

Real Time Information — Currency of the New Decade

Hilton San Francisco Union Square | San Francisco, CA April 26-28, 2010

Development & Implementation of the PI System at Cuajone Concentrator – Southern Peru

Eng. Nelver Benavides

AGENDA

- About Southern Peru Southern Copper Corporation.
- About Cuajone Concentrator
- PI System Architecture
- Some Applications
- Use of PI System for Process Optimization
- Benefits

ABOUT "Southern Peru – Southern Copper Corporation"

It is the largest copper company in the world based on amount of copper reserves.

Four Open-Pit Mines:

- Cuajone & Toquepala, located in southern Peru.
- Cananea & Caridad, located in northern México.

Metallurgical Complexes:

- Ilo (Peru)
- La Caridad & San Luís Potosí (México).
- Additionally, owns and operates 5 underground mines producing various metals as Cu, Zn, Mo, Ag, etc.

Projects:

- Expansion of the Toquepala and Cuajone concentrators.
- Tía María project, located in Arequipa.
- Los Chancas project, located in Huancavelica.

CORPORATION STRUCTURE

MAIN ACTIVITY

Cuajone

The Cuajone Concentrator is one of the most important industrial plants in Peru, because of its production level and up-to-date technology applied on the many processes. It has a nominal capacity of 87,000 MT per day.

- Operations were commissioned in 1976.
- A conventional open-pit mining method is used to obtain a copper ore that is then processed in our concentrator plant.

Actual Value Chain of the SPCC Production Process

Within the SPCC value chain, efforts are made to:

How can technology help to place value on our production processes?

...the answer

If technology is included, the production curve is going to

$$Q = f(L,K,N,H,T)$$

Becomes Asymptotic

Q = Productivity.

N = Natural Resource.

(Raw Material)

H = Human Resource..

T = Technology.

PI SYSTEM ARCHITECTURE

Initial PI System Architecture

Initial PI System Architecture

PI Server keeps history of plant information

- Used from 1998.
- Gathers information from 3 different control systems.

No System Redundancy

System had to be stopped for updates or maintenance of the server.

A Limited Analysis of Information

PI ProcessBook, PI DataLink and PI SQC.

Current PI System Architecture

Current PI System Architecture

Main system for performance management in real time

- Unifies information from all control systems.
- Allows to interact with other advanced control systems such as MEC G2.

A system with redundancy

 Maintenance and updates can be carried out without affecting the system availability.

Allows to do any type of information analysis

- Production personnel are developing Metrics so that they can determine whether objectives are being achieved.
- PI ACE allows calculation of KPI's for both operations personnel and management.

Allows to distribute information to any level

- Information is forwarded through a browser like Internet Explorer.
- It is possible to access information from any site including from outside the Company.

Architecture of PI System

- 1. Server Architecture.
- 2. Analysis & Optimization Architecture.
- 3. Visualization Architecture.

Server Architecture

Analysis & Optimization Architecture

Visualization Architecture

SOME APPLICATIONS

Operational Management Support

Concentrator Portal Applications

Productivity KPIs: Allows us to meet Targets

Applications PI WebParts

Management KPI's

Alarm system and start/stop equipment, sub-standard conditions of processes and operations, etc. (PI - ACE)

Applications PI WebParts

General Management Support

Concentrator Information System (SIC)

Total:21 E SOUTHERN COPPER Reporte de Operación Chancado Secundario Fecha :2010-04-09 Gitardia : 8 1.50 1.1/2 7.5.CD CHCOSII MP 1000 No. 1 17,573,00 11.7 73033 3.00 MP 1000 No. 2 17:264:00 10.56 15/8 699.26 7 + /00 C NCOS13 MP 1000, No. 3 17502.00 Total Toxe lale : 52 425 00 Parada de Planta Tolva de Finos 0.00 Comentario SING THE IGN SOMETEL GONZALES A URELIO SOCOLICH EDM UNDO Eduardo 4/10/2010 7:47:47 AM 4/10/2010 8:01:57AM 4/10/2010 8:09:10AM Eventos por Guardia CORV. 3A, SE SUSCA FIERRO CORV. 3A, SE SUSCA FIERRO CHEQUEO DETCHARCADO RA DEIN OTRAS DEEM RAS INTERNAS OTRAG DEMO RAGINTERNAS CONV. DE . DE EUCCA FIERRO CONV. 35 , DE SUDCA FIERRO CONV. 36 , DE SUDCA FIERRO Intolo Fin Duracióndih.mm) Demora Descripcion CHECKED SETCHARCADORA

The SIC obtains its information from the PI System (PI - ACE)

General Management Support

Concentrator Information System (SIC)

General Management Support

Concentrator Information System (SIC)

Management & Maintenance Planning: Reliability, Availability & Maintenance

PI System Support for Process Optimization

Development of Virtual/Soft Sensor as inputs to the Milling Advanced Control System, supported with PI System tools

Multivariable Statistical Analysis: SCAN

Virtual Sensors & Optimization of Milling Process

Virtual Sensors & Optimization of Milling Process

PSI Virtual Sensor Selection Logic

Advanced Control System

Virtual Sensors and Optimization of the Milling Process

Benefits of the Milling Process Advanced Control System

Production Benefits:

- ➤ Increase in production: 4.6%
- ➤ Decrease power consumption: 3.9%
- Decrease of fresh water consumption: 6.8%
- Net profit: US\$ 31.8 million (period: 2009/04/04 to 2009/12/31

Requirements for Success

- Requires resources that will efficiently and proactively manage the PI System and associated applications.
- Assign as many human resources to develop and enhance specialized applications.
- Invest in development and training of your staff.

Benefits

- A single database.
- Unified view of information.
- Increased availability of information.
- Detailed insight into the process.
- Easy integration with the rest of the systems.
- Ability to analyze the process and identify new control strategies.
- Improve the Predictive Maintenance.
- Identify best practices for operations.
- Real impact in decreasing operating costs.

Final Conclusion

PI System provides a natural and flexible infrastructure that enables and supports continuous innovation and improvement.

Real Time Information — Currency of the New Decade

Thank you

© Copyright 2010 OSIsoft, LLC., 777 Davis St., San Leandro, CA 94577