Leveraging the PI System in a Dynamic Operating Environment

Presented by
John L. Ragone
Plant Optimization Manager
National Grid

National Grid is an International Energy Company operating in the U.K. and the U.S.

In the U.K., National Grid:

- Owns and operates high voltage electric transmission networks
- Owns and operates the high pressure gas transmission system
- Distributes gas to 11 million customers

In the U.S., National Grid:

- Distributes electricity to nearly 5 million customers in Massachusetts, New Hampshire, New York and Rhode Island
- Owns and operates approximately 4,200 MW of generating capacity
- Distributes natural gas to 3.4 million gas customers in Massachusetts, New Hampshire, New York and Rhode Island
- Service contract with LIPA to maintain and operate electric transmission and distribution system on Long Island

Who am I?

John L. Ragone
Power Plant Operations
National Grid

35 years power plant experience
Controls Manager Northport Power Station
Operations and Controls Manager Port Jefferson Power Station
Plant Optimization Manager
NERC CIP Compliance Manager
\qquad

Life used to be so simple......

Life used to be so simple.

\qquad

Then Control Systems got more complicated.....

 ?
. ?
.

\qquad
(

and we had all these Islands of Information....

The Operators were not happy.......

- "I've been running this plant for 20 years without a computer and I don't need one now!"
- "It's big brother looking over my shoulder!"
- "I don't want any more data!"
- "I'm not computer literate!"
- "I don't need any more work!"

Our Managers were not happy......

- "Web enabled devices are a luxury, we're trying to run a business here."
- "I don't need anyone from headquarters second guessing our decisions without all the details!"
- "I don't want any more data!"
- "I'm not a computer analyst!"
- "I don't need any more work!"

Challenges included

- Distributed asset base
- 20+ generating units covering Long Island/NYC
- Information required by various business areas
- Executives, engineering, operations, environmental
- Limited resources
- Capital and human resources (aging workforce)
- Vast amounts of data
- Not presented in a relevant, actionable format
- Cross business collaboration opportunities
- Need to extend "team" boundaries

So what did we do?

We focused on Operator hot buttons

- Initially targeted local plant missionaries and opinion leaders
- Solicited user input
- Provided fewer screens with "key information" using large visible numbers, buttons and graphics in our screen designs
- Provided "role specific training"
- Minimized audible alarms. Used new systems to automate manual tasks

Next we went after the Manager's hot buttons

- Presented solutions that would reduce risks
- Solicited manager input to design screens
- Set up different levels of implementation for our products
- Provided "manager specific training"
- Reduced routine workload
- Initially targeted local plant missionaries and opinion leaders

Typical Generation Architecture

PI System Infrastructure

- 12 Years
- 7 Servers
- 40,000 points
- 150 users
- Architecture

12 Years
7 Servers
40,000 points
150 users
Architecture
12 Years
7 Servers
40,000 points
150 users
Architecture
And asyright 2011 osisoft, LLC PI System infrastructure

- 12 Years
- 7 Servers
- 40,000 points
- 150 users
- Architecture Pi System infrastiructure
• 12 Years
• 7 Servers
• 40,000 points
• 150 users
• Architecture
- 12 Years
- 7 Servers
- 40,000 points
- 150 users
- Architecture

© copyright 2011 osisoot, LLc
 Pysteninitastiucture
• 12 Years
$\bullet \quad 7$ Servers
$\bullet 40,000$ points
$\bullet \quad 150$ users
\bullet Architecture

Abstract

\qquad
 Pysteninitastiucture
$\bullet 12$ Years
$\bullet 7$ Servers
$\bullet 40,000$ points
$\bullet 150$ users
\bullet Architecture
\qquad 12 Years
7 Servers
40,000 points
150 users
Architecture
And asyright 2011 osisoft, LLC
12 Years
7 Servers
40,000 points
150 users
Architecture
© copyright 2011 osisoft, LLC

P-

 Pi System infrastiructure• 12 Years
• 7 Servers
• 40,000 points
• 150 users
• Architecture Pi System infrastiructure
• 12 Years
• 7 Servers
• 40,000 points
• 150 users
• Architecture
• 12 Years
$\bullet \quad 7$ Servers
$\bullet \quad 40,000$ points
\bullet
\bullet
\bullet

Where do we use the PI System?

