

Turning insight into action.

Improving Equipment Availability and Reliability Through the PI System

Presented by R.R. Mehta, General Manager – Instrumentation & Tech Services, UltraTech Cement Ltd., India

Agenda

- Aditya Birla Group Overview
- UltraTech Cement Ltd Overview
- PI System at UltraTech Cement Ltd
- PI Server Architecture at Aditya Cement
- Various Application being used at Aditya Cement
- Performance calculations
- Performance data comparison with other units
- Conclusion & future plan

Who We Are

- India's first truly multinational corporation with revenues of US \$ 29.2 bn
- 100 state-of-the-art manufacturing units and sectoral services in over 27 countries across 6 continents.
- Over 60 per cent revenues flow from operations outside India.
- Anchored by a workforce of 130,000 employees belonging to over 30 different nationalities.
- Voted the Best Employer in India and among the top 20 in Asia by the Hewitt-Economic Times and the Hewitt-Wall Street Journal Study 2007.
- Adjudged Asia Pacific Top Company for Leaders 2009 by Hewitt – Fortune

Australia | Bangladesh | Brazil | Canada | China Dubai | Egypt | France | Germany | Hungary | India Indonesia | Italy | Korea | Laos | Luxembourg | Malaysia | Myanmar | Philippines | Singapore | Switzerland | Thailand | UK | USA | Vietnam

Our Businesses

Acrylic Fibres

Chemicals

Metals

Telecom

Agri Business

Financial Services

Mining

Textiles & Apparels

Carbon Black

Insulators

Pulp & Fibre

Trading

Cement

IT / ITES

Retail

Our Businesses

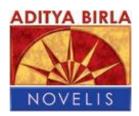
Globally

- A metals powerhouse, with the world's largest aluminum rolling company
- No. 1 in viscose staple fibre
- Fourth largest producer of insulators
- Eleventh largest producer of cement
- Among the world's top 15 BPO companies
- Among the best energy efficient fertilizer plants

India

- A premier branded garments player
- Second largest player in viscose filament yarn
- Second largest in Chlor alkali sector
- Second largest producer of cement
- Among India's top 4 BPO companies
- Among the top five mobile telephony players
- A leading player in Life Insurance and Asset Management
- Among the top three super-market chains in the retain business

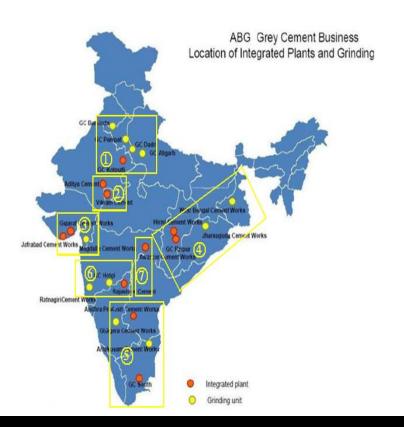
Key Companies



ADITYA BIRLA

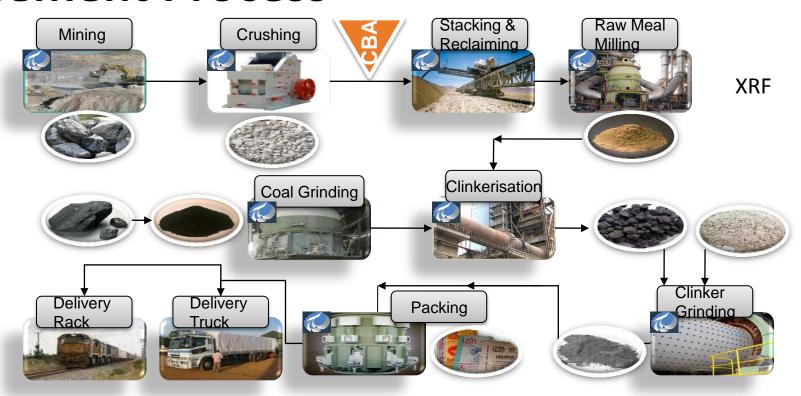
NUVO

Key Brands


Our Valued Customers

- Agfa-Gevaet
- Anheuser-Busch
- Ashtrom
- Bayer AG
- Benetton
- Bridgestone
- Cadbury
- Carrier
- Citibank
- Coca-Cola
- Colgate Palmolive
- Crown Cork & Seal
- Dockers
- DuPont
- Ford
- 1014
- Fujifilm
- Geabtt
- General Electric
- General Motors

