

SDG&E PI-based
Substation Real-Time
Condition Based
Maintenance System

Neal Bartek, Project Manager Subbu Sankaran, Software Team Lead

- San Diego Gas & Electric Company

Empowering Business in Real Time
PI Infrastructure for the Enterprise

## Agenda

- Sempra Utilities OpEx 20/20
- Smart Grid & CBM
- CBM Business Case
- CBM Project Scope
- CBM System Components
- How PI is used in CBM
- PI CBM Examples
- CBM Benefits

## Sempra Utilities OpEx 20/20

In 2006, a team of employees developed a roadmap to prepare company for future success. The plan includes a renovation of the systems that support our operations. These initiative were named:



- The program's technology and process improvements will enable our utilities to continue to deliver our commitment of **Op**erational **Ex**cellence.
- 20/20 symbolizes a clear, sharp vision guiding our efforts.

## **OpEx 20/20: Smart Grid Program**

Smart Grid Program

**Condition Based Maintenance (CBM)** 

Outage Management System /
Distribution Management System
(OMS/DMS)

#### What is CBM?



#### **CBM**

Diagnostics detect potential problems before they occur

- Optimizing equipment utilization based on predictive history, etc.
- Equipment can be repaired before failure

Sensors will provide diagnostic information to facilitate capacity and reliability maintenance.

**Start 2008, Go-live 2008** 





## **CBM Business Case**

- What does CBM do for SDG&E?
  - Improve asset utilization
    - Provide actionable data to support decisions
    - Allows capital expenditures to be deferred
  - Shift from time-based to Condition Based Maintenance should reduce overall maintenance activity
    - Proactive "As-Needed" maintenance (less time based)
  - Improve efficiency of maintenance activities
    - Reduction in time required to complete maintenance on equipment through better knowledge of equipment condition
    - Reduction in unplanned maintenance work
    - Reduction in cost to collect condition data by manual means
    - Reduction of field equipment inspections

### **Project Scope: Phase 1**

## Implement CBM for two substations by October 2008

- Implement sensors and data collection at 2 substations (1 Distribution & 1 Transmission)
  - Distribution Substation
    - 2 transformers
  - Transmission Substation
    - 3 transformers
    - 24 gas breakers
- Implement back office data collection infrastructure, notification mechanisms and initial data analytics

## **Project Scope: Phase 2**

- Implement CBM for remaining 123 substations
  - 102 Distribution Substations over 7 years
    - 226 Distribution Transformers
    - 194 Gas Circuit Breakers
  - 21 Transmission Substations over 5 years
    - 49 Transmission Transformers
    - 26 Distribution Transformers
    - 185 Gas Circuit Breakers
- Integrate with enterprise systems and evolve/refine analytics

## **CBM Implementation Phase 1 Timeline**

**February** March April May June July Sept. Oct. Nov. Dec. January August **Project** Kick Off Solution User Design Construct Checkpoints Recommendation Sign-off **Build Sign-off** Acceptance **Develop High-Level** Requirements Requirements Sign-off Development **Develop RFP Selection Process Solution Selection** Develop **Design Processes** Detailed **Processes Design Processes Design Phase Build Phase Build Phase Testing and User Testing Acceptance Training and Rollout User Training - phase** 



## **System Requirements**

#### **System Features**

- Technical Requirements
  - Product Flexibility, Scalability and Manageability
- Functional Requirements
  - How the product meets the needs of our business
- Strategic Plans
  - Roadmap for the future
- Implementation Plan
  - Capability to meet the schedule and project plan
- Support Supplied
  - Support structure and availability

## **CBM Vision Diagram**



OSIsoft. 2009 USERS CONFERENCE

# What does CBM monitor on Distribution Transformers?



- Detect Loss of Cooling Fans/Pumps
- Detect Failed Control Contactor for Cooling Fans/Pumps
- Collect Data on Run Hours for Fans/Pumps

- Oil Temperature
  - > Top Oil
  - Bottom Oil
- Winding Hot Spot Temperature (Calculated)
- LV Load Current
- Ambient Temperature
- Eight gas DGA
- Cooling System Manager / Monitor
- HV Bushing Power Factor
- LV Bushing Power Factor
- LTC Position Indication & Operations Counter
- LTC Motor Energy
- Conservator Integrity
- Provide Break-Out of Miscellaneous Bank Alarms





# What does CBM monitor on Distribution Transformers?



- Detect Loss of Cooling Fans/Pumps
- Detect Failed Control Contactor for Cooling Fans/Pumps
- Collect Data on Run Hours for Fans/Pumps

- Oil Temperature
- Top Oil
  - > LTC
  - ➤ Main Tank / LTC Differential
- Winding Hot Spot Temperature (Calculated)
- LV Load Current
- Ambient Temperature
- Hydrogen / Moisture Monitor
- Cooling System Manager / Monitor
- LTC Position Indication & Operations Counter
- LTC Motor Energy Monitor
- HV Bushing Power Factor Monitor
- On-line Main Tank 3 gas DGA
- On-line LTC Tank DGA Monitor
- LTC Vacuum bottle integrity
- Nitrogen Pressure

# What does CBM monitor on Transmission Gas Breakers?



- Gas Pressure / Density
- Ambient Temperature
- Air Compressor / Hydraulic Motor Hour Meter (optionalnot in use)

## What is a Substation Gateway?

- Controls and monitors communication from multiple Sensors and Intelligent electronic devices over multiple protocols
  - Uses dead banding to minimize bandwidth requirements
- Manage, maintain and configure your substation equipment remotely
- Upgrade Substations without Having to Replace RTUs
  - Integrate existing and legacy RTUs, IEDs, PLCs, as well as multiple control centers
  - Add new network technologies and protocols without sacrificing data or legacy devices
- Prepare for NERC CIP compliance with the Gateway's security features