PI System is the Core of our:

- Performance Analysis Engine
- E-notification System
- Distributed Control System (DCS) Historical Database
- Independent System Operator (ISO) Interface to Control Rooms
- Performance Analysis Historical Database
- Monthly Heatrate Packages

\qquad

 \qquad

[^0]
\qquad

-
\qquad
 \qquad

Condenser Performance - NPT

.

s

\qquad

PT

PT

亚
\qquad

\square

 \section*{
 \section*{\section*{Unit Start-up Trends

 \section*{
 \section*{\section*{Unit Start-up Trends

 \section*{
 \section*{\section*{Unit Start-up Trends

 Transpara

 Transpara}}}

Home I Northport - Controls I NPT4 Start-up
-
Home I Northport - Controls I NPT4 Start-up

都

震

Home I Northport - Controls I NPT1 Start-up

Unit 1 Load	NPT1 RPM	NPT1 MSP	NPT1 FSP	NPT1 ACC	NPT1 NaxACC
NPT1 Max IP Ram	NPT1 MaxRamp	NPT1 Xover	NPT1 RH Shell	NPT1 INN	NPT1 Ecc
NPT1 1st Stg St	NPT1 Ramp Rate	NPT1 RHRamp	NPT1 LOT	Brg 1 Vib.	Brg 2 Vib.
Brg 8 Vib.	Brg 7 Vib.	Brg 6 Vib.	Brg 5 Vib.	Brg 4	Vib.

■Low Low DLow IGood DHigh ■High High DUnknown ■ Not In Service DN/A
Refresh in 56 seconds (Stop)

Startup Snapshot

[^1]

Vib.

[^2]
\qquad

-

 （ －

Port Jefferson Wastewater Treatment
（
（
（
（
（
（
（
（
（
（
（
（
（
（
（
（
（
（

 ranspara

 共

 \qquad

 anspara
 cingula
 cingular
 $=$

正

\square

Unit Desired Generation information
Unit Desired Generation
Actual

(
(20,

(

-

\qquad

$$
\begin{aligned}
& \text { singular } \\
& \text { singular } \\
& \text { (}
\end{aligned}
$$

正

We focused on a＂Role Based
Implementation＂
We focused on a＂Role Based
\qquad
\longrightarrow
．
.
者

Abstract

| |
| :--- | :--- |

 \section*{\qquad
 \title{
都
 \title{
都

}

}

}

}

Summary View - Desktop \& PDA

Transpara

Views
Executive - Overview
Executive - Northport
Executive - Ravenswood
Manager - Northport
Northport - Controls
SmartSignal
Manager - EF Barrett
Executive - EF Barrett
Port Jefferson - Controls
Technician Toolbox - Northport
Manager - Port Jefferson
Northport - Mechanic Toolbox
Oil Deliveries
Northport - Maintenance
Manager - Combustion Turbines
KETS

7.25.2007 9:47:34 PM

Manager - Combustion Turbines
Executive - Overview
Executive - Northport

Plant Process Optimization
Executive - Ravenswood
Manager - Northport
Northport - Controls

Manager - EF Barrett
Executive - EF Barrett
Port Jefferson - Controls
Technician Toolbox - Northport

Manager - Port Jefferson
Northport - Mechanic Toolbox
Oil Deliveries
Northport - Maintenance

KETS
SmartSignal

Top Menu of All Views

\square

Views	IIII
RegionNE	-1]
RegionSE	L
RegionW	
Status	IIII
AF	III

ㅂ

 ,

,

Abstract

\square

Cle
-

Role 1 - Executives and Managers

Role 1 －Executives and Managers

號

```
 
```


號

 號

Role 2 - Plant Managers

號

 \qquad

\qquad | Detail |
| :--- |
| View KPIMap
 $\begin{array}{l}\text { Scorecards } \\ \text { CEN } \\ \text { Condenser }\end{array}$
 Load
 Main Steam |

 \begin{tabular}{l}
Detail

\multicolumn{1}{l}{| View KPIMap |
| :--- |
| $\begin{array}{l}\text { Scorecards } \\ \text { CEN } \\ \text { Condenser }\end{array}$ |
| Load |
| Main Steam |}

\hline

Detail

\multicolumn{1}{l}{| View KPIMap |
| :--- |
| $\begin{array}{l}\text { Scorecards } \\ \text { CEN } \\ \text { Condenser }\end{array}$ |
| Load |
| Main Steam |}

