Integrating the PI System with Third-Party Analytics **Presented By:** Ahmad Fattahi, OSIsoft **OSI**soft # Why Choose the PI System? Analytics ## The PI System has the data – What's the next step? - Business intelligence: optimizing production - Process control: nominal trajectory - Data mining: fault detection and prevention - Complex event processing: notification #### PI Analytics Subset **Performance Equations** **Totalizers** **Alarm/Statistical Quality Control** PI Advanced Calculation Engine PI for StreamInsight* **AF-supported Analytics*** ## 3rd-Party Analytics ## Excel Solver: Datalink, PI-SDK - Made by Frontline Systems - Good for smaller setups - Meshes well with PI-Datalink ## 3rd-Party Analytics #### MATLAB® by Mathworks - ADO and PI OLEDB Provider - OPC toolbox and PI OPC - Database toolbox and PI JDBC Driver - COM Automation Server referenced in codes using PI SDK or PI ACE ## 3rd-Party Analytics #### JMP Statistical discovery by SAS - Provides visual statistical data on the desktop - MS Excel and PI DataLink - ODBC and PI ODBC Client - Flat text files and piconfig utility # Use Case: Mathematical Optimization #### Business Intelligence Minimizing production cost #### **Process Control** Verification of a process controller/DCS against nominal trajectory ## Data Mining and Curve Fitting Preemptive fault detection and forecasting Minimizing cost of raw material **OSI**soft® - Objective: minimize the cost of minerals - Constraints: minimum levels of each material - The PI System: different parameters come through PI DataLink in real-time - Excel Solver: optimization Set up of the problem: #### **Mathworks MATLAB®** #### The PI System Provides historical data #### **MATLAB** Performs analysis Data analysis and modeling, application and algorithm development - Several production units, variable costs - Given: power demand - Question: How to allocate the production Objective: minimize total production cost #### **Constraints:** - Total generation less than demand - Individual production cap - Other constraints Decision: how much each unit generates #### Data flow: • Cost: $\sum_{i} c_{i} P_{i}^{2} + b_{i} P_{i} + a_{i} - \pi P_{i}$ Subject to: $$0 \le P_i \le P_i^{max}$$ $$\sum P_i \le P_d$$ | P_i | Production at generator i | |-----------------------------------|-----------------------------| | P_d | Demand | | π | Going price at the market | | a _i , b _i , | Cost coefficients (from PI) | | C_i | | A server object in PI-SDK to access PI points (Data. Snapshot. Value) "MATLAB COM automation sever" is referenced Arrays (matrices) are passed "MATLAB.Application" object "quadprog" function in optimization toolbox #### Benefits Convenient access to enterprise data in real-time Easy manipulation of complex analytics; suitable for large scale problems Having optimal results in real-time #### Implementation results ## **Concluding Remarks** The PI System provides several analytical tools The PI System could conveniently combine with 3rd party analytical tools as well Optimization problems can boost the whole enterprise via complex optimal results in real-time # Thank **OSI**soft_®