PI System Tuning and Optimization

Presented By

Jay Lakumb, Product Manager jlakumb@osisoft.com

Denis Vacher, Development Lead dvacher@osisoft.com

Agenda

- Types of PI Systems
 - Hardware, Virtualization, and Critical Resources
- PI Archive Performance
 - Exception & Compression: Myths and Mistakes
 - Archive Sizing and Reprocessing
 - Demo
- Performance Monitoring Tips
- Real World Scenarios
- Optimization Techniques
 - General, Interfaces, Servers, Data Access, Clients

System Size... "YMMV"

- Point and Asset Count (S, M, L, XL, XXL)
 - 10K, 50K, 250K, 7
- Data Rates
 - Common R:W ration
 - Heavy read worklo
 - Write-only systems
- Concurrent Users
 - Ranging from 1 to
 - Dashboards/report
- Server Applications
 - Batch, Performance Equations, Totalizer/Alarm
 - ACE, Notifications, MCN Health/IT Monitor
 - PI-to-PI Replication

AMS/Phasors

lytics/BI

PI Server Hardware Allocation

Hardware Recommendations

- 64-bit platform, Windows 2008 R2 recommended
- Memory: 2GB minimum, up to 8KB per point
- CPU: as many cores as possible, based on client load
- Network: dedicated NIC(s), latency is most important
- Disk Controllers/Interface: key factors are I/O capacity and latency over bandwidth
- Storage: could be multi-tier, est. 5-20 bytes per event
- HA: PI Collectives mix up well with virtualization*

(*) assuming different hardware hosts per collective member

PI Server Virtualization

- 64-bit platform, Windows 2008 R2 recommended
- Memory: 2GB minimum, up to 8KB per point
- CPU: as many cores as possible, based on client load
- Network: dedicated NIC(s), latency is most important
- Disk Controllers/Interface: key factors are I/O capacity and latency over bandwidth
- Storage: could be multi-tier, est. 5-20 bytes per event
- HA: PI Collectives mix up well with virtualization*

(*) assuming different hardware hosts per collective member

Pl Archive Performance Tuning

- Raw Values
- After Exception
- **3** After Compression

Exception & Compression

- Exception Processing (PI Interfaces)
 - 1. Eliminates Instrument Noise
 - Conserves Network Bandwidth
 - 3. Conserves Server Resources
- Real-time Compression (Buffer/Snapshot Subsystems)
 - Eliminates Process Noise
 - 2. Conserves Disk & I/O Resources
 - 3. Increases Overall System Performance
- High Fidelity & Efficiency
 - ✓ No Signal Averaging or Approximation
 - ☑ Preservation of all Minima/Maxima
 - ✓ No Additional Signal Latency

Demo

 Benefits of Exception/ Compression Tuning

OSIsoft_®

Basic PI Server Tuning

Security – Auditing

Authentication Protocols
 Server_AuthenticationPolicy

Administrative PI Trusts
 AutoTrustConfig (recommended: 0)

Audit TrailEnableAudit

Archive/Queue Management

Auto Archive Creation
 Archive_AutoArchiveFileRoot

Event Queue SettingsSnapshot_EventQueuePath

Snapshot_EventQueueSize (MB)

Network Connections

Stale Connection MaxConnIdleTime (seconds)

Updates

Don't Change These MaxUpdateQueue
 TotalUpdateQueue

Archive File Sizing

- Fixed Size or Dynamic?
 - Fixed size, with "auto-dynamic" growth
 (Note: Fixed size required for automatic archive creation.)
 - Keep dynamic archives for backfilling jobs only
 - See <u>KB Article # 2998OSI8</u>
- Sizing Rule of Thumb
 - Size in MB \geq 4,000 x (Point Count)
 - For instance: 50,000 points ⇒ 200MB
- Optimal Sizing
 - No points with more than ~10 index records

Archive Storage Map

Archive File Contents

File System Cache Efficiency?

