OSIsoft PI High Availability (HA) & Virtualization

Complementary & contrasting technical approaches to HA

Presented By:

Guy F. Acciai Integrated Manufacturing System Architect Corning Incorporated - Blacksburg, VA

Where PI geeks meet...

Agenda

- Who is Corning and what do we do...
- Corning Life Science (CLS) manufacturing
 - Business need and value of High Availability (HA)
- HA & Virtualization
 - PI and VMware product offerings Pros/Cons & Tradeoffs
 - CLS Final Architecture
 - Usage of complementary tools & "watch-outs"
- Usage to date
- Futures Needs & Questions
 - PI futures
 - VMWare futures

Agenda

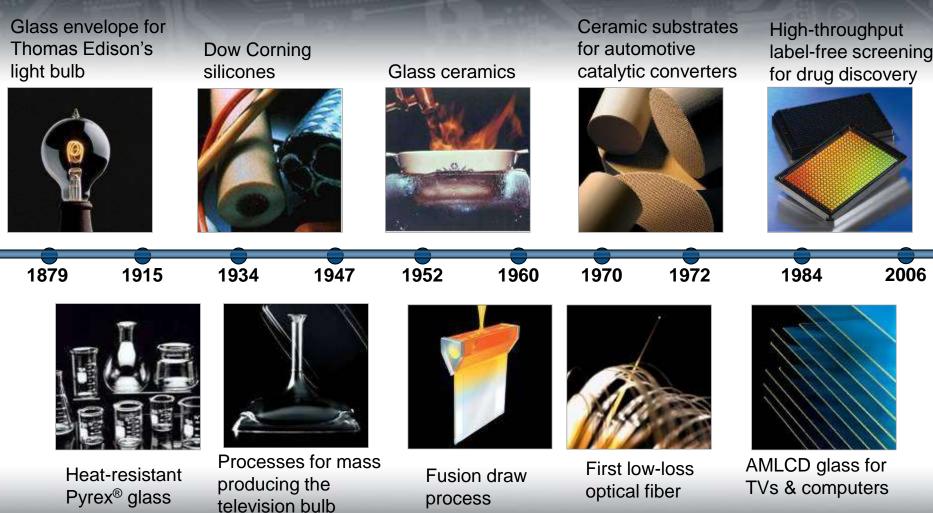
- Who is Corning and what do we do...
- Corning Life Science (CLS) manufacturing
 - Business need and value of High Availability (HA)
- HA & Virtualization
 - PI and VMware product offerings Pros/Cons & Tradeoffs
 - CLS Final Architecture
 - Usage of complementary tools & "watch-outs"
- Usage to date
- Futures Needs & Questions
 - PI futures
 - VMWare futures

Corning Incorporated

Founded: 1851

Headquarters: Corning, NY

Employees: \approx 23,500 (worldwide)


2009 Revenues: \$5.4 Billion

Fortune 500 Rank: 391

- Corning is the world leader in specialty glass and ceramics.
- We create and make keystone components that enable hightechnology systems for consumer electronics, mobile emissions control, telecommunications and life sciences.
- We succeed through sustained investment in R&D, over 150 years of materials science and process engineering knowledge, and a distinctive collaborative culture.

