
Hacking Your Way To More
Secure Code

Robert Erbes, Kenneth Rohde

INL

2 December 2009

Where/What is the INL?

• Department of Energy (DOE) National
Laboratory located in Idaho Falls, ID

• Primary mission is “sustainable energy
systems”

• Cyber security research team working
to secure critical infrastructure since
2003

Who are we?

• Cyber security researchers

– Support the DOE National SCADA
Test Bed (NSTB)

– Support the DHS Industrial Control
Systems CERT (ICS-CERT)

– Majority are Computer
Scientists/Engineers by education

– Hackers by hobby and trade

– Around 20 full-time researchers

Outline and Objectives

• A little motivation

• Common vulnerability locations

– Where, why, and how

• SQL Injection

• Fuzzing

– OPC UA

Where are today‟s hackers looking?

Motivation

• Network perimeter defenses will never be adequate

– Cannot rely upon firewalls

– Cannot rely upon IDS/IPS

• Our software systems have the same problem

– Hard and crunchy on the outside (sometimes)

– Soft and chewy in the center (almost always)

• Start with the outside and work your way in…

Common Vulnerability Locations

• Web applications

• Custom applications

• SCADA software

• Protocols

Web Applications

• Where

– DMZs

– Corporate Networks

• Why

– Usually not created by experienced developers

– Use SCADA vendor plugins, SDKs, APIs,
protocols

• How

– SQL injection

– XSS

Custom Applications

• Where

– DMZs

– “Outside” locations

• Why

– Often implemented in C/C++

– Generally very old (software and hardware)

• How

– Memory corruption issues (buffer overflows)

– Design (logic) problems

SCADA Software

• Where

– Critical infrastructure networks

– Technically everywhere…

• Why

– Coolest (and worst) 0-day ever

• How

– Binary reverse engineering

– Sometimes access to source code

Protocols

• Where

– Almost all networks (not just SCADA)

• Why

– Often cross network boundaries

– Proprietary == no IDS or firewall support

• How

– Lots of patience and decoding

– Fuzzing

SQL Injection

xk
cd

.c
o

m
/3

2
7

Classic SQL Injection

SELECT * WHERE student = „[studentName]‟;

+
studentName = “Robert‟; DROP TABLE Students;--”

=
SELECT * WHERE student = „Robert‟; DROP TABLE Students;--‟;

Protection from SQL Injection

• Sanitization

– Escaping

– White lists

• Principle of least privilege

• Let someone else worry about it

– i.e., use methods that are safe

Fuzzing in Detail

First Things First: Time for a Demo

Fuzzing defined

“The original work was inspired by being logged on to a modem
during a storm with lots of line noise. And the line noise was
generating junk characters that seemingly was causing
programs to crash. The noise suggested the term ‘fuzz’.” –
Barton Miller, 2005

www.bioweb.uncc.edu

What can/should be fuzzed

• Network protocols

– Remote Services

• File formats

• Option switches

• APIs

• et cetera

More Generally: any input that crosses a “security
boundary”

Why Fuzz?

• Makes more robust applications.

• Makes more secure applications.

• Microsoft does it.

• “Hackers” do it.

Buying vs. Building

Buying
• Time == $$$

• Easier to customize

• Easier to integrate into SDL

• Are you sneaky enough?

Building
• $$$

• Some one else does it for
you (good)

• Some one else does it for
you (bad)

• Is it even possible to buy a
fuzzer for your super secret
protocol?

When building…

• Speak the Language. Uh… I mean… protocol.



When building…

• Be malicious. Break all assumptions. Don’t just
interact with the target.

xk
cd

.c
o

m
/5

3
8

When building…

• Be careful what you reuse

– Layers

• Be careful of your assumptions

– Maybe someone else should fuzz your code?

• QA team

• Be mindful of the targets expectations

Types of Fuzzing

Dumb 
• Simple

injections/manipulations

– 3 Million “A”s (0x41 ftw)

– DWORD slide

– Bitflips

• Easily foiled by simple CRC

• Run while developing Smart
fuzzer

Smart 
• Can account for CRC/other

checks

• Aware of structure

• Aware of state

• Aware of relationships

What you‟ll likely find

• Depending on what you‟re fuzzing…

– Buffer overflows

– Access violations

• Other memory management problems

– Pointer errors

• Arithmetic

• Null

– Type conversion errors

– State machine/Logic problems

– Resource consumption (DoS)

– More general parsing errors, crashes, and hangs

– 2nd order vulnerabilities

• Information disclosure

Running the Fuzzer

• Require some sort of event/anomaly detection

– Debuggers (duh)

– Memory analysis

– Watchdog programs

– ping / netcat

• One test case, one test

Other Important Things

• Randomization and Repeatability

• Connections / Layers

• Failures and the continuation of testing

FUZZING HOW-TO

The network protocol example

• Type

• Length

• Value

Type Length Value

Length Type Value

OPC UA Binary Hello Message

Types

• Most often an explicit indication of what‟s to come.

fl
ic

k
r.

co
m

/p
h
o

to
s/

th
eo

p
h
il

e

OPC UA Binary Example

Message Type field: 0x48 0x45 0x4C == “HEL”

Chunk Type field: 0x46 == “F”

Version field: 0x00000000 == “0”

Breaking Types

• Blatantly invalid

– “0x00 0x0A 0x0D”

• Mismatched

– “HEL” type/header followed by “OPN” Message

• Missing

Lengths

• Length, count-of, offset, delimiter, array index

• Explicit vs. Implicit

• Multi-layer length relationships

• Variable length length fields

OPC UA Binary Example

Message Length: 0x4B000000 (little endian) == 75 bytes

Receive Buffer Size: 0xFFFF0000 == 65535 bytes

Send Buffer Size: 0xFFFF0000 == 65535 bytes

Max Message Size: 0x00008002 == 41943040 bytes

Max Chunk Count: 0x00000000 == 0

String Length: 0x2B000000 == 43 bytes

Breaking Lengths

• Invalidate relationships

• Number boundaries

– 16-bit number has at least five

• Common buffer sizes

– Powers of 2 for small  Powers of 10 for big

• Strings representing numbers / lengths

• Excessive use / manipulation of delimiters

• Combo Length + Delimiter relationships

Values

• Anything.

– Numbers, Strings/Text, Blobs, Tokens… clip-art

OPC UA Binary Example

Endpoint URL == “opc.tcp://172.16.107.100:9001/UA/PIUAServer”

Breaking Values

• TLV

• Numbers

• Binary blobs

– Add/subtract bits

– Truncation

• Strings

– Whole new can of worms

Jeffrey Simpson

Strings

• Encoding and character sets

• Compression/Expansion

• Escape sequences

• Character constraints

• Delimiters

State Machine Fun

• Out of order sequences

• Sequence repetition

• Absurdly high recursion

• Selective deletion of sequence parts

Final Fuzzing Takeaway

• Simple in concept

• Relatively simple to perform

• Less bugs == Better software

– Increase the Quality, Robustness AND Security of
your application!

• Make the bad guys work!

FUZZING WITH PEACH

QUESTIONS / COMMENTS
Thank you!

