

Operations & Decision Support for an Integrated Energy Business

Patrick Lee, Vice President-Energy Supply Sempra Generation

Empowering Business in Real Time
PI Infrastructure for the Enterprise

* Sempra's ownership interest is 49%

Sempra LNG

- Energía Costa Azul
 - Operational Q2 2008, 100% ownership and 1.0 Bcf/d capacity
 - Nitrogen plant operational Q4 2009
 - Expansion operational beyond planning period
- Cameron LNG
 - Operational Mid 2009, 100% ownership and 1.5 Bcf/d capacity
 - Expansion operational beyond planning period
- **▶ Port Arthur Marine Petroleum Terminal & Storage** (2011)
 - Joint Venture with Valero Energy Corp.

Sempra Pipelines & Storage

Sempra Generation

- Existing Combined Cycle Fleet
 - Efficient
 - Low Emissions
 - High Availability
- Renewable
 - 10MW Solar PV Completed 12/2008
 - 48MW Solar PV Expected 6/2010
 - 500MW Solar in Development
 - 1000MW Wind in Development

SDG&E and SoCal Gas

Sempra Energy

- 24 million consumers
- 24,000 square miles of service territory
- 6.5 million gas meters
- 1.4 million electric meters
- SoCal Gas is the largest natural gas distribution utility in USA

SDG&E Smart Meter Program

- \$500 million capital project installing 1.4 million electric and 900,000 gas meters in service territory by Q1 2011
 - Two-way communication meters
 - Remote disconnect and Home Area Network capability
 - Opportunity for real-time pricing and in-home services

Near Term Investments

\$11+ Billion Capital Plan

Utilities

- Distribution / AMI
- Transmission
- Generation
 - Solar
 - Wind
- Pipelines & Storage
 - Rockies Express Pipeline
 - Liberty Gas Storage
- LNG
 - Re-gas terminals

Sempra Commodities

RBS joint venture

Tightly Integrated Business Units

New Supplies

Transportation & Storage

Marketing

Distribution & Generation

Leading developer of LNG import facilities Rockies Express is the largest pipeline built in 20 years

► 150 Bcf of natural gas storage

Sempra Commodities

Leading natural gas marketer in North America

- Largest gas utility in the U.S.
- Serve 29 million consumers
- 2,600 MW of natural gas-fired generation

OSIsoft_®

2009 USERS CONFERENCE SAN FRANCISCO

OSIsoft PI Deployment in Sempra

Sempra Energy PI Examples

T&D System Operations

System Operating Diagram

Distribution Planning

Ready

Potential Overload Watch List

Emergency Operations

Rolling Blackout/Load Curtailment

Dynamic Transmission Rating

OH Transmission Dynamic Rating vs. Static Rating

- Ruling span concept
- Load Cells for measuring cable tension

• Cable Tension (CAT) Monitoring Unit

Radio transmitter

230KV UG Cable

- Fiber optic sensors
- Real-time modeling
- Dynamic rating

Substation Real-Time CBM at SDG&E

Substation CBM Real-Time Data

PI for Transformer Monitoring

Substation CBM Real-Time Analysis

PI for Circuit Breakers Monitoring

Density Monitor Provides

Real time monitoring

Elimination of false Alarms

Leak Trending Data

Accurate Density Calculation

Employee safety

Prediction of future alarms

(Level 1)

(Level 3)

Operations Decision Support

Location of Paper Sample	Degree of Polymerization (DP)		
NLTC – Phase A	586		
NLTC – Phase B	737		
69kV Bushing C	688		

