

VALUE NOW: Using PI Data to Improve and Optimize Process Control

John Cunningham
The RoviSys Company

Empowering Business in Real Time
PI Infrastructure for the Enterprise

Who is RoviSys?

- Founded in 1989 in Aurora, Ohio
- Primary business is control system integration and information system integration
- 200 engineers in Ohio, North Carolina, and Singapore
- OSISoft partner for many years
 - System Integrator; ISV; Consulting Partner
 - rCAAM Control Assessment and Monitor software

Presentation Overview

Identifying Business Drivers

 Making any performance improvements should be based on business drivers – KPIs

Business Situation	KPIs	
	Throughput	
We can sell all that we can make	Cycle time	
	Uptime	
	Reduce waste	
Limited by market conditions	Reduce costs	
	Reduce energy usage	
High waste rate or dissatisfied customers	Consistent quality	
	Reduce product variability	

Which Control Loops are Critical?

What Analysis Do You Do?

- Analysis tools should be easily understood
 - By process engineer and by technicians
 - Ideally would not require extensive process
 knowledge to implement, understand, and act on
- Analysis tools should be able to work with control loop data – PV, SP, CO, Mode
- It should be relatively easy to act on the analysis
- Should tie back to the KPIs
 - Actions taken should result in KPI improvements

Before Investing in Loop Monitoring

- Is software easy to setup and configure?
- Initial investment must be considered
 - ROI payback period
 - Initial investment software & engineering
 - Time investment for setup, ongoing support
- Who is responsible for keeping it going?
 - How much time required?
 - Adapting to changing process conditions
 - Is responsibility for action distributable?

Performance Metrics

- Key questions the metrics should address:
 - Can the controller do what we want it to do?
 - Are we using the controller to do what we want it to do?
 - Is the controller doing what we want it to do?
 - Are we looking at the controller performance at the right times?

Key Performance Metrics

Metric	Indications	Possible Problems	
Time that the controller output is outside limits	Indicates that the controller is limited by valve	Wrong valve sizeProblem with the valveProcess may have changed	
Time controller is in desired mode	Indicates if controller is left in manual mode and unable to perform its job	 Controller not responding to process disturbances Wrong size valve Operator not comfortable with controller Other process issues 	
Controller Stability	Indicates if controller is oscillating and the magnitude of the oscillations	Poor tuningValve stictionCoupling between loops	

Processing Performance Data

- Select a time period for review
 - A shift, a crew, a batch, a day, etc.
- With PI, you already have the data
 - Extract data from PI for any previous time period
 - Calculate performance metrics and report
- Distribute the metrics
 - Graphical displays ProcessBook, rtWebParts
 - Reports, email
 - Alarms via PI Notifications

Have a Plan to Address Issues

 No value if you don't act on the issues reported

- Do plant personnel have the time to tackle these problems?
 - If not, alarms and reports back up
 - People get used to them and ignore them
- Consider generating work orders for problems
- Hire outside services to address specific issues

Deciding if it is Worthwhile

- Establish a baseline before any actions
 - Costs, production rates, KPIs
 - Variability measures
 - This is easy to do using your historic PI data
- Take corrective actions based on analysis tool
- Establish new standard with changes made
- Estimate benefits by comparison with baseline
 - Cost savings, production improvements
 - Reduced variability

Ongoing Improvements

- Put calculated statistics back into PI for tracking improvements over time
 - This month vs. last month
 - Shift improvements
 - Batch comparisons
- Continue tightening constraints on metrics
- Tackle additional loops
- Make sure the team stays engaged

Thank you for your time and attention!

For more information on RoviSys or rCAAM..

John Cunningham

jc@rovisys.com

330-995-8124

www.rovisys.com

How To Leverage Your Data?

Presented by
Michel Ruel, Top Control Inc.

Empowering Business in Real Time
PI Infrastructure for the Enterprise

Top Control: history

- 1994-2009
 - -Training, consulting, optimization
 - Offices in USA, Canada
 - Strategic partner of Matrikon
 - Customers in 31 countries

Tools for Operational Excellence

Value added solutions:

- Alarm management
- Control performance monitoring
- Equipment condition monitoring
- Process performance monitoring

- Data connectivity
- Data management
- Data and process visualization
- Engineering analysis

Data→Knowledge → Diagnostics

Diagnostics

Result\$

Analysis

Process systems

The state of the s

Performance

Data

Control

Impacts

The reality

Numbers from audits, articles and our field experience

- 20 % Control loops, improper design
- 30 % Control valve related problems
- 15 % Not installed properly
- 30 % Nonsensical tuning parameters
- 85 % Improper tuning parameters
- <u>only 25 %</u> give a better performance in automatic control!!

Problems: What Could Go Wrong

Expected Results

- Service factor
- Tuning
- Repair
- Review control strategies
- Optimize

- Variability: ÷2
- Cycling: removed
- Valve travel: ÷5 (valve wear ÷ 2)
- Robustness: X 2
- Performance: X 2

Quality:

30%

Efficiency: 1 to 5%

Throughput: 1 to 5%

Energy: 1 to 10%

Maintenance costs: ____ 30%

MPC deployment, re-testing: 70%

Expected Benefits of Optimization

- Increase process performance
- Use resources (human & material) wisely

Reduced energy costs

Reduced waste

Reduced variability

Reduced valve maintenance

Reduced pollution

Cycling removed

Increased up-time
Improved product quality
Improved efficiency
Better operation
Improved safety
Smoother start-up

Conclusions

- 1-Usage 2-Stability 3-Performance
- Resources are used where they are really needed
- Process control systems are used to their full potential
- Operation and production are optimal
- Maintenance and engineering are efficiently used.

Boiler 3, November 2007 vs April 2008

November 2007 vs April 2008

November2007

Mapril 2008

An example at White Birch: PIC 1900

(tuning parameters adapted to load)

February 8 2008

June 30 2008

3 times better

	Avg.	Std. Dev.
PV	2648.13	60.16
SP	2650.00	0.00
Error	-1.87	60.16
OP	15.54	5.87

RPI:

Diagnosis note: Good control; External oscillatory disturbances or nonlinearity may exist.

	Avg.	Std. Dev.
PV	2649.73	20.42
SP	2650.00	0.00
Error	-0.27	20.42
OP	10.78	1.70

Steam cost over 6 months

Small Gestures That Count!

- Actions
 - Daily
 - Weekly
 - Monthly
 - Yearly
- Workflow, procedures
- What can be automated?
- How can the process be sustained?
- How can optimization be optimized?

Thank You

Michel Ruel

President

Top Control Inc

mruel@topcontrol.com

(877)867-6473

www.topcontrol.com