

Turning insight into action.

Using IEC 61850 and IEC 61400 for Wind Power Systems

Presented by Ralph Mackiewicz, SISCO

Agenda

- The integration and complexity dilemma
- Benefits of using IEC 61850 and IEC 61400-25-2 for power system communications.
- Application to wind turbine controls.
- View of IEC 61850 Client for the PI System

Interoperability & Integration

The ability of multiple systems to exchange information interact with each other in order to perform a useful business function for the user.

Interoperability and Integration

Easy to Achieve:

Nearly anything is possible with enough money and development effort

The Integration/Complexity Dilemma

A Better Way

- Interoperability and Integration without having to program it all yourself:
 - Where applications and devices are inherently capable of interoperating with other systems and performing integrated application functions in a cooperative and distributed manner.
- A model driven approach that provides a means of dealing with the complexity of systems.
- This is only possible if there are standards to enable it.
 - This work is progressing.
- This is the goal of the IEC TC57 standards

IEC 61850 & IEC 61400-25-2 Key Features

- Object oriented standardized device and object models and naming conventions.
- Self-describing devices allow all object definitions to be retrieved over the wire.
- Highly functional supporting more power system functions than just SCADA.
- Standardized configuration language to improve the engineering and configuration process.
- Uses Ethernet and TCP/IP networking.

Comparison of IEC 61850

VS..

Legacy Protocols

- Real-time data exchange
- Report by exception
- Mapped to MMS Protocol
- Device Control
 - Enhanced
- Minimal client configuration
- Protection messaging
- SOE recording and query retrieval
- Security

- Real-time data exchange
- Report by exception
- Pick your protocol
- Device Control
 - Basic
- Manual or a priori knowledge configuration
- None
- Proprietary implementation
- Proprietary, if supported.

Basic Service: Connection Establishment

Security Services

Access Point

password file

ED.1

ED.2

```
<ARNamePassswords>
 <ARName Name="RePower"><Password>![CDATA[-user#"iecdemo.gon" -pass#"e3zkzqaqz5v05"]]
 <ARName Name="RePo ar-old-pw"><Password>![CDATA[-user#"iacdemo.eon" -pass#"v2icwj5a28ek2"]]
 <ARName Name="Wayn:"><Password>P"#ALy</Password></ARName>
 <ARName Name="Herb'><Password><![CDATA[!@#<>$%^&*()_{}[]''Herb]]></Password></ARName>
<ARName Name="Mike'><Password><![CDATA[MiKE]]></Password></ARName>
</ARNamePassswords>
                Access
                                                  Username and password string for REpower devices
                Point
                                                      (ACSE authentication password)
                Name
```

11

Data Access: Legacy Approach

Legacy Object Mapping

Legacy data objects must be manually mapped to power system for each different device, application, and vendor.

Anatomy of an IEC61400 Object Model

A Wind Turbine – IEC 61400-25-2

Rotor Gear box Generator Anemometer Controller Brake raw drive Wind Vane Nacelle Yaw motor Blades

Table 1 - System specific logical nodes

LN classes	Description	M/O
LLN0	Logical Node Zero	М
LPHD	Physical Device Information	М

Table 2 - Wind power plant specific logical nodes

LN classes	Description	M/O	
WTUR	Wind turbine general information	М	
WMET	Wind power plant meteorological information	0	
WAPC	Wind power plant active power control information	0	
WRPC	Wind power plant reactive power control information	0	

Table 3 - Wind turbine specific logical nodes

LN classes	Description	M/O
WTUR	Wind turbine general information	M
WROT	Wind turbine rotor information	М
WTRM	Wind turbine transmission information	0
WGEN	Wind turbine generator information	М
WCNV	Wind turbine converter information	0
WTRF	Wind turbine transformer information	0
WNAC	Wind turbine nacelle information	М
WYAW	Wind turbine yawing information	М
WTOW	Wind turbine tower information	0
WEVT	Wind power plant event information	М
WSLG	Wind turbine state log information	0
WALG	Wind turbine analogue log information	0
WREP	Wind turbine report information	0

IEC 61400 Object Mapping

No Mapping Needed. Data is in Context Already

16

Why Is This Important?

Which turbines are generating the most power?

Where are they located?

How are they configured?

How do I know what data is present in the device?

- Standardized configuration file format (SCL).
- All IEDs are self-describing and support information discovery over the network.

Provides major benefit for Auto Point Synch (APS).

What do the results look like?

19

Reporting

- Allows scalability at interfaces and minimizes use of bandwidth
- Unbuffered Reporting allows clients to receive data from the server without polling.
 - If network connection between client and server is lost, data is lost.
- Buffered reporting enables the server to retain data if comms are lost enabling the client to retrieve ALL data after reconnecting

IEC 61850 Report/Log Model

21

Auto-Report Configuration

Report Configuration

Value that is lost by ignoring the long-term impact.

The complexity of Smart Grid systems like Wind, DER, etc. makes traditional approaches problematic.

Questions?

Ralph Mackiewicz

6605 19 1/2 Mile Rd.

Sterling Heights, MI 48314

Tel: +1-586-254-0020 ext. 103

Fax: +1-586-254-0053

Mobile: +1-586-260-2571

E-Mail: ralph@sisconet.com

http://www.sisconet.com

Thank you