New Insulation Paper: 1000 < DPv < 1300

Middle Aged Insulation Paper: DPv = 500
Old Age Insulation Paper: DPv < 251

Severely Degraded Insulation Paper: DPv < 151

OSIsoft_®

2009 USERS CONFERENCE SAN FRANCISCO

TRANSFORMER Health Indices

Insulation Power Factor

LTC Application & Design

Oil Conditions

Bushing & Accessories

Operating History & Conditions

Transformer Operating Limits

👫 PTLOAD-Designi	on_ Assessment\e	prisoft\El C	ajon Bk	33 64 m	va.run	Ü ≣ M:\
File Edit Tools Options H	Help					
Transformer Cooling	Ambient Load Cycle Cycle	Bubbles	Calc Type	Results		EPI
A. OUTPUT SUMMARY						ں 1
Date of Calculation = 05/12/2005 10:22:35 AM Number Iterations = 6					Deg. (
Limiting factor = Fixed upper limit Contingency Load (Amps) = 2963.145						
Peak Load (MVA) = 64						
Peak Load (Amps) Peak Load (PU)		963.145 .285714				
** Warning: ratings in excess of 2.0 P.U. are not supported by IEEE guidelines and the results may be unreliable.					Dist	
Max Hot Spot (Deg C) = 131.64					₫ M:\	
Max Top Oil (Deg Peak Age Accel F	actor = 8	.1068	•			EPF
Cumulative % Los Max Bubble Risk						
		_		_	e and load profile	€
Comparison of hot spot rise over top oil					Load (MVA)	
simulated versus actual						oad
		p Oil			LOL	_ 2
IEEE		105		176	.149	
						Dec
Ptload		105		145	.039	Dec
Actual HS ris	se	106		131	.014	

OSIsoft_®

2009 USERS CONFERENCE SAN FRANCISCO

CBM PI Notifications Email Alert

From: @semprautilities.com Sent: Wed 1/21/2009 11:57 AM CBM-XfmrLv4 Ack To: Cc: Subject: _BK71_THER_AlarmLevel4 Name: BK71 THER AlarmLevel4 Description: Bank 71 Thermal Alarm Level 4 Server: IT-P01 Database: CBM2 Start Time: 1/21/2009 11:56:24 AM Pacific Standard Time (GMT-08:00:00) Trigger Time: 1/21/2009 11:56:24 AM Pacific Standard Time (GMT-08:00:00) T-P01\CBM2\SISCO Managed Models\SDGE CBM\ClassView\thermal Target: Value: Alarm 4 Priority: Normal Link: - BK71 - Thermal Actions: Acknowledge Acknowledge with comment

CCGT Plant Operations

Gas Turbine Monitoring

Turbine Operations

4.00 hours

11/7/2008 2:52:17 PM

11/7/2008 10:52:17 AM

Real-time Emission Monitoring

Predicted vs. Actual Measurements

Gas Pipeline Application

- **▶** Gasoducto **Bajonorte Pipeline Monitoring**
 - Pressure
 - **▶** Temperature
 - ► Flow

LNG Terminal Application

► Energía Costa Azul (ECA) ECA Weather

ECA Meteorological and Oceanographic Data

Wind Speed

2.8571 2.2857

.1429

3/10/2009 9:07:07 AM

Measure	Current	Last Month Avg.
Wind Speed	3.60 m/s	3.44 m/s
Wind Gusts	4.00 m/s	4.03 m/s
Wind Direction	269.00°	185.91 °
Air Temp C	12.30 ° C	13.85 ° C
Rain Fall	0.00 mm/hr	0.00 mm/hr
Baro Pres	1018.00 mbar	1016.75 mbar
Sig Wave Hgt	0.70 m	0.79 m
Max Wave Hgt	1.20 m	1.35 m
Mean Wave Per	9.50 sec	6.84 sec
Sea Temp	13.00 ° C	13.64 ° C
Current Speed	4.00 cm/sec	13.63 cm/sec
Current Dir	90.00°	197.47 °
Tide	1.15 m	0.81 m

2 Hour(s)

3/10/2009 11:07:07 AM

Solar Generation Projects

El Dorado 10MW Solar PV (COD:12/31/2008)

- 30 miles Southeast of Las Vega
- Technology: Thin Film Solar PV (CdTe)
- Expected Annual Yield: 23,000 MWh

Copper Mountain 48MW Solar PV (6/2010)

• 30 miles Southeast of Las Vegas

Mesquite Solar (up to 500MW Solar PV or

Thermal: 2010 - 2014)

Near Palo Verde in Arizona

Solar Generation Data Comm.