After Archive Reprocessing

PI Server "KPIs"

K²PIs

Windows Counters

Core Process Health

Process(...)\Creating Process ID

Process(...)\%Processor Time

Process(...)\Private Bytes

Process(...)\Working Set

Process(...)\Page Faults/sec

Thread(...)\ID Process

Thread(...)\Context Switches/sec

Overall CPU

Processor\% Processor Time

Overall Memory

Memory\Pages/sec

Memory\%Committed Bytes In Use

Memory\System Cache Resident Bytes

Overall Disk

PhysicalDisk(...)\Avg. Disk Queue Length

PhysicalDisk(...)\Disk Transfers/sec

Overall Network

Network Interface(...)\Bytes Total/sec

Network Interface(...)\Packets Received Errors

PI Server Counters

General Health

PI Server Statistics(...)\ls Available

PI Server Statistics(...)\ls In Sync

PI Network Manager(_Total)\Connections

PI Network Manager(...)\Bytes Received/sec

PI Network Manager(...)\Bytes Sent/sec

Core Subsystem Health

PI Subsystem Statistics(...)\RPC Request in Queue

PI Subsystem Statistics(...)\RPC Thread Active

PI Subsystem Statistics(...)\Transaction Completed/sec

PI Session Statistics(...)\Messages Received/sec

PI Session Statistics(...)\Messages Sent/sec

Data Flow Monitoring

PI Snapshot Subsystem\Snapshots/sec

PI Snapshot Subsystem\OutOfOrderSnapshots/sec

PI Snapshot Subsystem\Queued Events/sec

PI Snapshot Subsystem\Events in Overflow Queues

PI Archive Subsystem\Archived Events/sec

PI Archive Subsystem\Total Unflushed Events

PI Archive Subsystem\Cache Flush Operations/sec

PI Archive Subsystem\Events Read/sec

PI Archive Tuning

Plarchss_ThreadCount

Windows Counters

Core Process Health

Process(...)\Creating Process ID

Process(...)\%Processor Time

Process(...)\Private Bytes

Process(...)\Working Set

Process(...)\Page Faults/sec

Thread(...)\ID Process

Thread(...)\Context Switches/sec

Overall CPU

Processor\% Processor Time

Overall Memory

Memory\Pages/sec

Memory\%Committed Bytes In Use

Memory\System Cache Resident Bytes

Overall Disk

PhysicalDisk(...)\Avg. Disk Queue Length

PhysicalDisk(...)\Disk Transfers/sec

Overall Network

Network Interface(...)\Bytes Total/sec

Network Interface(...)\Packets Received Errors

PI Server Counters

General Health

PI Server Statistics(...)\ls Available

PI Server Statistics(...)\ls In Sync

PI Network Manager(_Total)\Connections

PI Network Manager(...)\Bytes Received/sec

PI Network Manager(...)\Bytes Sent/sec

Core Subsystem Health

PI Subsystem Statistics(...)\RPC Request in Queue

PI Subsystem Statistics(...)\RPC Thread Active

PI Subsystem Statistics(...)\Transaction Completed/sec

PI Session Statistics(...)\Messages Received/sec

PI Session Statistics(...)\Messages Sent/sec

Data Flow Monitoring

PI Snapshot Subsystem\Snapshots/sec

PI Snapshot Subsystem\OutOfOrderSnapshots/sec

PI Snapshot Subsystem\Queued Events/sec

PI Snapshot Subsystem\Events in Overflow Queues

PI Archive Subsystem\Archived Events/sec

PI Archive Subsystem\Total Unflushed Events

PI Archive Subsystem\Cache Flush Operations/sec

PI Archive Subsystem\Events Read/sec

Archive_CacheRecordPool

Windows Counters

Core Process Health

Process(...)\Creating Process ID

Process(...)\%Processor Time

Process(...)\Private Bytes

Process(...)\Working Set

Process(...)\Page Faults/sec

Thread(...)\ID Process

Thread(...)\Context Switches/sec

Overall CPU

Processor\% Processor Time

Overall Memory

Memory\Pages/sec

Memory\%Committed Bytes In Use

Memory\System Cache Resident Bytes

Overall Disk

PhysicalDisk(...)\Avg. Disk Queue Length

PhysicalDisk(...)\Disk Transfers/sec

Overall Network

Network Interface(...)\Bytes Total/sec

