

Real Time Information — Currency of the New Decade

Hilton San Francisco Union Square | San Francisco, CA April 26-28, 2010

OSIsoft® UC2010

OSIsoft PI High Availability (HA) & Virtualization

Complementary & contrasting technical approaches to HA

Guy F. Acciai Integrated Manufacturing System Architect Corning Incorporated - Blacksburg, VA

Agenda

- Who is Corning and what do we do...
- Corning Life Science (CLS) manufacturing
 - The need for a historian, a MES, and High Availability (HA)
- HA & Virtualization
 - PI and VMware product offerings Pros/Cons & Tradeoffs
- CLS Final Architecture
 - Usage of complementary tools & "watch-outs"
- Usage to date
- **Futures Needs & Questions**
 - PI Wants
 - VMWare Wants

Corning Incorporated

Founded:

1851

Headquarters:

Corning, New York

Employees:

≈23,500 worldwide

2009 Revenues:

\$5.4 Billion

Fortune 500 Rank:

391

- Corning is the world leader in specialty glass and ceramics.
- We create and make keystone components that enable hightechnology systems for consumer electronics, mobile emissions control, telecommunications and life sciences.
- We succeed through sustained investment in R&D, over 150 years of materials science and process engineering knowledge, and a distinctive collaborative culture.

Corning's Culture of Innovation

Glass envelope for Thomas Edison's light bulb

Dow Corning silicones

Glass ceramics

Ceramic substrates for automotive catalytic converters

High-throughput label-free screening platform for drug discovery

1879 1915

1947

1960

1970

1972

1984

2006

Heat-resistant Pyrex[®] glass

Processes for mass producing the television bulb

Fusion draw process

First low-loss optical fiber

AMLCD glass for TVs, notebook computers & monitors

Market Segments & Operations

Corning Life Sciences (CLS)

Developer, manufacturer and global supplier of innovative life science product solutions for over 90 years

CLS Manufacturing

- Over time, products have shifted from borosilicate glass to greater use of sterile/disposable plastic
- Extensive use of injection molding to form plastic parts used for medical testing and drug discovery
- FDA regulation and traceability requirements
- Focus on overall equipment & labor effectiveness
 (OEE) as well as scrap & downtime pareto analysis
- Business decision to deploy a Manufacturing Execution System (MES)

Business need for HA

 Use of existing PI server as SCADA (and historian) to act as IO interface to MES

 MES generates product labeling & interacts with inventory systems – availability is paramount

ERP

High Availability

- Definition: a system design & associated implementation that ensures a certain degree of operational continuity during a given time period
 - Design for availability given planned & unplanned downtime
- Major approach is replication & redundancy
- Historical Approaches:
 - Clusters & load balancing
 - Redundant/Failover Hardware (ie, Tandem, Status, RAID)
 - Marathon EverRun
 - Stratus ftServers (with ActiveUpgrade or Avance SW)
- OSIsoft History
 - OSIsoft PI server on a MSCS
 - Interface Redundancy
 - PI Server HA

PI Interface Failover

- Been available in some interfaces for several years
- OPC is "model interface" Need to "license two OPC" interfaces, or rule of 3 interfaces
- Supports two "types" of HA
 - Support for "redundant" OPC servers
 - Support for "redundant" PI OPC interfaces
 - UnInit based (preferred) or MS cluster based

 Our implementation, uses redundant OPC servers on redundant interface nodes

PI Interface Failover Architecture

- OPC server coordination support for 3 different modes:
 - Hot Mode, Warm, Cold
- Redundant OPC Interface Coordination
 - 8 specific "control" tags to avoid the "Split-Brain" problem
 - Phase I (on OPC source) and Phase II (shared file)

CLS HA Topology

Collective Naming & Migration

- For "migration" of a new "collective" to replace an existing PI server – Must name collective with same name as old server
 - Collective is virtual
 - Has no IP address & only "visible" to PI SDK/API
 - Need to match/force "PI Server ID"
 - Some SDK/API's tools use ServerID, and others Server Name
 - Tools are good, and migration is not hard
 - But fairly complex topic, and requires understanding and planning
 - Migration also involved network team to control "timing" around DNS switch to point old server name to new collective
 - Upgrade Approach
 - Interfaces first, to support buffer to "old server" & collective for testing
 - Collective Formation (Keep old server for fallback)
 - Client Upgrade
 - · Shutdown old server

PI HA - Pros and Cons

- Pros Improved:
 - Reliability (semi-transparent failover)
 - DR support (Multiple Servers in diverse locations)
 - Application availability during maintenance (rolling upgrades & security patching)
- Cons Higher Costs & Complexity
 - SW OSIsoft (Additional PI Server and interfaces)
 - Enterprise License can mitigates this
 - HW Duplicate HW (Servers AND Storage)
 - Virtualization helps mitigate some of these costs
 - Greater complexity (Greenfield easy, Migration more complex)
 - Various interfaces don't support UniInt failover (yet)
 - Various limitations around HA V1

