

Real Time Information — Currency of the New Decade

Hilton San Francisco Union Square | San Francisco, CA

April 26 - 28, 2010

OSIsoft_® UC2010

Proactive Dashboards: The Power to Generate Knowledge

Presented by:

Rayan Hafiz Saudi Arabian Oil Company April 28th, 2010

Saudi Arabian Oil Company (Saudi Aramco)

- Fully integrated global petroleum enterprise of Saudi Arabia (exploration, production, refining, marketing, & Int shipping)
- Leads the word in crude oil production and export
- Responsible for about 1/4 of the worlds proven oil reserves
- Four refineries, ten gas and NGL plants, and three local joint ventures
- Number of joint ventures around the word in oil & gas refining & petrochemical businesses (USA, China, Japan)
- Headquarters in Dhahran Saudi Arabia
- 54,000 employees (2 of 7 in training)

OSIsoft at Saudi Aramco

- Largest user of PI and OSIsoft products in the Middle East
- First agreement was signed in 1996
- Approximately 105 PI servers
- Utilizing about 1.7 million PI tags.
- 2500+ of PI clients
 - PI-ProcessBook
 - PI-DataLink
 - PI-WebParts

Outline

- Objective
- Performance monitoring
- The need for good indicators
- Predicting failure proactively
- Proactive solution requirements
- Implementing the concept (Example)
- Solution architecture
- The way forward
- Summary of benefits

Objective

To:

Explain the concept of dual proactive performance monitoring

Show the implementation of proactive dashboards with the OSIsoft suite of applications

Performance Monitoring

"Difficult and boring ...

my favorite combination!"

Fraiser TV series

The need for good indicators

- Understand exactly what is going on
- Know how well we are doing
- Analyze the past (what happened)
- Provide feedback on current operation
- Support preparing actions/modifications in response to changes
- Learn of potential problems that might need early actions to be avoided

You need to avoid

- Measuring against yourself
- Depending on historical data (can you drive depending on your rare mirror only?)
- Putting high weight in numbers
- Gaming your indicators
- Static indicators (sticking too long to the same measures)

Key Indicators must be

- Meaningful
- Contextual
- Relevant to business
- Dynamic
- Capture multi levels (envelopes with different margins)
- Proactive

Proactive System Requirements

- Easy to measure and collect (Objective)
- Relevant to the function
- Provide current and reliable KPIs
- Cost efficient to be implemented
- Owned and understood (logic & reasons) by the users group
- Provide the connection between information and outcomes
- Provide information that can guide future actions

How to Transfer the Concept?

-001050101£1001€

Example

Mercury Monitoring & Analyses

The Problem

- A number of mercury removal units scattered over the operating facilities
- The impact of each unit to the system is not fully monitored
- Final products selling prices are highly sensitive to the mercury level