Network Interface(...)\Packets Received Errors

PI Server Counters

General Health

PI Server Statistics(...)\ls Available

PI Server Statistics(...)\ls In Sync

PI Network Manager(_Total)\Connections

PI Network Manager(...)\Bytes Received/sec

PI Network Manager(...)\Bytes Sent/sec

Core Subsystem Health

PI Subsystem Statistics(...)\RPC Request in Queue

PI Subsystem Statistics(...)\RPC Thread Active

PI Subsystem Statistics(...)\Transaction Completed/sec

PI Session Statistics(...)\Messages Received/sec

PI Session Statistics(...)\Messages Sent/sec

Data Flow Monitoring

PI Snapshot Subsystem\Snapshots/sec

PI Snapshot Subsystem\OutOfOrderSnapshots/sec

PI Snapshot Subsystem\Queued Events/sec

PI Snapshot Subsystem\Events in Overflow Queues

PI Archive Subsystem\Archived Events/sec

PI Archive Subsystem\Total Unflushed Events

PI Archive Subsystem\Cache Flush Operations/sec

PI Archive Subsystem\Events Read/sec

Archive_SecondsBetweenFlush

Windows Counters

Core Process Health

Process(...)\Creating Process ID

Process(...)\%Processor Time

Process(...)\Private Bytes

Process(...)\Working Set

Process(...)\Page Faults/sec

Thread(...)\ID Process

Thread(...)\Context Switches/sec

Overall CPU

Processor\% Processor Time

Overall Memory

Memory\Pages/sec

Memory\%Committed Bytes In Use

Memory\System Cache Resident Bytes

Overall Disk

PhysicalDisk(...)\Avg. Disk Queue Length

PhysicalDisk(...)\Disk Transfers/sec

Overall Network

Network Interface(...)\Bytes Total/sec

Network Interface(...)\Packets Received Errors

PI Server Counters

General Health

PI Server Statistics(...)\ls Available

PI Server Statistics(...)\ls In Sync

PI Network Manager(_Total)\Connections

PI Network Manager(...)\Bytes Received/sec

PI Network Manager(...)\Bytes Sent/sec

Core Subsystem Health

PI Subsystem Statistics(...)\RPC Request in Queue

PI Subsystem Statistics(...)\RPC Thread Active

PI Subsystem Statistics(...)\Transaction Completed/sec

PI Session Statistics(...)\Messages Received/sec

PI Session Statistics(...)\Messages Sent/sec

Data Flow Monitoring

PI Snapshot Subsystem\Snapshots/sec

PI Snapshot Subsystem\OutOfOrderSnapshots/sec

PI Snapshot Subsystem\Queued Events/sec

PI Snapshot Subsystem\Events in Overflow Queues

PI Archive Subsystem\Archived Events/sec

PI Archive Subsystem\Total Unflushed Events

PI Archive Subsystem\Cache Flush Operations/sec

PI Archive Subsystem\Events Read/sec

ArcMaxCollect

Windows Counters

Core Process Health

Process(...)\Creating Process ID

Process(...)\%Processor Time

Process(...)\Private Bytes

Process(...)\Working Set

Process(...)\Page Faults/sec

Thread(...)\ID Process

Thread(...)\Context Switches/sec

Overall CPU

Processor\% Processor Time

Overall Memory

Memory\Pages/sec

Memory\%Committed Bytes In Use

Memory\System Cache Resident Bytes

Overall Disk

PhysicalDisk(...)\Avg. Disk Queue Length

PhysicalDisk(...)\Disk Transfers/sec

Overall Network

Network Interface(...)\Bytes Total/sec

Network Interface(...)\Packets Received Errors

PI Server Counters

General Health

PI Server Statistics(...)\ls Available

PI Server Statistics(...)\ls In Sync

PI Network Manager(_Total)\Connections

PI Network Manager(...)\Bytes Received/sec

PI Network Manager(...)\Bytes Sent/sec

Core Subsystem Health

PI Subsystem Statistics(...)\RPC Request in Queue

PI Subsystem Statistics(...)\RPC Thread Active

PI Subsystem Statistics(...)\Transaction Completed/sed

PI Session Statistics(...)\Messages Received/sec

PI Session Statistics(...)\Messages Sent/sec

Data Flow Monitoring

PI Snapshot Subsystem\Snapshots/sec

