

Turning insight into action.

Enabling Manufacturing Summary Statistics Analysis Using the PI System

Presented by Craig William Taylor
Sr. Data Systems Engineer
Genentech, Inc (A Member of the Roche Group)

Introduction/Agenda

- Background (My Company and Role)
- **Summary Statistics System Overview**
- **Defining and Coding Individual Summary Statistics**
- **Summary Statistic Examples:**
 - 1.) Filter Fouling Issue
 - 2.) Shifts in Process Step Performance
- System Economic Benefits
- Next Steps for Summary Statistics System/OSIsoft Product Line
- Acknowledgements
- Discussion

Genentech

A Member of the Roche Group

Founded more than 30 years ago, Genentech is a leading biotechnology company that discovers, develops, manufactures and commercializes medicines to treat patients with serious or life-threatening medical conditions.

Marketed Products for BioOncology, Immunology & Opthalmology, Metabolism & Primary Care, Virology & Specialty Care

The company became a member of the Roche Group in March 2009.

Craig Taylor's Experience/Role

 Over 14 years of experience implementing and using the PI System in the Biopharmaceutical, Power Transmission/Distribution and Oil/Petrochemical industries

- Focus has been on monitoring, analyzing and troubleshooting large scale manufacturing processes
- My role evolved from PI System user to admin back to user; leveraging the toolset for improved analysis

LinkedIn: http://linkedin.com/in/craigwilliamtaylor **Twitter:** http://twitter.com/craig_w_taylor

Summary Statistics System Overview

Purpose: The purpose of the system is to provide a repository of post process execution summary statistics to be used for process monitoring and analysis.

Scope: All products/lots since 1999 for site (focus areas: Cell Culture, Purification & Clean In Place)

Guiding Principles:

- 'Analysis Ready' Data Data organization begets analysis efficiency
- Enhanced process understanding (multivariate analysis)
- Standardized complex calculations
- Enable flagging and commenting of significant operational excursions or anomalies

Implementation & Testing

- System built in stages:
 - Organization
 Infrastructure
 - Purification
 - Cell Culture
 - Seed Lab
- Subject matter expert reviewed and correct results for each process step as they were deployed

Requirements Collection

- Overall System Requirements: Included server and client software functionality (databases, interfaces and visualization)
- Summary Statistic Requirements: Defined by staff members responsible for monitoring each process step
 - Include: process parameters, performance indicators and quality attributes

PI System Architecture & Data Flow

Defining Individual Summary Statistics

- Staff use PI ProcessBook, PI DataLink and PI BatchView to fully understand data and design code to collect and calculate summary statistics
- PI ProcessBook used to visualize Optical Density (OD), Differential Pressure (dP) and Tank Volume
- Summary value of dP collected when OD>=0.5
- This is an example of a difficult result to obtain only stored in the PI System

Coding Individual Summary Statistics

- Previous example translates into code using the PI Software Developers Kit (SDK):
 - Find time when optical density >= 0.5
 - Use that time to retrieve value from delta pressure tag
- Results are checked from the PI SDK calls using PI DataLink

Visual Basic Code

```
sFilter = "(NOT(BADVAL('" & piTag.Name & "')) AND " &
  "('" & piTag.Name & "'>=" & sPIFilterValue & "))"
iNoOfVals = piEndTime LDELT.UTCSeconds - piStartTime LDELT.UTCSeconds
piVals = piTag.Data.InterpolatedValues(piStartTime LDELT,
  piEndTime LDELT, iNoOfVals, sFilter,
  PISDK.FilteredViewConstants.fvRemoveFiltered)
If piVals.Count > 0 Then
  'Get the Timestamp
  piStartTime = piVals(1).TimeStamp
Fnd If
piVal = piTag.Data.ArcValue(piStartTime,
  PISDK.RetrievalTypeConstants.rtAuto)
If (piVal Is Nothing) = False Then
 dbValue = dbFactor * piVal.Value
End If
```

The summary statistics database is organized to easily complete a multivariate analysis by aligning the data for each process step in one row

			Ce	ell Cul	ture		Purification						
1		N-3	N-2		N-1	N	Harvest	Chrom1	Chrom2		Chrom3		Bulk
2		N-3		-2	N-1	IN IN	Harvest		Chrom2	<u>'</u>	Chrom3		Bulk
3	3 🗇	N-3		N-2	N-1	IN IN	Harves	t Chrom	1 Chrom	2	Chrom3		Bulk
	4	IN-3	3	N-2	N-1	. N	Harve	st Chron	n1 Chrom	12	··· Chrom3	3	Bulk

