

Smart Grid Substation Lab

Real Solutions to Real Issues at Utilities

Presented by Paul Myrda - Technical Executive Herb Falk – Solutions Architect

ELECTRIC POWER

OSIsoft. USERS CONFERENCE 2012

(e) @OSIsoftUC | #UC2012

EPRI Smart Grid Substation Lab

Bringing key industry resources together to explore real-world application of standards

- Environment to test drive approaches and solutions
- Tailor work to focus on high impact areas
 - industry need is great
 - standards are nearly ready for prime time
 - need to explore interoperability or refine understanding with a proof-ofconcept
- Vision reflects utility reality & best practices

EPRI Smart Grid Substation Lab

- Currently supporting:
 - Synchrophasor demos (C37.118 and 61850-90-5), exploring
 PMU data sharing without phasor data concentrators
 - LEMNOS, implementing multi-vendor router security interoperability
 - Multi-vendor 61850, demonstrating integration of data from multiple vendor relays
 - Transformer Performance, focusing on standards integration & visualization for the Control Center

SGS Lab Spans 3 Geographic Locations

Architecture of the Lab

Equipment View

Charlotte

Knoxville

Historians (Knoxville)

- Demonstration project to bring transformer performance information to the Control Center
- Initial phase will be completed in 2011 expanding activity in 2012 to include additional information
- Combination of EPRI general funding and sponsorship by AEP, Southern, FirstEnergy & CenterPoint
- Driven by:
 - desire to get meaningful asset performance information into the hands of Operations & other utility staff
 - desire to demonstrate how industry standards (61850 and CIM) play key role in deployment and maintainability

- Data from a variety of sources
 - classic EMS power system telemetry (MW, MVar, Amps)
 - newer temperature and dissolved gas telemetry
 - routine DGA sample test results
 - leading edge field transformer health monitoring device
- Visualization environment that supports geo-based displays, a rich graphing environment and deployment on tablet devices...

- Real value is in the infrastructure
 - 61850 substation device information
 - translated into CIM SCADA messages
 - consumed by historian
 - presented in visualization tool via CIM model based access to historic real-time data

Key Benefit of IEC 61850 Data Model

Typical Legacy Protocol Data Model – DNP3

I need to find the MW loading on Transformer 123 -

Is it in register 1154 or 5411?

IEC61850 makes the Power System context visible and reduces long-term operating cost

EPRI Transformer Health Project

OSIsoft. USERS CONFERENCE 2012

(e) @OSIsoftUC | #UC2012

EPRI Transformer Health Project

EPRI Logout

🔃 😑 💊 👔 👯 🔍 🕞 🤣 💿 🗔 📼 🔞 🛩 🔲 🔲 🐋 XF3 transformer requires maintane, 1 N XE3 Substation S Canton Transformer XE3 Nominal Voltage High Side Nominal Voltage Low Side High Side MVA 5868.484 High Side MY -561 1261

OSIsoft. USERS CONFERENCE 2012

EPRI Transformer Health Project

OSIsoft. USERS CONFERENCE 2012

CIM Model in Model History Database is Key

- Model contains
 - Equipment (Transformers)
 - Network topology
 - Substations
 - Links to historic real-time data
 - DGA sample test data
- Allows model-driven visualization tool access to historic real-time data
- Visualization tool retrieval based on industry-standard model -> reusability

OSIsoft. USERS CONFERENCE 2012

Synchrophasor Research

Model Extensions

Group Participation:

- Who has PMUs being installed or installed?
- Who has more than one PDC in the deployment architecture chain?
- Who intends to use PMU information for automatic control decisions?
- Who knows about IEC 61850-90-5?

What is the impact of PDCs and Control

• What latency is introduced?

What is the deployment considerations for security?

PMU and PDC Typical Exchange Architectures

Primary Purpose of PDCs

• PMUs have a limited number of consumers that can be supported*

Most non-multicast stream PMUs are limited to 4 consuming applications.

- Provide Time-Alignment of multiple PMU streams for applications.
- Minimizing the number of streams that need to be consumed by the N+1 tier.

How PDC's perform time alignment

PDC Reporting will Jitter General Guidance

<u>1/Report Rate > $\Delta A_{max} + \Delta P$ </u>

- PMU Reporting (1/Report Rate)
- Time Alignment Delay (ΔA_{max})
- PDC Processing Delay (ΔP)

Need to avoid data "loss"

Time alignments and mechanisms need to be determined on a application by application basis (2 prevalent buffering/reporting algorithms):

- ΔA is small (slightly greater than reporting rate).
- ΔA is large (1 second typical).

Hierarchy and PDC impact on Operational Performance

 $(\Delta A \text{ small })$

Need to understand network utilization

What if ΔA is large?

- Re-emission Time (ΔE) is small (e.g. approaching 0)
 - Limited by Bandwidth of media
 - Decreases "average" latency
 - May have un-anticipated results to receiving applications
- ΔE is 1 second (e.g. same as ΔB)
 - Assume that reporting rate is equally distributed.
 - More likely to be tolerated by receiving applications

 ΔE (T1) for 30 reports/second for 256 bytes/report is approximately: 30 msec

What would this do to visualization?