PI Snapshot Subsystem\OutOfOrderSnapshots/sec

PI Snapshot Subsystem\Queued Events/sec

PI Snapshot Subsystem\Events in Overflow Queues

PI Archive Subsystem\Archived Events/sec

PI Archive Subsystem\Total Unflushed Events

PI Archive Subsystem\Cache Flush Operations/sec

PI Archive Subsystem\Events Read/sec

Satellite or WAN Connection

Geographical Distribution

Collect Large Volumes of Data

Poll interval
Or Advise (OPC)

Buffering (choose pibufss)

PI for StreamInsight (edge processing)

Exception and compression

Use high speed drives (e.g. SAN, SSD)

OSIsoft.

Access Large Volumes of Data

(data aggreg.)

HA PI Secondary (load distribution)

Scale out analytics and data access

PI SDK techniques (e.g. PlotValues)

PI for StreamInsight (edge processing)

(e.g. SAN, SSD)

Optimization Techniques: General

- Ensure system/virtual machine is sized appropriately
 - "Hardware and System Sizing Recommendations" spreadsheet on Tech Support site
- Disable unused services, e.g. IIS, Indexing, etc. or use Windows Server Core
- Clamp or prevent expensive queries
- Provide sufficient network bandwidth
- Choose an optimal deployment configuration
- Upgrade to latest releases of PI and Microsoft products
- Leverage High Availability (PI/AF/Notif, Interface failover, SharePoint server farms, etc.) to achieve higher uptime
- Tools to identify performance bottlenecks: MCN Health Monitor, PI/SDK Message Log, Visual Studio Profiler

Optimization Techniques: Interfaces

- KB #00266 "When using the PI to PI interface, is it better to push or pull the data?"
- Scale out (multiple instances) to handle more/faster data
- Use Buffering to minimize data loss
- Configure disconnected startup
- Choose appropriate scan times
- Separate instances for different scan times, output points
- Check for Stale or Bad points
- KB #00260 "How does the number of Advise tags per group in OPC interface affect throughput?"

Optimization Techniques: Servers

- "PI Server Performance Monitoring" White Paper on TS site
- KB #00159 "What is the Offline Archive Utility (piarchss) and how do you use it to reprocess archives?"
- Apply multiple conditions to each notification (not 1:1)
- Increase periodic time rule (ACE, PI Notifications), or try natural scheduling (uses snapshot caching)
- Minimize number of COM Connector tags
- Aggregate data (using PE or Totalizer tags)
- Scale out (PI, AF, PE, ACE, Notifications) to handle more users/queries with High Availability functionality
- Separate heavy and casual users with HA functionality

Optimization Techniques: Data Access

- "SQL Optimization" White Paper on TS site
- Use PI OLEDB and PI OLEDB Enterprise as in-process
- Break queries into smaller chunks (e.g. fewer tags/assets, shorter time ranges)
- Builder's Café Webinar on "Optimizing your PI SDK apps"
- Use bulk queries (e.g. PI SDK ListData functions, AF SDK elements), PlotValues, asynchronous calls, multithreading
- Choose appropriate binding for PI Web Services
- Leverage PI Data Access products that implement (and abstract) advanced techniques such as connection pooling, caching, and event pipes (e.g. PI Web Services)

Optimization Techniques: Clients

- Move PI Calc/ODBC datasets to server (PE, AF, ACE)
- Minimize data loaded/displayed on startup use drill down for more details
- Split large amount of data across multiple displays/pages
- Try HTTP Compression with PI WebParts
- Use SharePoint server farms, load balancing with WP
- Increase update interval (PB, DL, WP)
- Run PI Clients as close to data sources as possible leverage application virtualization

ThankYou! **OSI**soft