- Glaxo SmithKline
- Goodyear
- Haldia Petrochemicals
- Henkel
- Honda
- IFFCO
- JC Penny
- Kimberly Clarke
- Kodak
- Konica
- LG
- Lotte Aluminum
- Marks & Spencer
- Michelin
- Mitsui
- Mitsubishi
- Morgan Stanley
- Nestle
- Nissan

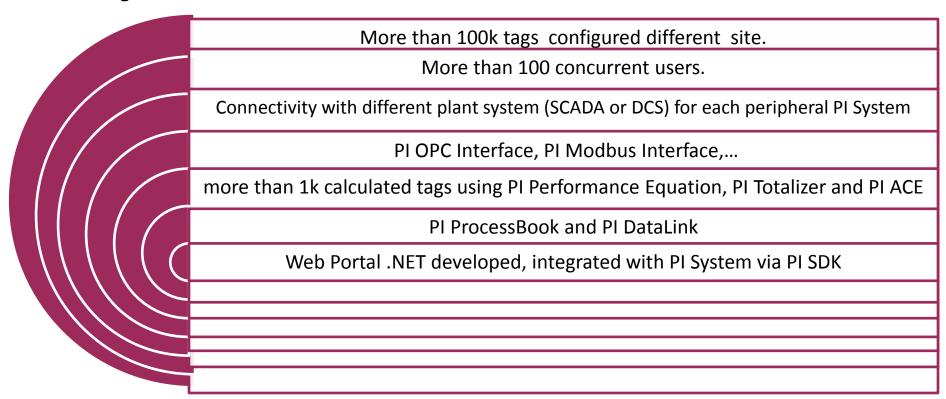

- Pepsi
- Pirelli
- Proctor & Gamble
- Ralph Lauren
- Rexam
- Ryerson Tull
- Sandler
- Sara Lee
- Schneider
- Scullers
- Siemens
- Suzlon
- Target
- Tata Chemicals
- Tetra Pak
- ThyssenKrupp
- Toyota
- Unilever
- 3M

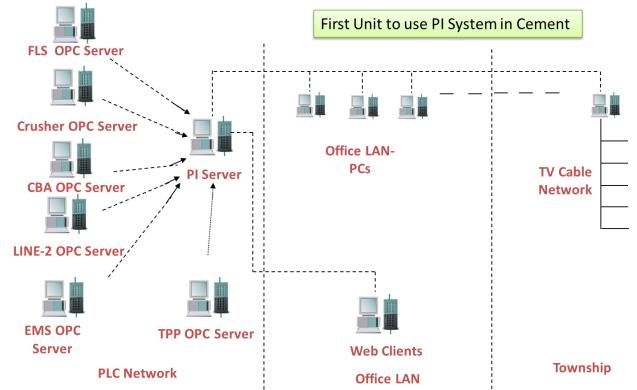
UltraTech Cement Ltd.



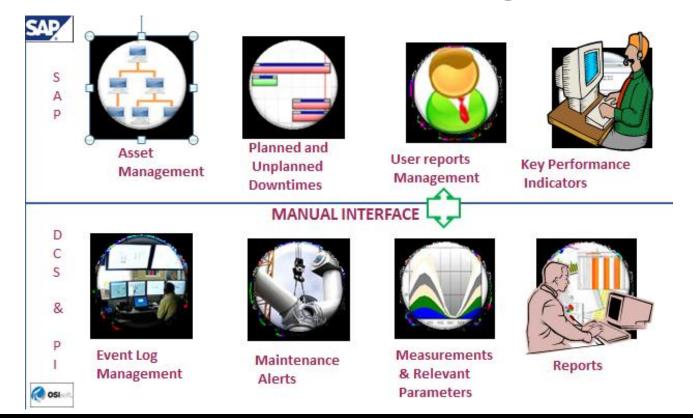
- 51.8 million TPA of gray cement across 22 plants.
 (Largest Cement producing company in India)
- 0.55 million TPA of white cement.
- 504MW of captive thermal plants.
- 13.6 million cubic meters of ready-mix concrete across 70 plants
- Gray Cement, White Cement, RMC
- ETA Star 3 MTPA of cement across 1 Integrated
 Plant + 4 grinding units in UAE, Bangladesh and
 Bahrain
- Serving market at India, UAE, other south Asian countries
- Sites across India
 - 12 integrated Plants
 - 11 Grinding units
 - 6 Bulk Terminals
 - 70 RMC units