We need a proactive solution to monitor and improve performance

Overview Monitoring

Detailed Monitoring

Predictive Model Implementation

	MRI	J Bed Analysis				
	Leading Proactive (In	itial Shift of Functi	on)			
Tag	Description	Value	Min	Max	Eng Unit	Design
_ 4TI005.PV	Temp	124.00	85	180	DEGF	140
4FI1054.PV	Bed-A Flowrate	52.27	16.5	60.0	MBD	55.0
IFI1055.PV	Bed-B Flowrate	51.97	16.5	60.0	MBD	55.0
FOPDI172.PV	Mercury Inlet	3.86	0.0	20.0	ppb	100
_ab data	Saybolt Color		20	30	Saybolt	15
ab data	Water Content		0.00	0.05	Volume %	0.05
Lab data	Particulates		0	15	Microns	10
	Leading Reactive (La	tent Loss of Funct	ion)		11	
Tag	Description	Value	Min	Max	Eng Unit	Design
	Bed-A Current Liquid Hourly Space Velocity	18.81	12.0	22.0	RV/H	19.8
1_MRU_Bed2_LHSV	Bed-B Current Liquid Hourly Space Velocity	18.70	12.0	22.0	RV/H	19.8
	Bed-B Delta-P	2.87	0.0	3.0	PSIG	10.0
No tag	Bed-A Delta-P		0.0	3.0	PSIG	10.0
Calculated	Change in Bed1 Current life over Average Life		12.0	25.0	%	
Calculated	Change in Bed2 Current life over Average Life		12.0	25.0	%	
\$LBD493AOULHTN.L1	TOT Hg Bed1 Outlet ppb-wt	0.10	0.0	0.75	ppb	Less than 1
	TOT Hg Bed2 Outlet ppb-wt	0.50	0.0	0.75	ppb	Less than 1
	Lagging Proactive (Pa	ertial Loss of Func	tion)			
Tag	Description	Value	Min	Max	Eng Unit	Design
IPDI1286.PV	Bed-B Delta-P	2.87	3.0	8.0	PSIG	10.0
No tag	Bed-A Delta-P		3.0	8.0	PSIG	10.0
LINULBD493AOULHTN.L1	TOT Hg Bed1 Outlet ppb-wt	0.10	0.75	0.9	ppb	Less than 1
4LBD493BOULHTN.L1	TOT Hg Bed2 Outlet ppb-wt	0.50	0.75	0.9	ppb	Less than 1
	Lagging Reactive (1	otal Loss of Funct	ion)			_
Tag	Description	Value	Min	Max	Eng Unit	Design
IPDI1286.PV	Bed-B Delta-P	2.87	8.0	10.0	PSIG	10.0
No tag	Bed-A Delta-P		8.0	10.0	PSIG	10.0
JLBD493AOULHTN:L1	TOT Hg Bed1 Outlet ppb-wt	0.10	0.9	5.0	ppb	Less than 1
TELEBO493BOULHTN.L1	TOT Hg Bed2 Outlet ppb-wt	0.50	0.9	5.0	ppb	Less than 1

The Dashboard

Full Awareness Mode

Capturing the experience

Providing realtime measures

Identifying key items for current & historical analysis

Providing Advisory messages

Establishing Proactive Dashboards

Creating the Knowledge

Solution's Components

The Way Forward

- Develop a mechanism to deploy it at each site
- Refine the implementation procedures
- Utilize it for analyzing and monitoring chronic problems
- Migrate to PI-AF and PI-Notifications
- Introduce automated reporting mechanism to warn for major deviations in performance

Summary of benefits

- Complete monitoring and management pro-active tools
- Possibility to add any new units with minimal modifications
- Impact on performance improvement means multiple millions of dollars in additional revenues
- Solution's template could be used for other functionalities/applications
- The integration/utilization of OSIsoft tools removed layers of complications
- No additional investment is required

OSIsoft® UC2010

Proactive Dashboards: The Power to Generate Knowledge

Presented by:

Rayan Hafiz Saudi Arabian Oil Company April 28th, 2010

References & Acknowledgments

References

- "Delivering Asset Reliability", P. McNeil and H. Howland, Pipeline and Gas technology, May 2009
- "Developing Process Safety Performance Indicators", Peter Dawson, HSE, OGP Asset Integrity PKI workshop
- "Leading Performance Indicators: Guidance for Effective Use", Step Change In Safety
- "The five traps of performance measurements", Andrew Likierman, Harvard Business Review Oct 2009 p.96-101
- "The six mistakes executives make in risk management", N. Talib, D. Goldstein, and M. Spitznagel, Harvard Business Review Oct 2009 p.78-81

Acknowledgments

- Mercury use case team for the dashboard example
- Burri Gas Plan SaS implantation team for the concept/chart of predicting failure
- Engineering Solutions Center team for providing data access and infrastructure tools

Real Time Information — Currency of the New Decade

Thank you

© Copyright 2010 OSIsoft, LLC., 777 Davis St., San Leandro, CA 94577