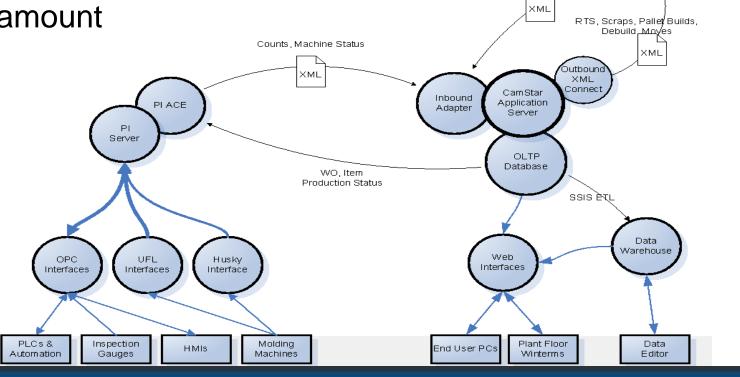
Corning's Culture of Innovation

Market Segments & Operations

Display Technology	Telecom	Environmental Technologies	Life Sciences	Specialty Materials	Other Products & Services
 LCD Glass Substrates Glass Substrates for OLED and LTPS-LCD 	 Optical Fiber & Cable Hardware & Equipment Fiber optic connectivity products Optical connectivity products 	 Emissions Control Products Light-duty gasoline vehicles Light-duty and heavy-duty diesel vehicles Stationary 	 Cell Culture & Bioprocess Assay & High- Throughput Screening Genomics & Proteomics General Laboratory Products 	 Display Optics & Components Semiconductor Optics/Components Aerospace/Defense Astronomy Optical Metrology Ophthalmic Telecom Components Specialty Glass 	 Display Futures New Business Development Drug Discovery Technology Equity Companies Cormetech, Inc. Dow Corning Corp. Eurokera, S.N.C. Samsung Corning

Corning Life Sciences (CLS)

Developer, manufacturer and global supplier of innovative life science product solutions for over 90 years


CLS Manufacturing

- Over time, products have shifted from borosilicate glass to greater use of sterile/disposable plastic
- Extensive use of injection molding to form plastic parts used for medical testing and drug discovery
- FDA regulation and traceability requirements
- Focus on overall equipment & labor effectiveness (OEE) as well as scrap & downtime pareto analysis
- Business decision to deploy a Manufacturing Execution System (MES)

Business need for HA

- Use of existing PI server as SCADA (and historian) to act as IO interface to MES
- MES generates product labeling & interacts with inventory systems.
 is paramount

Where PI geeks meet...

©2010 Corning Incorporated. All Rights Reserved

ERP

Availability

Biztalk

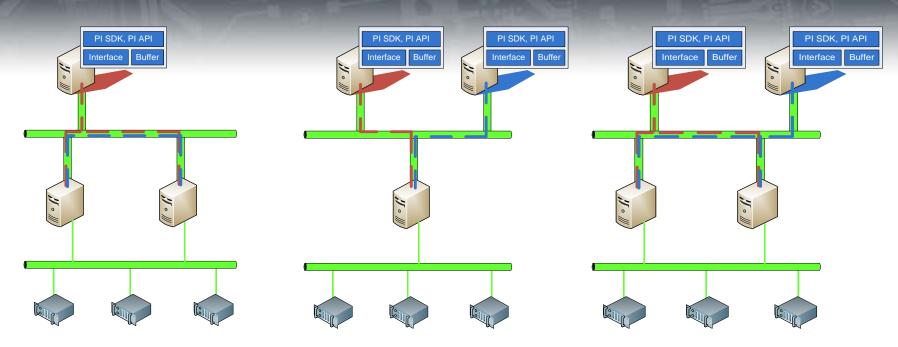
Orders/

Standards

Items/BOM

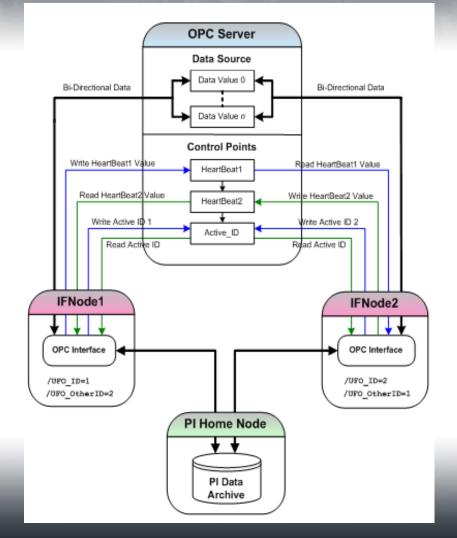
High Availability

- Definition: a system design & associated implementation that ensures a certain degree of operational continuity during a given time period
 - Design for availability (given planned downtime & unplanned failures)
- Major approach is replication & redundancy
- Historical Approaches:
 - Clusters & load balancing
 - Redundant/Failover Hardware (ie, Tandem, Status, RAID)
 - Marathon EverRun/Stratus ftServers (with ActiveUpgrade/Avance SW)
- OSIsoft History
 - OSIsoft PI server on a MSCS
 - Interface Redundancy & PI Server HA