Current PI HA Limitations:

- Changes to tags/metadata can ONLY happen on primary
- Archive annotations and changes to annotations are not currently propagated to the collective.
- Non-Interface data (Manual writes/Lab Points) are not currently propagated to the collective
- PIBagen will not generate the same batch-ids for batches generated on different servers. PIBagen and "old" batch data is not replicated between servers in the collective
- Acknowledgement of alarms is not currently replicated between servers in the collective.
- Many of these are to be addressed in PR2 of HA

Virtualization

- Definition: Virtualization is abstraction performed on a given hardware platform by host software (a control program), which creates a simulated computer environment, a "virtual machine", for guest software.
- Alternatives In the Server Space (on Windows)
 - MS Hyper-V (and MS Virtual Server)
 - VMWare ESX Cluster + VMotion (and VM Server)
- Problems its solves
 - Server consolidation reduced energy and physical footprint
 - Improved availability & operational flexibility (provisioning)
 - Disaster recovery

Corning's drive to virtualization

- Large multi-year effort by central IT groups to setup failover ESX clusters in each site to support "standard" IT functions (4 servers):
 - IT Core Services (File & Print/Backup/Patching/AV/DC/DNS/DHCP/etc.)
- General approach is to "virtualize everything we can"
- Attempt to "leverage" this standardized investment for manufacturing and site specific applications
 - PI is a "well behaved" application, with predictable resource demands, that is easily virtualized

OSIsoft formally supports VMs

- ArticleID: <u>3062OSI8</u> A PI Server is supported when installed on a virtual machine that's running a supported operating system.
 - With the caution: Considerations must be made to evaluate how much resource contention is expected at peak loads. Critical resources are usually I/O bandwidth and disk resources
- Corning has several PI servers running on VMware – Actually painless to virtualize, given sufficient resources (generally scales linearly with tag count)

VMWare Architecture

- ESX physical clusters
 - HA Auto-Restart (on OS or HW failure – Not Application)
 - DRS Load Balancing
 - Implies SHARED Storage
- Key component to Corning's HA environment is VMotion
 - Move *running* virtual machines from one physical server to another *with NO impact* to end users

VMWare - Pros and Cons

Pros - Improved:

- Reliability (automatic restart on "crash")
- Scalability & QOS (Easy "add" of additional resources to guests & "hot" additional of nodes to ESX cluster, DRS load balancing)
- DR support (VMware Snapshots & Distributed Clusters)
- Availability during planned HW maintenance (Vmotion)
- Better utilization of HW, energy & floor space savings

Cons - Higher Costs

- SW VMWare ESX & VMotion
 - Enterprise license helps here
- Greater complexity (Affinity Rules, VIC Access, etc)
- Requires better coordination and control around shared physical resources
- Lack of support for "esoteric" HW interfaces

Comparisons & Contrasts

- PI: Basic approach is redundancy
 - Multiple instances of PI (server and/or interface running) but "bound" to HW
- VM: Separation from physical HW
 - Single instance of application But "divorced" from physical HW
- Our Approach Use both, to get more "flexibility" around physical resources, and redundancy of multiple instances of PI
- Tradeoffs: Cost and Complexity

Final Architecture – CLS design

- 3 Physical Servers (all in ESX cluster)
- 18 "Guests"
 - 4 IT Servers
 - 3 Development Servers
 - 4 PI servers
 - 6 MES servers
 - 1 Other
- Designed to support shutdown of 1 physical server with no impact
- Rules to "keep" failover pairs on separate physical servers

Final Architecture - Watchouts

 Need to define VMWare affinity rules - To keep redundant PI nodes on separate physical hardware in ESX cluster

 We also use MS NLB (on other servers) for higher level MES failover setup – Significant setup complexity with server and network teams around physical and virtual VLAN configurations

Usage to date & Results

- Been operational for about 1.5 years
 - One unplanned PI interface outage (about 20 mins) due to failure around misconfiguration of shared interface file

VMWare and VMotion

- Added third physical node to ESX cluster for scalability "while hot"
- Numerous virtual server moves ("VMigrations") for load balancing
- VMigration to move active PI servers off HW replace failing SCSI card used for backup tape server
- Have had NO downtime associated with VMWare or VMotion.

PI HA

- Migrated interface nodes from XP to virtual Win03 servers while "hot"
- Support for numerous server and interface node reboots for applying monthly windows security patches & OPC interface upgrades
- "Unplanned" power outage corrupted PI databases on PI HA Primary –
 Was able to "promote" secondary to primary, and re-initialize "old" primary No data lose or customer outage

Future / Next Steps

Future needs for OSIsoft toolsets

- Continue to make more interfaces support failover
- N-way fanout of data from custom application writes via SDK rather than just API
- Server-to-server replication Need to address limits of HA V1

VMWare

- VSphere V4 Fault Tolerance Feature
 - Sets up redundant VM's and keeps in lockstep

Real Time Information — Currency of the New Decade

Thank you