

Real Time Information — Currency of the New Decade

Hilton San Francisco Union Square | San Francisco, CA April 26-28, 2010

OSIsoft® UC2010

Integrating Building Automation Systems with PI

Francois J. Gagnon Ken Morikawa

Agenda

- Building automation market drivers
- Energy Management in facilities
- Interface to Building Automation System (BAS)
- What can we do with the data
- Energy information system examples

Changes in building automation market

- Shift in thinking at the end-user level
- IT systems and software for :
 - Embedded intelligence at the controller level
 - Connect devices via an IP network
 - Smart meters and systems
 - Shifts in government policies (ARRA, California title 24, Energy independence and security act 0f 2007, Energy Star for Building,)

Market research on BAS

(building automation system)

- Market for BAS from 36 to 42 billion/yr by 2020
- The Energy Management System (EMS) market is still fairly nascent.
- Key market players include majors supplier, start-up and IT
 - Cisco, Johnson Control/IBM, Enernoc etc..
- Demand response a key driver

If you can't measure it, you can't improve it." - Lord Kelvin

Favorable context for energy management

- Energy cost (\$76/ barrel)
- Sustainability issue (triple bottom line, GHG, etc)
- Corporate and Collective will to act
 - ARRA, executive presidential order
 - Utilities incentive for energy efficiency program
 - LEED certification / IPMVP (International performance measurement and verification protocol)
 - Net zero energy building objective (micro grid / renewable)
- New and lower cost of technologies solution (metering, wireless communication, control systems)

Energy statistics for commercial building

US energy consumption overview

U.S. Primary Energy Consumption by Source and Sector, 2008

Total U.S. Energy = 99.3 Quadrillion Btu Source: Energy Information Administration, *Annual Energy Review 2008*. Tables 1.3, 2.1b-2.1f.

Share of Energy Consumed by Major Sectors of the Economy, 2008

Source: Energy Information Administration, Annual Energy Review 2008

Energy distribution in commercial buildings

Energy Use in Commercial Buildings, 2003

Source: Energy Information Administration, 2003 Commercial Building Energy Consumption Survey, Table E1A (September 2008).

Source: Energy Information Administration, 1995 Commercial Buildings Energy Consumption Survey.

The challenges of energy management

- Energy is a small % of operating cost (3% to 7%)
- Increasing energy efficiency is difficult
 - Need management commitment
 - Do you have a plan ?
 - Are technical and financial resources available?
 - Human factor, Comfort issues
 - Demand side management
 - Component in Smart Grid
- Getting data, Need to report

SIEMENS

Building Automation System shortcoming

- Archiving capabilities limited (time, granularity, flexibility)
- Limited user friendliness in serving the data
- Legacy system need upgrading

VYKON

Infrastructure for an energy information system (EIS)

- Aggregate data from
 - Various Building automation System (BAS)
 - HVAC equipments (HVAC chiller, boiler, lighting etc)
 - Energy metering device (including sub metering)
 - Different building location and expose Data
- PI system differentiator (scalability, reliability, availability, interoperability, security)
- How do we access the data from BAS?

Data Collection with PI

- Example: Energy Information System
 - You need Data!
 - Sub-Metering at key points
 - Visibility, "Where am I consuming the most power?"
- Where is the data?
- How do I collect the data?
- Which Interface do I use?

Where is the data?

- Data Sources
 - Meters, Air Handlers, Chillers, Pumps,
 Cooling Towers, Switchgear, Temp/Humidity
 Sensors
- Types of data
 - Temperatures, Power Measurements, HVAC Equipment Status, Power Panel Details, Alarms

Example System Deployment

350101£1001€0101\$

Integration with BACnet/IP or Modbus/TCP

Integration with OPC, RDBMS, or SNMP

1050101£1001€01018

How do I collect the data?

- Poll Building Automation System (BAS)
 - SCADA for building mechanical systems
 - ALC, Honeywell, Johnson Controls, Siemens,
 Tridium
- Poll Devices/Equipment Directly

Data Collection Examples

- Eaton Power Xpert Meters
 - Modbus interface can poll meters directly
- ALC (Automated Logic Corporation)
 - BACnet interface can poll controllers or devices directly
- Siemens Apogee BAS
 - OPC-DA interface can poll data points via OPC gateway server
 - BACnet gateway is also available

Data Collection Interfaces

- Most Common Protocols
 - Modbus
 - TCP/IP or Serial
 - BACnet
 - TCP/IP (UDP)
 - OPC, RDBMS, SNMP

Modbus

- Modbus Serial/Modbus Plus & Modbus Ethernet
 - In Development: Re-write
 - Improved Scalability
 - Multiple Devices
 - Device Masters
 - Logging and Tracing
 - Details and Options
 - Runtime Configuration
 - Enable/Disable ports on the fly
 - Logging changes on the fly
 - Phase 2 Failover

