,781,600	0.0425	\$ 245,718.00
8760	2500	33%	100%	7,227,000	0.0425	\$ 307,147.50
8760	5000	33%	100%	14,454,000	0.0425	\$ 614,295.00

- •A typical utility scale wind farm may have 30 to 200 Turbines
- •Large owners (e.g. Iberdrola 3500MWs) may have thousands of turbines
- •A single percentage point gain/loss of "in-market" availability (e.g. turbines available to operate when the wind is blowing) for
 - •lberdrola Total Fleet would result
 - •in a 1st Year ROI/loss of \$4.3MUSD.
 - •NPV over 5 Years = \$13.5MUSD @ 18% Discount Rate
 - •Based on US prices, power rate in Spain is .07 to .10/kWh produced
 - •For a Single Wind Farm of 150MWs:
 - •In a 1st year ROI of \$185,000
 - •NPV over 5 years = \$576,000 @ 18% Discount Rate

^{*}Formula = Hours * Generator Capacity * Capacity Factor * Availability

Date	Time	Hours Lost	Production Lost	Fault
5/5/04	19:15	11.90	6,627	Gen Temp High
5/9/04	20:29	11.93	7,200	Gen Temp High
5/16/04	18:25	17.32	10,297	Gen Temp High
6/29/04	16:14	382.57	157,665	Generator R&R, Gen Alignment
7/16/04	6:43	1.05	700	Nacelle Reassembly after R&R Gen
Total		424.77	182,489	\$10,024 lost revenue from 1 turbine over 2 month period

Power Curve Analysis

Markets

- PPM—Scotty Gilbert
 - 14 day forecasts; about best at this time
 - 24 hour forecasts—climatology and park data
 - They bank on this—trading is done 24 hours in advance.
 - Supply vs. buy decisions

Markets

- PPM—Scotty Gilbert
 - At end of day reconcile reality with forecast
 - Did you get the fuel predicted?
 - Did you convert to power as predicted?
 - Evaluate Market exposure
 - · Were assumptions true?
 - Imperative to go back and understand and improve.

Markets

- Scotty Gilbert's words of wisdom
 - Collect all the information
 - True production vs. predicted
 - · Evaluate reasons
 - Evaluate where to invest to improve
 - Answer questions in real time.
 - Don't take weeks to answer the CEO's questions
 - "Have the courage use the historical data to evaluate performance"

Credits

Midwest ISO

 http://videostar.osisoft.com/Regional_Seminars/2009/STL/PPTs/RS2009_STL_MISO_H unter.pdf

California ISO

http://videostar.osisoft.com/t_dwest2003/03/03_files/Default.htm

PSE&G

http://videostar.osisoft.com/Regional_Seminars/2009/Boston/PPTs/RS2009_Boston_C
 BM_PSEG_Gopal_Rothweiler.pps

PPM (Iberdrola)

 http://videostar.osisoft.com/uc2007/video/MO-02-05B_Gilbert_PPM/MO-02-05B_Gilbert_PPM_files/Default.htm

Thank you

© Copyright 2009 OSIsoft, Inc.

777 Davis St., Suite 250 San Leandro, CA 94577