## What is an Enterprise Gateway?

- Controls and monitors communication from multiple substation gateways similar to a SCADA approach
- Centralizes Security
  - Active Directory Authentication for all 125 substation gateways
  - Encryption with the substation gateway
- Remotely manages firmware/configuration to IEDs or gateways
- Maps the data points/tags automatically to the PI System
- Interfaces with the PI System

## How CBM PI System is used

- Collects and stores time-series data
- Controls communication from Enterprise Gateway to PI
- Provides Analytics (ACE) and Visualizations (WebParts)
- Visualizes graphing, trending and analytics
- Maps data points automatically from Enterprise Gateway
- Integrates with T&D Operations PI System
- Integrates with Legacy applications (Phase 2)
- Sends PI Notifications and Acknowledgement
- Serves as a CBM Model server

## How PI Is Used for a CIM Model Server

- Utilize PI capability to create a structure (model) for PI tags and
  - Module Database
  - Analysis Framework
- The structure allows tag data to be put into a meaningful context
- In Phase 1, the model is quite simple a subset of the IEC 61970 Common Information Model
- Phase 2 includes a more complete model to allow CBM data to be accessed within a variety of contexts

#### **SDG&E CBM CIM Asset Model**



## **CBM Modeling (PI MDB)**

Once the model is loaded into PI, users access tags using a hierarchical tree based on the model



## **CBM Modeling (PI AF)**





ClassView Modified:10/28/2008 3:09:05 PM. Version: 1/1/1970 12:00:00 AM, Revision 1





## Benefits of the Model-Driven Approach

- Creates an open environment for CBM application development
  - Users can easily develop custom applications
- Model enables the creation of navigation trees
  - Navigate to data instead needing to remember the tag names
- Builds a model-aware application development
  - PI Based CBM applications can focus on specific problem areas such as a particular asset type or operating history

#### PI Notifications













#### **CBM PI Email Notifications**

From: opex2020cbm@semprautilities.com

To: CBM-XfmrLv4 Ack

Cc:

Subject: SX\_BK71\_THER\_AlarmLevel4

Name: SX\_BK71\_THER\_AlarmLevel4

Description: Bank 71 Thermal Alarm Level 4

Server: AP-CBMINT-P01

Database: CBM2

Start Time: 1/21/2009 11:56:24 AM Pacific Standard Time (GMT-08:00:00)

Trigger Time: 1/21/2009 11:56:24 AM Pacific Standard Time (GMT-08:00:00)

Target: AP-CBMINT-P01\CBM2\SISCO Managed Models\SDGE CBM\ClassView\thermal\SX 71 Thermal

Sent: Wed 1/21/2009 11:57 AM

Value: Alarm 4 Priority: Normal

Link:

SX - BK71 - Thermal

Actions:

Acknowledge

Acknowledge with comment





#### PI ACE





| Name                      | Status/Value | Since                 | Schedule       | Output Tags |
|---------------------------|--------------|-----------------------|----------------|-------------|
| Current Status            | On           | 2/13/2009 10:24:30 AM |                |             |
| Scheduler Location        | AP-CBMINT    |                       |                |             |
| Scheduler Owner           | SYSTEM       |                       |                |             |
| Scheduler Version         | 2.x          |                       |                |             |
| Context Summary           |              |                       |                |             |
| AP-CBMPI-S01\AlarmSummar  | On           | 2/13/2009 10:24:38 AM | Clock (600, 0) | 0           |
| AP-CBMPI-S01\E1000 Alarm  | On           | 2/26/2009 10:28:12 AM | Clock (120, 0) | 0           |
| AP-CBMPI-S01\PiPostProces | On           | 2/13/2009 10:24:38 AM | Clock (300, 0) | 0           |
| AP-CBMPI-S01\PiPreProcess | On           | 2/13/2009 10:24:38 AM | Clock (300, 0) | 0           |
| AP-CBMPI-S01\PiWeeklyPro  | On           | 2/13/2009 10:24:39 AM | Clock (600, 0) | 0           |
|                           |              |                       |                |             |

- Background ACE Jobs
  - Alarm Tags Generation
  - Transformer Oil Analysis
  - Alarm Summary
  - Alarm Increase Reports
  - Alarm Decrease Reports

## **CBM Future Integration**





#### CBM TO-BE SYSTEM CONTEXT & DATA FLOW







EDW - Engineering Date Waterhouse
ASS - Areaf Information System
RTVI - Secretar Secretar Ut I:
100 - Intelligent Best reads: Devices
OND - Outland System
EDW - Outland Secretar Ut I:
100 - Best II of Intelligent Best reads: Devices
Devices Outland System
EDW - Best II of Intelligent Operations

## PI Implementation Examples



### **Transformer Overview**

Start

Reports - Transforme...



5:05 PM

### Bushings

Reports - Transforme...

# Start | D



20 € 10 5:07 PM

### **Dissolved Gas Analysis**

Reports - DissolvedG...



#### LTC Overview

# Start | | @ @

Reports - LTCOvervie...



20 € 10 5:09 PM

## Thermal/Cooling





Done Done



#### **SF6 Gas Circuit Breakers**







## Summary

- SDG&E Real-Time CBM Project is the first-of-its-kind in the industry – end-to-end from substation sensors to backoffice analytics and visualization
- CBM moves SDG&E one step closer to meeting its objectives:
  - Increase asset utilization
  - Do the right maintenance, on the right piece of equipment,
     and at the right time
  - Leverage technology to make business processes more efficient