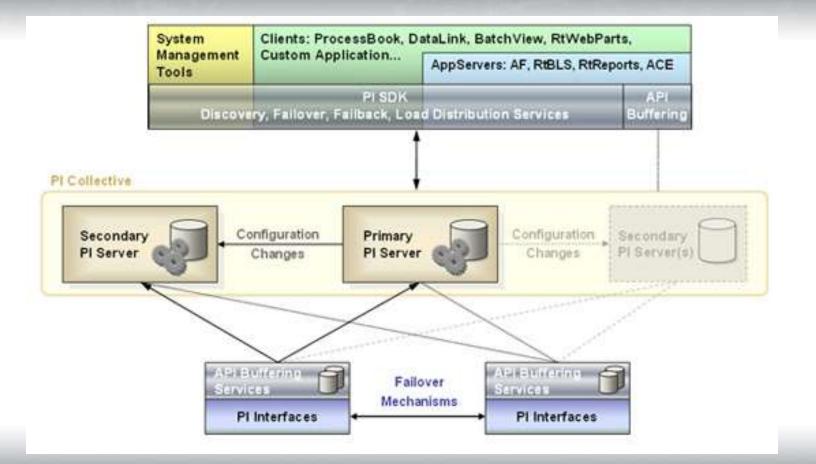
PI Interface Failover

- Been available in some interfaces for several years
- OPC is "model interface"
 - Need to "license two OPC" interfaces, or rule of 3 interfaces
- Supports two "types" of HA
 - Support for "redundant" OPC servers
 - Support for "redundant" PI OPC interfaces
 - UnInit based (preferred) or MS cluster based
- Our implementation, uses redundant OPC servers on redundant interface nodes

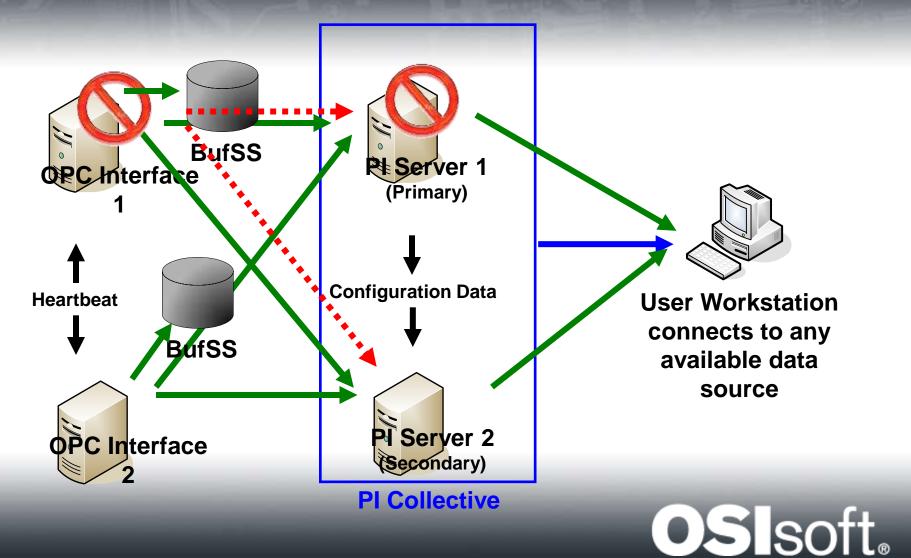

PI Interface Failover Architecture

- OPC server coordination support for 3 different modes:
 - Hot Mode, Warm, Cold
- Redundant OPC Interface Coordination
 - Use of "interface control" tags to avoid the "Split-Brain" problem

OSIsoft_®


Redundant Interface Coordination

- Avoid the "Split-Brain"
 - Control which interface is talking to PI or the OPC server
- Done thru PI server with 8 specific "control" tags
- Alternate communications path via:
 - Phase I (thru OPC server)
 - Phase II (thru a shared file, just on a file server) – Our approach


PI Server RedundancyThe Collective...

OSIsoft_®

Where PI geeks meet...

CLS HA Topology

Collective Naming & Migration

- For "migration" of a new "collective" to replace an existing PI server Must name collective with same name as old server
 - Collective is virtual Has no IP address & only "visible" to PI SDK/API
 - Need to match/force "PI Server ID"
 - Some SDK/API's tools use ServerID, and others Server Name
 - Tools are good, and migration is not hard
 - But fairly complex topic, and requires understanding and planning
 - Migration also involved network team to control "timing" around DNS switch to point old server name to new collective
 - Our Upgrade Approach
 - Interfaces first, to support buffer to "old server" & collective for testing
 - Collective Formation (Keep old server for fallback)
 - Client Upgrade
 - Finally, shutdown old server

PI HA - Pros and Cons

- Pros Improved:
 - Reliability (semi-transparent failover)
 - DR support (multiple servers in diverse locations)
 - Application availability during maintenance (rolling upgrades & security patching)
- Cons Higher Costs and Complexity
 - SW OSIsoft (Additional PI Server and interfaces)
 - Enterprise License can help mitigate this
 - HW Duplicate HW (Servers AND Storage)
 - · Virtualization helps mitigate some of these costs
 - Greater complexity (Greenfield easy, Migration more complex)
 - Some interfaces lack UniInt failover & limitations around HA V1

OSIsoft_®

Current PI HA Limitations:

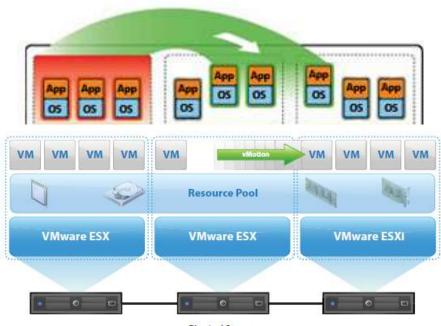
- Non-Interface data (Manual writes/Lab Points) are not currently propagated to the collective
- PIBagen will not generate the same batch-ids for batches generated on different servers. PIBagen and "old" batch data is not replicated between servers in the collective
- Changes to tags/metadata can ONLY happen on primary
- Archive annotations and changes to annotations are not currently propagated to the collective.
- Acknowledgement of alarms is not currently replicated between servers in the collective.
- Many of these are to be addressed in PR2 of HA

Virtualization

- Definition: Virtualization is abstraction performed on a given hardware platform by host software (a control program), which creates a simulated computer environment, a "virtual machine", for guest software.
- Alternatives In the Server Space (on Windows)
 - MS Hyper-V (and MS Virtual Server)
 - VMWare ESX Cluster + VMotion (and VM Server)
- Problems its solves
 - Server consolidation reduced energy and physical footprint
 - Improved availability & operational flexibility (provisioning)
 - Disaster recovery

Corning's drive to virtualization

- Large multi-year effort by central IT groups to setup failover ESX clusters in each site to support "standard" IT functions (4 servers):
 - IT Core Services (File & Print/Backup/Patching/AV/DC/DNS/DHCP/etc.)
 - VMWare enterprise license
- General approach is to "virtualize everything we can"
- Attempt to "leverage" this standardized investment for manufacturing and site specific applications
 - PI is a "well behaved" application, with predictable resource demands, that is easily virtualized


OSIsoft formally supports VMs

- ArticleID: <u>3062OSI8</u> A PI Server is supported when installed on a virtual machine that's running a supported operating system.
 - With the caution: Considerations must be made to evaluate how much resource contention is expected at peak loads. Critical resources are usually I/O bandwidth and disk resources
- Corning has multiple PI servers running on VMware – Fairly painless to virtualize, given sufficient resources (generally scales linearly with tag count & polling rate)

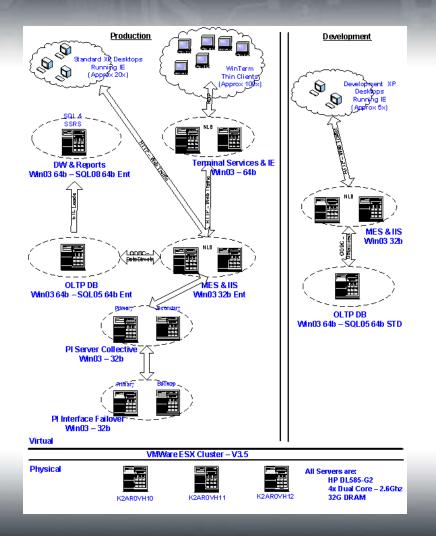
VMWare Architecture

- ESX physical clusters
 - HA Auto-Restart (on OS or HW failure – Not Application)
 - DRS Load Balancing
 - Implies SHARED Storage
- Key component to Corning's HA environment is VMotion
 - Move *running* virtual machines from one physical server to another *with NO impact* to end users