Solar Field Monitoring

Sempra Energy

- Performance Monitoring
 - DC and AC Output
 - Inverter Operating Conditions
- Weather Conditions

Running

FON1 P002

atCon PVS-500KW

Inverter Information:
Site:
Sempra Generation

Average Line Frequency Error

Visual KPI - PI Data To Go

Plant Output Monitoring

Conditions Alert via Email

Solar Generation Applications

:MP01

Current Taq: \\

Irradiance Analysis (Historical, Predicted, and Actual)

National Renewable Energy Lab (NREL)

- Typical Meteorological Year (TMY)
- TMY2 and TMY3 Data Sets

Tuesday

February, 2009

Wednesday

Thursday

Modeling

Solar Generation Applications

- Output forecasting
 - Modeling
 - Historical output analysis
 - Equipment conditions
 - Day-Ahead (DA) scheduled
 - DA Scheduled versus actual metered quantity
 - Intra-hour forecast
 - Requires additional pyranometers & weather stations
 - To mitigate schedule imbalance and intermittencies
- Operations & Maintenance
 - System and panels performance monitoring (Equipment degradation)
 - Soil condition & washing frequency

Predictable trends

Wind Generation Data Planning

Looking Forward...

Continue to expand analysis & modeling capabilities in PI

- Real-time & Historical Data Analysis & Modeling
- Timely Decision Making Capability
- Energy Market Assessment & Transaction
- Improve Abilities for New Business Development
- Create Synergy Across the Integrated Business
 - Data Integration of linked Businesses
 - Data and Information Access Management

Current Development in Pl

Organized Market - CAISO LMP Prices Analysis

- CAISO Real-time & Historical Data
 - Hourly Day-ahead LMP Prices (over 3000 nodes)
 - 5 Minute Real-time LMP Prices (over 3000 nodes)
- Decision Drivers from Analysis
 - Planned Outage Scheduling
 - Adaptive Plant Operations
 - Bidding Strategies
 - Hedging for Congestions

P(Q) (\$/MWh)

Future Applications in Pl

Bi-lateral Energy Market - Pricing Analysis

- Historical, Actual, and Forward Prices
 - Daily On-peak and Off-peak Prices by Trading Hub
- Temperature Data (Historical, Actual, & Forecast)
- Supply & Demand Data
- Other Cost Drivers: Commodities Prices
 - Crude Oil / Heating Oil
 - Natural Gas

Future Applications in Pl

Smart Grid – An Energy Supply Chain

- Learning from the Best in Retail Business
- Supply Chain of Walmart (from Store Shelves to Suppliers)

Future Applications in Pl

Smart Grid's Supply Chain

Data in Silos Today! Smart Grid Will Drive End-to-End Data Integration!

In Summary

DNA of a Successful Company

- People & Company Culture
 - Make good judgment
 - Make decisions timely
 - Work hard
 - Succeed as a team
 - Continuous improvement mindset
 Analytical Solutions Framework

OSIsoft PI Infrastructure

Leveraging Technology

- Data Integration & Analysis for JIT
 Decision Support & Communication
- Relevant Information Drives Efficiency
 & Productivity

Personalization

Generate personalized offers by customer
Build personalization
Rules

Communication

- Plan continuous communication dialogue
- Define batch and real-time event rules and triggers

Optimization

- Regulate frequency and quantity of contacts by channel
- Optimize customer communications through contact modeling

Interaction

- Deploy outbound or manage pending inbound
- Event-driven communications
- Personalization
 Merge
- · Track interactions
- Real-time personalization

OSIsoft_®

200

"It is not the strongest of the species that survive, nor the most intelligent, but the one most responsive to change."

Charles Darwin

Be Prepared for Changes!

OSIsoft_®