△E for 30 reports/second

Operations include control (e.g. Remedial Actions Schemes and Others)

A RAS Case Simulation 5C 5A 5B 1 cycle = 16.7 milliseconds 10 11 12 13 9 14 Time in Cycles **Operational Events** Time Step 1 @ 0 Cycle 3 Phase Fault on the Bus Relay Processing time for trip signal @ 1 Cycle Step 2 Event Detection Fault 5 Cycles to CBs Clearing: Step 3 @ 5 Cycles Open CBs for line/transformer out RAS Logic Processing for trip signal Step 4 @ 7 Cycles RAS Processing: 2 Cycles to CBs to trip generators Open CBs associated with 12 Step 5A @ 10 Cycles generators (I Batch Mitigation) Mitigation Generation Tripping / Load Open CBs associated with 4 Step 5B @ 12 Cycles generators (II Batch Mitigation) Shedding: 9 Cycles Open CBs associated with 2 Step 5C @ 16 Cycles generators (III Batch Mitigation) Total Elapsed Time: 16 Cycles

RAS Processing Target: 3 Cycles (50 msec)

OSIsoft. USERS CONFERENCE 2012

Testing and understanding is key:

(Current thought process for research test architecture).

Being extended to have multiple PMU/PDC vendors.

OSIsoft. USERS CONFERENCE 2012

Control issues: Events vs Streams

- Consider reporting a digital state in a synchrophasor stream 30 times/second.
 - This means that the transmission of a change of digital state is delayed by at least 30 msec. XX actually AT MOST 30 MS + PROCESSING TIME
- The implication of this is that this stream reporting rate is not useful for high-speed control/critical applications (e.g. RAS). In order to use streams for control, faster report rates are required if events are not implemented.
- Indicates the need for event driven messaging for digitals as well as streaming analogs.

Next steps after C37.118 Testing

• Evaluation of IEC 61850-90-5.

• Harmonization of synchrophasor measurements with CIM and 61850 model.

Comparison of C37.118.2, 61850, and 61850-90-5

Function	C37.118	IEC 61850 GOOSE and SV	IEC TR 61850-90-5	
Streaming Protocol	Yes	Sampled Valu GOOSE is		
Rate of Measurement/Reporting	10 -30 samples/second	80-256 samples/cycle (4800 – 15360 samples/second)	10 – 15360	
Natively Routable using IP	Yes	No. Must use bridged-routing (brouting)	Yes	
Application Focus	Situational Awareness	Control (3 msec)	Control and Situational Awareness	Required for
Standard Addresses Security	No	Yes – Authentication (62351-6)	Yes – encryption and authentication	Control
Communication profile fully specified	No	Yes	Yes	
Measurement Specification for synchrophasors	Yes	No	Reference C37.118.1	Required
Event Driven Capability	No	GOOSE		Control
Protocol is semantically driven (e.g. object oriented)	No		ſes	
Standardized configuration language	No		/es	

What 90-5 Looks like

How Synchrophasors integrate with CIM and 61850

OSIsoft. USERS CONFERENCE 2012

Security and appliance impact?

Courtesy of Pacific Gas and Electric

OSIsoft. USERS CONFERENCE 2012

Combining CIM, 61850, and Comms

OSIsoft. USERS CONFERENCE 2012

Impact on OSIsoft users

• New interface to support 90-5 for secure synchrophasor exchange.

• Modeling in AF for CIM+ other information.

Synchrophasor, CIM, and 61850: in AF

CIM, 61850, and Comms if AF

SISCO Model Explorer					_
e Tools Help					
		I			
• C ShuntCompensator(I:17)		Instance			
C SiscoUnresolvedInstance(I:376)					
C StaticVarCompensator(I:3)		Name: AMHERST_AMHE400SUBNET_XCBR_Communication		nk_MMS	
C SubGeographicalRegion(I:5)		Description:			
C SubLoadArea(I:2)		Description.			
- C Substation(I:14)		ID: a4aa451	a4aa4516-eb28-49a2-b071-fedc67929daa		
⊡- I AMHERST (Substation)				· · · · · · · · · · · · · · · · · · ·	
A EquipmentContainer.Contains Equipments		URI: Jonet.com	m/tempuri#_a·	4aa4516-eb28-49a2-b071-fedc	67929da
- A EquipmentContainer.has units		1			
		Properties			
I AMHERST Switch (CommunicationEquipment)		Nama		Valua	
• A RemoteUnit.ContainedBy		Communication Links Data and In	al la a	Value	
- A RemoteUnit.PhyConn		CommunicationLink.Protocolin	iuse I	IEC61650	
→ I Port-1 (PhysicalConnector)		IdentifiedObject.allasivame			
		IdentifiedObject.description			
I Port-2 (PhysicalConnector)		IdentifiedObject.localName			
E- I Port-4 (PhysicalConnector)		IdentifiedObject.mRID			
A CommunicationInterface.Connection2		IdentifiedObject.name		AMHERST_AMHE400SUBNET_XC	вк_с
		IdentifiedObject.pathName			
E I AMHERST AMHE400SUBNET XCBR IED (IED)		IPv4_AccessPoint.IPAddress	1	192.168.10.6	
A RemoteUnit.CommunicationLinks		IPv4_AccessPoint.IP-Gatewa	y 1	192.168.10.1	
I AMHERST_AMHE400SUBNET_XCBR_CommunicationLink_Layer2_RX (Layer2_AccessPoint)		Associations			
I AMHERST_AMHE400SUBNET_XCBR_CommunicationLink_Layer2_TX (Layer2_AccessPoint)		Name		Description	
		CommunicationLink.AccessPoi	int	AMHERST_AMHE400SUBNET_>	CBR_A
		CommunicationLink.RemoteUr	nits	AMHERST_AMHE400SUBNET_>	CBR_IE
E Avincero Statuci (communicationequipment)					
E FOICE (HysicalConnector)					
E · · · · · · · · · · · · · · · · · · ·	-				

Once in AF, can use the rest of OSIsoft Tooling for visualization and analysis

OSIsoft. USERS CONFERENCE 2012

(e) @OSIsoftUC | #UC2012

OSIsoft. USERS CONFERENCE 2012