Cement Process


Types of Cement


PI Server Installations at UltraTech Cement Units

- 11 integrated plants
- 10 grinding units
- All PI Server accessible from any location
- PI Server installed at new sites locations at KCW & 4 grinding units

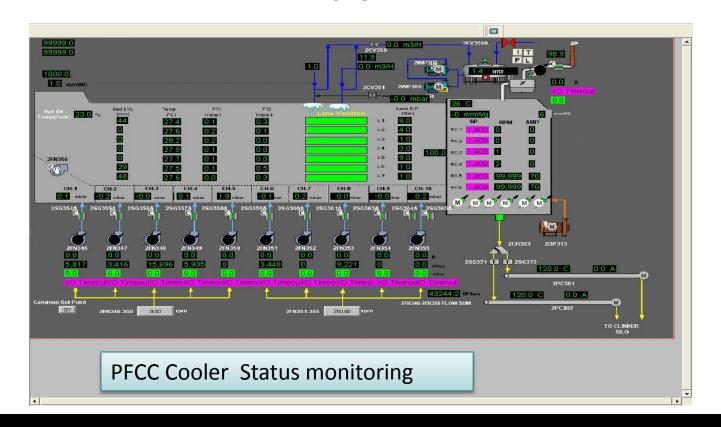

PI System Architecture Main Features

PI System Architecture at UltraTech Cement Ltd. Aditya Cement Works Shambhupura

Plant Maintenance Management

PI System Applications Used at UltraTech Cement

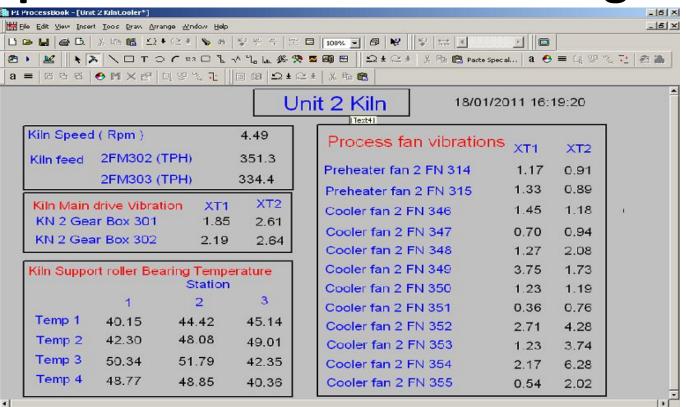
PI ProcessBook


- 35 Standard Updated PI ProcessBook Screens Posted on web portal
- 175 Users can access PI System client application at AC.
- Various Production and Equipment Run Hour reports
- Logging of Quality parameters on PI Server

PI DataLink, Miniview

Application installed at users PC for monitoring of critical parameters

PI SMS prom, Auto email to respective individual on critical events with archiving & Time Stamp


PI ProcessBook Application

Performance Calculations

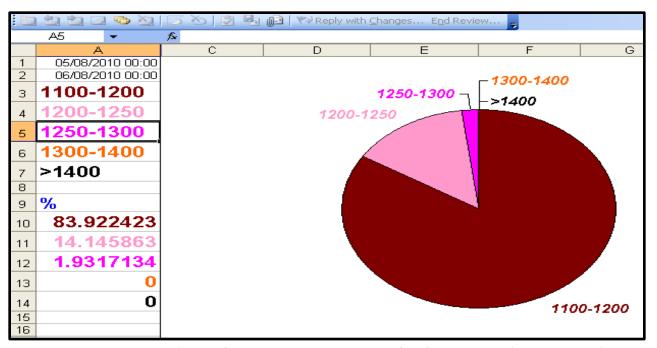
- Logging of Quality parameters on PI Server
- Generation of various log sheet for operation
- Logging of Quality lab parameters
- Run Hours and Batch Counters report
- Bag Counter and Dispatch report
- Equipment condition monitoring
- Daily power and output analysis
- Shift Operator Performance report

