

Process & Benefits of Monitoring Based Commissioning

David Jump, Ph.D., P.E.
Principal
Quantum Energy Services & Technologies, Inc.

This presentation will discuss:

- Retro-commissioning (RCx) & monitoringbased commissioning (MBCx)
- RCx/MBCx process and benefits
- Example projects & use of data
- Utility programs and initiatives
- Questions

- Retro-commissioning is a systematic process for investigating how and why an existing building's systems are operated and maintained, and to identify ways to improve overall building performance.
- Benefits from RCx?
 - Low cost energy savings
 - Optimum system energy performance
 - More comfortable buildings
 - Better maintained equipment
 - Fewer complaints
 - More efficient allocation of resources
 - Improved indoor air quality
- RCx vs. Retrofit (low-cost vs. capital intensive)
- Persistence issue (Sustained energy performance)

RCx / Monitoring Based Cx Process Comparison

RCx Process

Planning Phase

- Review available info./ visit site
- Write RCx Plan

Pre-Investigation Phase

- Inventory equipment
- Address deferred maintenance
- Pre-functional testing
- Initiate trends

Investigation Phase

- Document operation conditions
- Functional testing
- Assess sequences
- Make recommendations

Implementation Phase

- Install & commission measures
- Document improved performance

Turnover Phase

- Systems Manual
- Training

MBCx Process

- Identify and track energy and operational parameters, add points where necessary
 - Whole-building energy (e.g. electric and gas)
 - Systems: Chiller & fan kW, lighting, etc.
 - Independent parameters (OAT, etc.)

Develop M&V Plan

- Develop baseline energy models
- Collect post-installation data
- Develop post-install model
- Determine savings

Persistence Phase

- Establish energy and performance tracking system
- Provide periodic reports
 - Savings
 - Operations
- Address deficient performance

Building Automation Systems (BAS)

Manufacturer data / architecture at: DDC Online

Typical BAS Graphic

BAS Graphic of CHW System

RCx Process - Diagnostics

RCx Diagnostics, cont.

Supply air temperature night reset – not working

RCx Disgnostics, cont.

Faulty fan static pressure control – not working

RCx Diagnostics, cont.

Economizer (free cooling) problems

RCx Diagnostics, cont.

Chiller Cycling

The Building Tune-Up Case Study I

One Market

- Commercial Office Multi-tenant
 1.4M sqft of conditioned space
- Savings 1.3GWh
- Study identified 1.6 GWh of costeffective savings
- Implemented in two months
- 40% of savings disappeared in less than a month

The Building Tune-Up Case Study II

Large San Francisco Retailer

- Multi-story retail site 700Ksqft
- Study costs \$33K
- Savings \$50,000 Annually
- Implemented in two months
- 60% of savings disappeared in less than a month

- RCx typically a "one-time" intervention
 - Without proper training or full understanding of systems, control settings can be overridden and savings lost.
- MBCx:
 - Leave behind system that allows staff to determine whether system is operating efficiently
 - Provide self diagnosis tools so staff can troubleshoot building
- Issues:
 - Need a good monitoring/analysis platform
 - Who uses it? What skills required?

QuEST Approach: Energy Savings Analysis

- Select measurement boundary
 - Whole Building
 - HVAC Systems

Baseline Model: Soda Hall

Total Building Electric

Peak Period Electric

Building Steam

HVAC System Electric

MBCx Project HVAC Savings

Electric Meter Savings

kw MSHN 7,000

6,000

- Electric Model
- Baseline
 - 2p Multivariable
 - Time unit: Daily
 - Ind. Variables
 - OAT
 - Day of week

7,000

6,000

5,000

3,000

2,000

1,000

Daily kWh Use

- CV-RMSE: 10.5%
- R²: 0.70
- Post-Install
 - CV-RMSE: 8.3%
 - R²: 0.77

Chilled Water Savings

- CHW Model
- Baseline
 - 2p
 - Time unit: Hourly
 - Ind. Variable
 - OAT
 - CV-RMSE: 28%
 - R²: 0.80
- Post-Install
 - CV-RMSE: 46%
 - R²: 0.90

Hot Water Savings

- HW Model
- Baseline
 - 4p Multivariable
 - Time unit: Hourly
 - Ind. Variables
 - OAT
 - Day of week
 - CV-RMSE: 4.8%
 - R²: 0.69
- Post-Install
 - CV-RMSE: 64%
 - R²: 0.30

Daily CHW Usage — Baseline

Office Building Savings

MBCx Costs & Benefits

Building	Metering Costs		MBCx Agent		In-House Costs		Total	
Computer Science Building	\$	4,442	\$	62,160	\$	51,087	\$	117,689
Chemistry Building	\$	22,573	\$	53,000	\$	15,300	\$	90,873
University Library (Example 3)	\$	26,000	\$	96,795	\$	57,757	\$	180,552

- Including all costs and verified savings, project remains cost-effective:
 - Computer Science: 1.7 year payback
 - Chemistry: 0.7 year payback
 - University Library: 1.0 year payback
- Added costs of metering hardware and software did not overburden project's costs

Typical MBCx Project Timeline

Involved Parties

- Program pays service provider for:
 - Initial scoping of project
 - Investigations and recommendations
 - Implementation assistance
 - Verification of installation
 - Final report and training
- Program pays customer incentives for:
 - Measures that save energy at \$X/kWh, \$Y/therm, \$Z/kW
 - Lighting vs. HVAC incentive rates may be different
 - Capped at a % of measure or overall project cost
 - Some RCx programs pay for initial metering costs (UC MBCx)

- Approximately \$3.7B in 2009 to 2011 program cycle
 - Approval delayed, bridge funding in place
 - Includes Residential, Commercial, Industrial Programs
- RCx/MBCx Programs:
 - PG&E Core RCx Program, SCE RCx Program
 - SDG&E & SMUD RCx Programs
 - Various 3rd Party and Local Govt. Programs
 - UC/CSU/IOU Partnership (Retrofit and MBCx) ~ \$500M
 - Nationwide (see map)
- Data Center Programs
 - PG&E Data Center Cooling Controls Program
 - SCE Data Center Optimization Program
 - Silicon Valley Power Data Center Optimization Program

States with RCx Programs

Questions?

