

Turning insight into action.

Synchronized Data in Smart Grid Applications

Presented by Chuck Wells, Center of Excellence, OSIsoft

Outline:

- Impending issues
- How can synchronized data be used to address these
- Time synchronized data
- The C37.118 and other evolving protocols
- How can I meet NERC CIP requirements
- How can I use my PI System to handle these data
- Examples from Entergy, CFE, Tenaga, China

Looming issues:

- Transmission and distribution losses
- Transmission asset utilization
- Congestion losses
- PV intermittency in distribution networks
- Wind intermittency within interconnections
- Effect of electric vehicles on network and network components
- Aging infrastructure

Specific use cases

- Grid coherency (island formation detection)
- Voltage stability
- Small signal stability
- Line ampacity
- State measurement
- Wide area protection
- Wide area control
- Distribution system regulation

Time synchronization

- Measurements made beginning at top of second (TOS).
- Uniform intervals between TOS
 - 10,12,15,20,30 per second for 60 Hz system
 - Optional smaller intervals, 60 and 120 per second
- Accuracy = one percent Total Vector Error
 - This translates to ± 26 microseconds of time error with perfect measurement of voltage and current

Effect of time error on TVE

Other errors:

- (1) CT or PT calibration
- (2) ADC errors
- (3) Internal CT and PT errors
- (4) Anti-alias filter delay

Phasor definition

Measurement of TVE

Event sequence

Worm chart

Damping

Grid failure detection

Total Harmonic Distortion

Bad time quality

C37.118 and beyond

- Evolving to C37.118.1 and C37.118.2
- Then merged into IEC 61850-90-5
 - Expect final version this summer
- Some relays already output IEC 61850 messages

NERC CIP requirements

- CIP 007 Patch Management
- North American Electric Reliability Corporation (NERC) CIP-007-2a
 Cyber Security Systems Security Management (R3, Security Patch
 Management) states that "the Responsible Entity...shall establish,
 document and implement a security patch management program"
 [10]. As described by NERC in [11], there is a need to architect and
 design systems that have a commensurate level of availability. NERC
 states specifically that implementation should be done securely in
 redundant pairs to avoid systemic data gaps while standard
 maintenance is performed on the system.

Cyber Secure Synchrophasor Platform

- 2 CT and PTs
- 2 Switches and 2 routers
- 2 PMUs
- 2 Computers
- Standard PI System components

PI System components

- Four C37.118 interfaces
- Two PI HA server software
- Two PI FFT interfaces
- Two PI ACE running damping calculations
- Two IEEE 1344 interfaces
- PI ProcessBook and PI DataLink

CSSP

Architecture of the CSSP

22

Username: Administrator Password: SEL3354!

Details

CSSP Tours

- Entergy, June 2010, San Leandro
- T&D UC , Sept 2010, Chicago
- MISO, Oct 2010, Carmel
- NYISO, Nov 2010, Albany
- Distributech, Feb 2011, San Diego
- NASPI, Feb 2011, Ft. Worth
- IEEE PES, March 2011, Phoenix
- Cisco, March 2011, San Jose
- OSIsoft Users Conference, March 2011, San Francisco
- INL, April, Idaho Falls

Take away

- CSSP meets NERC CIP 007
- Standard PI System components used in CSSP
- MPLS Multicast support
 - No requirement for PDC
- Fully redundant, no data loss
- Compression optional

Turning insight into action.