Example 1: Condition Monitoring

20

Example 2: Condition Monitoring

Kilı	n - Unit 1										
SI. No	PI Tag No	Descriptor	Eng Unit	Alarm 1	Alarm 2	Trip	Time of best achieved	Best achieved	1	2	3
Kiin	support Rollers										
1	ACS KN TEMP KILN ROLLER1	KILN ROLLER BEARING STATION 1 TEMP-1	00	55	68		13-Jan-10 11:42:39	41.5	45.6	47.1	45.
2	ACS KN TEMP KILN ROLLER1 2	KILN ROLLER BEARING STATION 1 TEMP-2	00	55	68		14-Jan-10 11:39:56	31.7	43.1	44.1	41.6
3	ACS KN TEMP KILN ROLLER1 3	KILN ROLLER BEARING STATION 1 TEMP-3	0C	55	68		14-Jan-10 11:39:56	33.3	43.2	45.8	42.
4	ACS KN TEMP KILN ROLLER1 4	KILN ROLLER BEARING STATION 1 TEMP-4	00	55	68		14-Jan-10 11:39:56	34.9	48.7	48.4	47.5
Klin	main drive & Girth gear										
5	ACS KN TEMP KN301 MTR DE BRG	KILN MTR 301 DE BRG	00	75	95		08-Mar-10 07:31:48	40.5	49.3	49.4	48.1
6	ACS KN TEMP KN301 MTR NDE BRG	KILN MOTOR 301 NDE BRG TEMP	00	85	95		14-Jan-10 03:09:28	40.2	62.1	62.3	59.2
7	ACS KN TEMP KN301 GB 1	KILN GEAR BOX TEMPERATURE - 1	00	75	90		10-Jan-10 05:24:30	52.2	60.1	57.8	55.4
8	ACS KN TEMP KN301 GB 2	KILN GEAR BOX TEMPERATURE - 2	00	75	90		07-Aug-10 16:19:43	47.6	45.3	44.0	42.5
9	ACS KN TEMP KN301 GB 3	KILN GEAR BOX TEMPERATURE - 3	00	75	90		14-Jan-10 11:39:56	58.5	62.0	61.9	59.8
10	ACS KN TEMP KN301 GB 4	KILN GEAR BOX TEMPERATURE - 4	00	75	90		14-Jan-10 11:39:56	58.7	64.6	64.9	63.6

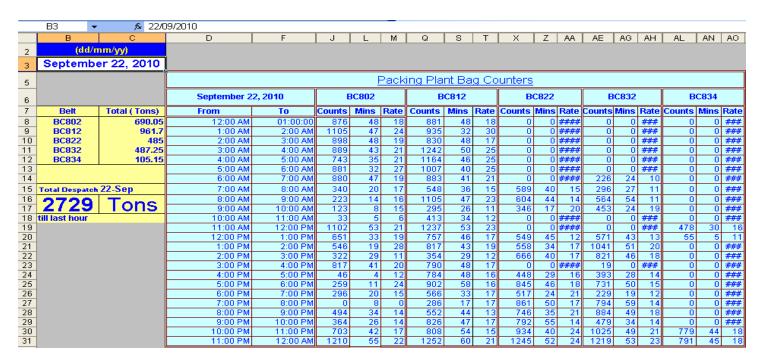


Alarm 2

Trip

Example 3: Quality Parameters Monitoring

- Burning Zone temp distribution on Max clinker production day 5 Aug 2010
- Helps while maintaining BZ temp for optimized production


Example 4: Shift Operator Performance Report

Date	SHIFT	NAME OF OPERATOR		RATE ACHIVED (TPH)			POWER (ሂኤጵ/MT)		
			OPC	PPC	T-40	OPC	PPC	T-40	
	А	Mr Ashish Sharma	247	253		26.78	26.52		
08-Jun-10	В	Mr Devendra Pal Singh	249			26.71			
	С	Mr. Ghanshyam, Mandri	261	253		25.43	26.83		
	А	Mr Ashish Sharma	242	271		27.44	25.05		
09-Jun-10	В	Mr Devendra Fal Singh	208	269	125	31.39	25.50	51.55	
	С	Mr. Ghanshyam Mardri	251	260	123	26.80	25.84	52.73	
	А	Mr Ashish Sharma&Mr . Goutam Jain	247			25.95			
10-Jun-10	В	Mr Devendra Fal Singh & Mr Mukesh Chaplot							
10-3411-10			255	257		26.05	25.83		
	С	Mr. Ghanshyam Mardri & Mr. Vinay Bodia		268			24.07		
	А	Mr S Szivastava & Mr. Gautam Jain	261	259		25.17	23.50		
11-Jun-10	В	Mr R Kabra & Mr Mukesh Chaplot	289	267	136	22.09	23.30	46.69	
	С	Mr Ashish Sharma&Mr Devendra Pal Singh	283	283	128	23.13	24.01	49.98	

Report rewards for the performance of the operator and sets new targets.