Physical Servers

VMWare - Pros and Cons

- Pros Improved:
 - Reliability (automatic restart on "crash")
 - Scalability & QOS (Easy "add" of additional resources to guests & "hot" additional of nodes to ESX cluster, DRS load balancing)
 - DR support (VMware Snapshots & Distributed Clusters)
 - Availability during planned HW maintenance (Vmotion)
 - Better utilization of HW, energy & floor space savings
- Cons Higher Costs
 - SW VMWare ESX & VMotion
 - Enterprise license helps here
 - Greater complexity (Affinity rules, VIC Access, etc)
 - Requires better coordination & control around shared physical resources
 - Lack of support for "esoteric" HW interfaces



Comparisons & Contrasts

- PI: Basic approach is redundancy
 - Multiple instances of PI (server and/or interface running) but "bound" to HW
- VM: Separation from physical HW
 - Single instance of application But "divorced" from physical HW
- Our Approach Use both, to get more "flexibility" around physical resources, and redundancy of multiple instances of PI
- Tradeoffs: Cost and Complexity

Final Architecture – CLS design

- 3 Physical Servers (all in ESX cluster)
- 18 "Guests"
 - 4 IT Servers
 - 3 Development Servers
 - 4 PI servers
 - 6 MES servers
 - 1 Other
- Designed to support shutdown of 1 physical server with no impact
- Use of VMware "affinity" rules

Final Architecture - Watchouts

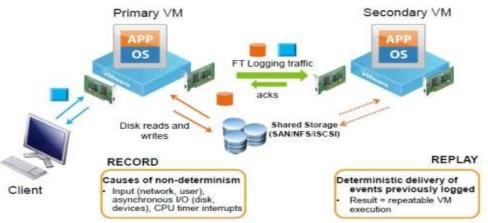
 Need to define VMWare affinity rules - To keep redundant PI nodes on separate physical hardware in ESX cluster

Virtual Machine Rule	×
Select the type of virtual machine rule from the choice below and fill the options field and click OK to create.	
Name	
Туре	
Keep Virtual Machines Together Keep Virtual Machines Together Separate Virtual Machines	
	-11
Add Remove	1
0% Cene	

 We also use Network Load Balancing (NLB) on other server pairs, for other failover configurations – Significant setup complexity with server & network teams around physical & virtual VLAN configuration

Usage to date & Results

- Been operational for approximately 2 years
 - One unplanned PI interface outage (about 20 mins) due to failure around misconfiguration of shared interface file (\approx 99.999% uptime)
- VMWare and VMotion (all performed "while hot")
 - Added third physical node to ESX cluster for scalability
 - Numerous virtual server moves ("VMigrations") for load balancing
 - VMigration to move active PI servers to replace failing backup HW
 - Have had NO downtime associated with VMWare or VMotion
- PI HA
 - Migrated interface nodes from XP to virtual Win03 servers while "hot"
 - Support for numerous server and interface node reboots for applying monthly windows security patches & OPC interface upgrades
 - "Unplanned" power outage corrupted PI databases on PI HA Primary Was able to "promote" Sec->Pri, and initialize "old" Pri – with no outage


Future Needs and Plans

- Corning needs from OSI
 - Continue to make more interfaces support failover
 - N-way fanout of data from custom application writes via SDK rather than just API
 - Server-to-server replication Need to address limits of HA V1
- Corning Plans
 - Testing new ACE beta, desire for faster failover
 - Bring up test AF server to test failover architectures (SQL server now in the mix) and possible replacement for batch DB

Future / Next Steps

- VMWare Futures (outside of PI HA)
 - VSphere V4 Fault Tolerance (FT) feature
 - Sets up "shadow" VM, kept in lockstep, transparent failover

- Limits
 - Single CPU No SMP support (yet)
 - Survive HW crash, currently painful to do patching/upgrades

Thank ou! OSIsoft.

©2010 Corning Incorporated. All Rights Reserved