- This organization allows for comparing the output of a process step to the input/output of another process step
- We observed a filter fouling downstream from our first Chromatography column, we needed to determine the cause

- Investigated 2 summary statistics tracked for a Chromatography process step: Resin Cycles Used vs. Column Max Outlet Pressure for last 2 campaigns (~100 runs)
- Observed the pressure issue only occurred when Resin Cycles Used less than threshold
- Using this information performed a multivariate analysis to find variables that had an effect on Column Max **Outlet Pressure**

Table 1: Parameter Estimates

Estimate	Std Error	t Ratio		Prob> t	
-0.049276	0.006681	-7.38		<.0001*	
0.2178576	0.060733	3.59		0.0005*	/
0.7351531	0.259398	2.83		0.0056*	
	-		•	1	
	-0.049276 0.2178576	-0.049276	-0.049276 0.006681 -7.38 0.2178576 0.060733 3.59	-0.049276	-0.049276

- The multivariate analysis explored for changes in the response variable (Column Max Outlet Pressure) in response to 3 input variables:
 - Resin Cycles Used
 - Lactate Concentration (byproduct of cells)
 - Harvest Unit
- The input variables account for around 45% of the variation observed in the Max Outlet Pressure

Centrifuge Unit Effect:

- An investigation into the differences observed between our 2 different centrifuges revealed equipment was piped slightly differently
- The piping difference allowed increased water to enter the system diluting the centrate, contributing to filter fouling in both the centrifuge and chromatography process steps
- This understanding allows engineers to correct the process and reduce filter fouling

Resin Cycles Used Effect:

- The observation of high dP with low resin cycles used might indicate a change to the resin
- We are following up by exploring resin impact by running small scale studies in our laboratory
- We are also exploring the interaction between Column Max Delta Pressure and Lactate Concentration

Summary Statistic Example 2: Shifts in Process Step Performance

- Certain processes have increased variability around lactate generation at the production stage
- Although Lactate does not impact product quality; it appears to impact protein production so it is an important parameter to monitor
- OSIsoft tools have helped collected and monitor lactate results; they allow for better process understanding
- This is a good visual example of increase process variability

System Economic Benefits

Intangible Benefits

- Our solution is used to gain better process understanding and help define causes for abnormal process unit behavior
- The system saves engineering time and allows for efficient process monitoring for each process step

Tangible Benefits

- We explored quantifying a ROI based on [Capital, Labor] vs.
 [Monitoring, Investigations], but decided for our industry the system is better described as increasing our staffs depth of knowledge
- Without the PI System our staff would not be reviewing these detailed summary statistics during normal process monitoring

Next Steps for Summary Statistics System Customer Input to OSIsoft Products (wish list)

 Allow for PI Batch/Event Frames – PI AF to track variables on any level of the S88 model:

```
Enterprise/Site
Area/Campaign/Run
Unit/Batch
Procedure/Unit Procedure/Operation/Phase/Sub-Batch
```

- Report/Aggregate these summary statistics on any of the levels:
 - Example: Sub-batch variables reported with Batch, Run, Campaign or Site
 - Example: Batch information reported for each Run in the Campaign (Campaign Summary Report)
- 1,000 + column report generated quickly across many batch/runs/campaigns
- Allow for tracking between batch (idle time/equipment)
- Potential impact to: PI Server, PI Batch/Event Frames, PI AF, Reporting & Statistical Tools

Acknowledgements

Roche/Genentech

- Dan Stark
- Shishir Gadam
- Jesse Bergevin
- David Peers
- Mark Smith
- Lisa Day
- Jason Gu
- Richard Parapar
- Arthi Narayanan
- Keri Mills
- Luke Pease

Genentech

OSIsoft

- Rob Eisele
- Jack Aude
- Kumar Bangalore
- Marc Gallant
- Janelle (Loe) Minich
- Glenn Sharp

Thank you

Contact Information:

Craig William Taylor E-mail: taylor.craig@gene.com

Sr. Data Systems Engineer LinkedIn: http://linkedin.com/in/craigwilliamtaylor

Roche Pharmaceuticals (Genentech, Inc.) Twitter: http://twitter.com/craig w taylor

© Copyright 2011 Genentech, Inc.

Turning insight into action.