23

Example 5: Packing Plant Bag Counter Report

10 Nos of PI Tags + PI DataLink features makes the report available on a single click, by entering date in a cell, history data can be called.

24

Example 6: Manual Discharged Bag Counter Report

P.	Manual Discharged Bag Counter Report						
S.No.	Line 2 Packer Number	Yesterday	Today				
1	2PK801	0	0				
2	2PK802	64	1				
3	2PK803	11	0				
4	2PK804	31	27				
5	2PK851	118	61				
6	2PK852	246	83				
7	2PK853	32	9				
8	2PK854	187	60				
То	tal(No. of Bags)	689	241				

- Helps while maintaining and achieving six-sigma level
- History data can be called by altering date Excel formula

Case Study 1: Idle Running of Compressors

Analyzing parameters:

- Compressor running hours average taken for one month
- Header compressed air pressure average taken for one month

Observations:

- 5 Compressor running for more than 23 hrs average
- Average comp. Air pressure found to be above 6.0 kg/cm2

Action:

1 compressor taken in auto start and stop in PLC to maintain header pressure of 5.5 kg/cm2

Benefit:

100-125 Running Hrs saved in a month

26

Analyzing parameters:

Clinker output rate found to be highest in July'10 (5078 TPD)

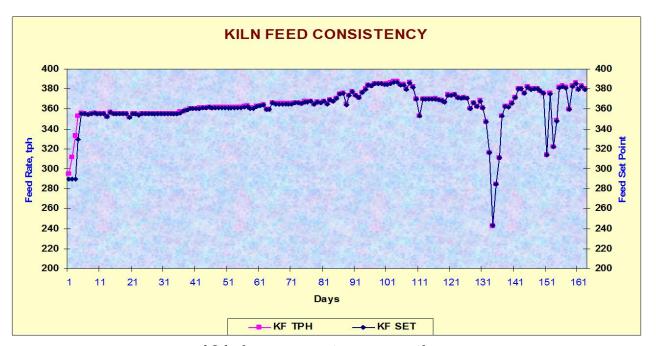
Team constituted to find out the reasons for such a high degree of consistency

Observations:

Feed increased gradually, Raw-mix designed for imported coal at PC firing

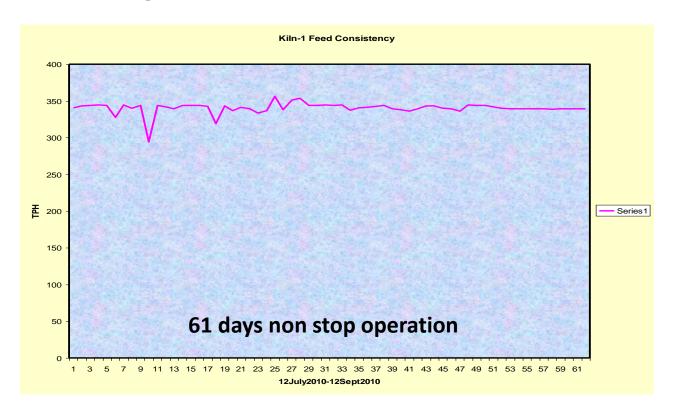
Process and Quality data collected from PI System to analyzing the performance

PI System used for analyzing the data and studying correlation.

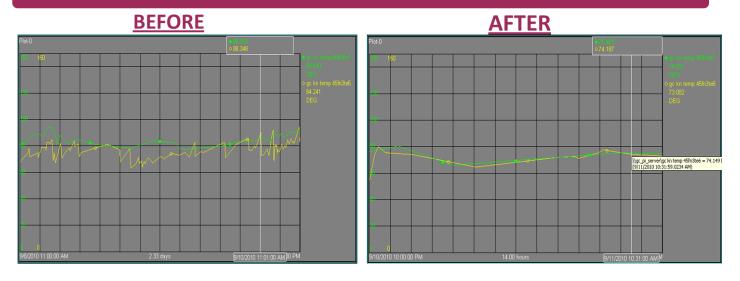

Conclusions

Kiln feed tend to have variations if the control of operation goes beyond the adjustment levels of the operator

Liquid content to be maintain at a average of 29.46 % with std deviation of 0.145


Consistency in burning zone temp will result in high degree of kiln feed consistency

Kiln Coal to be maintain at a average of 6.687 TPH with std deviation of 0.187


161 days non stop operation

FY 08-09

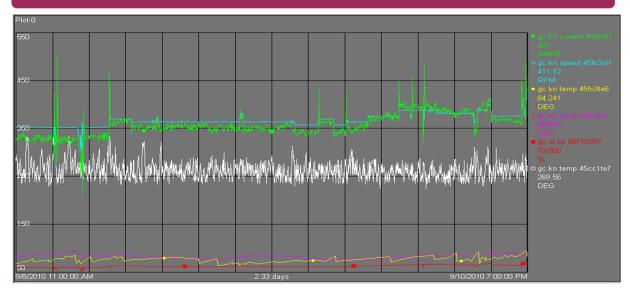
Occurrence: Unexpected behavior after plant shutdown

Observation: COOLER EXHAUST FAN BEARING TEMPERATURE HIGH

Analyzing Parameters: Through PI System data was used to analyse the situation

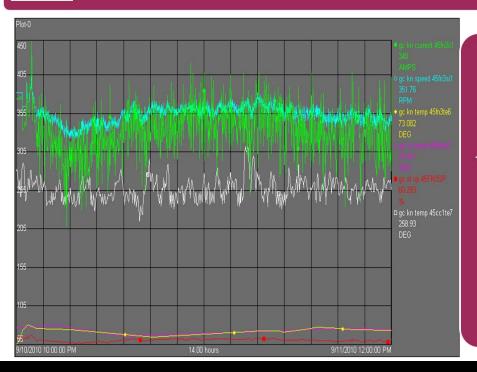
<u>Possible Reason 1:</u> Fan Balancing problem – No (Vibration Normal).

<u>Possible Reason 2:</u> Lubrication system problem – No.


<u>Possible Reason 3:</u> External Cooling (Water & Air) – Not Effective.

<u>Possible Reason 4:</u> Cooler Exhaust Temperature High – No.

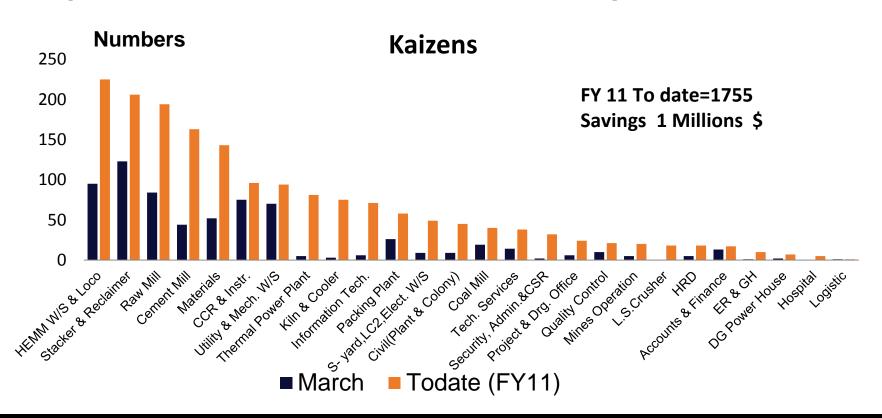
WHAT WAS THE ACTUAL REASON FOR TEMPERATURE RISE?


PI System data was used to study the system.

NEXT STEP: Data Analysis through PI ProcessBook

<u>Conclusion</u>: Though PI system only it was possible to analyze the system and overcome the problem. Additional air flow in system, due to damper opening up to 70% was causing process disturbances.

RESULT: DATA ANALYSIS THROUGH PI ProcessBook


After calculation at Present gas temperature 250 C – 260 c the calculated gas density is 0.67 Kg/m³, which ultimately increases the mass of gas.

RESULT: Data Analysis Through PI ProcessBook

DATE	8/9/10 TO 10/9/10	10/9/10 TO 11/9/10
TIME	11AM TO 7PM	10PM TO 12 PM
CURRENT	431	340
RPM	411	352
DE TEMP.	84 (with external cooling)	72
NDE TEMP.	89.9 (with external cooling)	74
GAS TEMP.	270	259
PID OPERATION	MANUAL	AUTO
EXT. COOLING	YES	NO
SET POINT (RPM)	70%	60.3%

<u>Advantage:</u> Through PI System data it was possible to study the <u>"System as a whole"</u>

Improvement Cases at Aditya Cement

Results and Performance Data

Aditya Cement **KILN II Highest TPD 9657 with KILN I Ever Highest Clinker** >10000 TPD for 17 days. Jan11 TPD 5079 in July 10, Previous best (OEM Guarantee 8000 TPD) was 5018 in the month July '07(with 100% Pet Coke). **KILN I Lowest Power RAW MILL-II Ever Highest** Consumption 24.20 Kwh/Mat, **Monthly TPH: 581.8, Previous** Previous best was 27.06 best was 572.83 TPH n the Kwh/Mat in the month month June '10 July '07(with 100% Pet Coke). **RAW MILL-II Ever Lowest Power Consumption** 19.56 Kwh/T of Material

Performance data comparison with other units

SI No		Best in the World	Best in the Group	Lowest in the Group	
5.	Equipment Performance	- Kiln			
a.	Thermal Energy	kcal/kg of clinker (Based on fine coal)	APCW		NJFD
b.	Electrical Energy	kWh / tonne of clinker		APCW	ACW-I
C.	Specific Output	(Actual MT of Clinker*24/Running hrs)/ Kiln Int. Volume; TPD/m3	HCW		ACW-I
d.	Burning Zone Load	Gcal/m2h		APCW	ACW-I
e.	Cooler Grate Load	TPD/m2	HCW		NJFD
f.	Mean Time between Stops	Actual Running hrs/(No. of Total Stops > 5 mins.)	VCI		GCW-II
g.	Kiln Dust	mg/Nm3		GCW I	RC - II
h.	Cooler Dust	mg/Nm3		GS	RC - II
I.	CO2/tonne of Clinker (Raw Material & Fuel)	tonne	ACW II		NJFD
j.	CO2/tonne of Cement (Raw Material & Fuel)	tonne	GC		NJFD
k.	Clinker in Cement	%	GC		NJFD
l.	Overall Equipment Effectiveness	(Actual Specific Output/Median)* (Running hrs/hrs in a year)	GCW-I, HCW and RC-I		NJFD
m.	Refractory Consumption	Average Value (5 yrs)/Clinker production		VC	APCW

Performance data comparison with other units

1. Overall Rating

Star Ranking	2007-08	2008-09
4 Star	AC, VC, GC, GS, GCW, HCW and APCW	AC, VC, GS, GC, GCW, HCW and APCW
3 Star	RC and ACW	RC, ACW and NJFD

2. Energy Efficiency Rating

Star Ranking	2007-08	2008-09
5 Star	AC, VC and GC	VC
4 Star	GS, RC, GCW, HCW, ACW II, APCW	AC, GC, GCW, HCW, APCW, GS, RC and ACW
3 Star	ACW I and NJFD	NJFD

3. Kiln Reliability Rating (Mean Time between Stops)

Star Ranking	2007-08	2008-09
5 Star	AC and VC I/II/III	VC-I
4 Star	GC, ACW, HCW and APCW	AC, VC II/III, GS, GC, RC and ACW
3 Star	GS, RC I/II/III and GCW I/II	GCW-I, HCW and APCW

39

Conclusions

A PI System for data acquisition is the first step towards a fully integrated PLANT MANAGEMENT SYSTEM

Integrated solutions can be rapid go-live and allow full scalability for a complete information system throughout the company supplying data at plant level as well as management level and allowing full benchmarking capabilities

Through data management it is possible to thoroughly customize & adapt the most diverse business requirements (generation technology, processes, company, business, organization, geography, etc...) providing an integrated and homogeneous view.

Ultimately the business was able to drive through difficult economic recession phase.

Future Plan

3 NOS MAGA CEMENT PROJECTS AND 5 GRINDING UNITS ANOUNCED RECENTLY ANNOUNCED

RC IV at Rajshree cement, Karnataka

GCR 2 at Grasim
Cement Raipur

ALL NEW PROJECTS TO HAVE INTEGRATED INFORMATION SYSTEMS FROM DAY 1

KARUR at Tamilnadu

Turning insight into action.