- BACnet/IP support
 - Change of Value (COV)
 - Exception based data collection
 - Phase 2 Failover
 - BACnet Query Tool
 - Easy to use GUI tool
 - Auto-Discovery of BACnet devices
 - Automatic Point Configuration on PI Server

BACnet Query Tool

310\$0101£1001€0101\$

Other Interfaces

- OPC DA
 - Common gateway to BAS platforms
- RDBMS
 - SQL based queries via ODBC
- SNMP
 - Supports SNMP v1, v2, & v3
 - Point Builder/MIB Browser in SMT
- What do we do with the data

Value of PI in facilities

- Connects to BAS, equipments and metering devices
- Monitor, track and report (commissioning value)
- Guardian of equipment and building performance (optimization value)

- .
- Protects and maximize investment in energy efficiency (insurance value)
- Efficient use of human resources (action value)

Benefits of Tracking Energy Performance

- Visibility and analysis
- Heighten awareness of energy use
- Assess effectiveness of current operations, policies, practices
- Set priorities for upgrade efforts and retrofits
- Track, verify, and recognize achievements
- Document role in environmental stewardship and demonstrate success

Analyze and Investigate

- Chart your energy consumption
- Key performance indicator (daily / monthly / annual consumption)
- Calculate your cost per equipment

Commissioning

- Monitoring and tracking energy use leads to reductions of 10 to 15%.
 - Check and tune up building systems
 - resetting existing controls to reduce HVAC
 - Identify waste while maintaining or even increasing comfort levels for occupants.
 - Energy star rating
- Commissioning usually costs between 5 and 40 cents per square foot.

- System Optimization Analysis
- Energy Forecasting Model
- Energy Benchmarking Model
- Equipment Performance Ranking
- Reference Model Analysis
- Tariff Analysis
- Peak Demand Control Model
- Return on Investment (ROI) Analysis
- Greenhouse Gas (GHG) carbon reporting

Remote performance monitoring

Typical office building in Chicago 250,000 sq/feet Centrifugal chiller, Gas-fired hot water boiler, Mon-Fri 7:00am – 6:00pm Energy cost base line \$480 586/yr Energy saving 23% or \$113,000/yr

More potential because less managed overall

Complex heterogeneous data stream

- 499 900 square feet
- Energy cost (est. \$1 000 0000)
- LEED Gold certified 2007
- 1 MW (two 500-kW) natural gas-fired V-12 engine systems 71 % of electricity, 100% of steam demand)
- Chiller: York 320-ton water absorption
- Estimated 50% overall efficiency (heating, cooling, electricity)
- Expected Payback Time: 4 to 5 years
- Better return because better managed??

About Harvard Medical School

Facilities Department

- 2.8 Million Square Feet
- Full Time Contracted Staff of 60
- Facilities Management
 - 18,000 Maintainable Assets, 24/7 Call Center, 200 Node BMS
- Energy Usage
 - 15 Mw Electric, 70K lbs/hr Steam, 10k+ Tons
 Chilled Water, \$25 Million Annual Utilities

Harvard Medical School

Sustainability and GHG

- 2006 57,266 MTCDE
- 2008 57,592 MTCDE

Goal

• 2016 40,086 MTCDE

30 % GHG Reduction

HARVARD GHG REDUCTION PLAN 2006 - 2016

10\$0101£100160101

Harvard Medical School

Sustainability and GHG

- Approx. 60 Primary Meters
- Approx. 112 Tenant and Sub-meters
- 172 Total CHW / Steam / Electric / Air

Harvard Medical School

Facilities Management

Harvard Medical School

Sustainability and GHG

 Automated Load Shedding

Real Time Energy
 Use on Web for Public

OSIsoft

Harvard Medical School Sustainability and GHG

- Analyze Energy Usage
- Model Building Performance
- Trend 'Creep'

Harvard Medical School Sustainability and GHG

 View Impact of Sequence / Strategy Change

Daily Energy Report

Countway Chilled Water

oslsoft.

Live PI links- See PI In action

https://facilities.med.harvard.edu/energy/

UC Davis

http://facilities.ucdavis.edu/Dashboard/

Queen's University

http://livebuilding.queensu.ca/

Rochester University

http://meters.energy.rochester.edu/rc%20sharepoint%20files/hutch%20hall%20electric.aspx

University of Connecticut

http://www.fo.uconn.edu/cogen.htm |

http://www.uaf.edu/fs/services/utilities/

Value of PI in facilities

- Connects to BAS, equipments and metering devices
- Monitor, track and report (commissioning value)
- Guardian of equipment and building performance (optimization value)

- DISTECH
- Protects and maximize investment in energy efficiency (insurance value)
- Efficient use of human resources (action value)

Real Time Information — Currency of the New Decade

Thank you

© Copyright 2010 OSIsoft, LLC., 777 Davis St., San Leandro, CA 94577