\hline
\end{tabular}

Detail = single unit nerf

 f
 \section*{I

 0}
 $\underset{\substack{\text { View } \\ \text { DPI Map }}}{ }$

View RPIMap

\mid		
View KPI Map		
KPI		Actual
Unit 1 Load		130.86
Unit 1 Opacity	2.83	
Unit 1 NOx		.1
Unit 2 Load		113.48
Unit 2 Opacity	1.62	
Unit 2 NOx		.12
Unit 3 Load		0
Unit 3 Opacity		5.9
Unit 3 NOx	0	101.35
Unit 4 Load		5.22
Unit 4 Opacity		.08
Unit 4 NOx		62.16
Ambient Temperature		

\qquad

 —
 位

2

\section*{\section*{

\section*{

 \qquad

 (as)

 -

 echnician Toolbox - Northport \mid Continuous Emissions Monitoring (CEM) | Trend pacity $\mid \underline{9 / 10 / 2006 ~ 5: 31: 41 ~ P M}$

 echnician Toolbox - Northport \mid Continuous Emissions Monitoring (CEM) | Trend pacity $\mid \underline{9 / 10 / 2006 ~ 5: 31: 41 ~ P M}$

 echnician Toolboox- Northport Continuous Emissions Monitoring (CEM) | Trend

 echnician Toolboox- Northport Continuous Emissions Monitoring (CEM) | Trend nitoring (CEM) | Trend nitoring (CEM) | Trend ,, \square \square oolbox - Northport | Co oolbox - Northport | Co | Home \| Technician Tooll |
| :--- |
| $\left.\begin{array}{l}\text { Unit } 4 \text { Opacity }\end{array} \right\rvert\, \underline{9 / 10}$ |

 \rightarrow (\rightarrow (

 /10/2006 5:31:41 PM

 /10/2006 5:31:41 PM}

Role 4 - Regulatory Manager

 \section*{\section*{Detai = Maste Mater Treatment piant status}
 \section*{\section*{Detai = Maste Mater Treatment piant status}
 Detar = Maste Meter ireatinent patestat
 - Mas+
 - Mas+aMM+
 $+$
 Detai = Maste Mater ireatinent pant status
 Detail = Waste Water Treatment Plant Status}

Plant Status

4.057

ent Plant Status
Actual
18
11.43
9.015
67.3
258.5
4.325
6.823
10.54
4.057

號

\section*{

 10:42:23 AM

 \qquad

都

 ant Plant Status

}\qquad

 IN Manager - EF Barrett | EFB WWT $\begin{array}{ll}13.20073: 06: 23 \mathrm{PM} & \\ \text { Actual WWT } & \text { Acturrer }\end{array}$

Role 6 - Mechanic

 ?

 ?}

1

Det

Role 7 - Test Engineer

 ,

1

 _

Abstract

\square

\qquad

Role 8 - Performance Engineer

\qquad

Initial Savings

2% reduction in Technician overtime $=\$ 16,000 / \mathrm{yr}$

- 2% Tech/Operator productivity gain $=\$ 12,000 / \mathrm{yr}$
- Environmental incursion $=\$ 5,000-\$ 100,000 /$ incident
- Cell Phone deployment over notebooks with air cards for 18 users $=\$ 52,000$ capital savings
- Training savings for 18 users $=\$ 14,000$
- Leveraging existing PI System investment saved start-up costs $=\$ 80,000$
- Competitive edge could be worth $=\$ 100,000$
- Return on Investment Less than 6 Months

Benefits include

- Rapid deployment
- Technology acceptance
- Team collaboration
- Off-site connectivity
- KPIs directly aligned with "role" needs
- Corporate visibility and transparency

Future plans and next steps...

Building NERC CIP PI System Infrastructure
Building a NERC CIP PI System Database
Building NERC CIP Information Interface for Plant Optimization and Generation CNI

Building a Mission Critical PI System Infrastructure
Building a Mission Critical PI System Database
Building Mission Critical Information Interface for Plant Optimization and Generation CNI
－Contact information
John L．Ragone
Plant Optimization \＆
NERC CIP Compliance Manager
$\frac{\text { ragonej＠us．ngrid．com }}{516.545 .3729}$

Contact information
John L．Ragone
Plant Optimization \＆
NERC CIP Compliance Manager
ragonej＠us．ngrid．com
516.545 .3729
© Copyright 2011 osisoft，Lie
4 4

 正
 Cl
 䢒
 (2)
 formation

\qquad

$\square \square \square$

\square

Thank you

[^0]: \qquad

[^1]: -

[^2]:

