
Presented by 

Smart Grid 
Substation Lab 
 

Real  Solutions  to  Real  Issues  at  Utilities  

Paul Myrda - Technical Executive 
Herb Falk – Solutions Architect 
 



EPRI Smart Grid Substation Lab 
Bringing key industry resources together to explore real-world 
application of standards 

•  Environment to test drive approaches and solutions 

•  Tailor work to focus on high impact areas 
–  industry need is great 
–  standards are nearly ready for prime time 
–  need to explore interoperability or refine understanding  with a proof-of-

concept  

•  Vision reflects utility reality & best practices 
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EPRI Smart Grid Substation Lab 
•  Currently supporting: 

–  Synchrophasor demos (C37.118 and 61850-90-5), exploring 
PMU data sharing without phasor data concentrators 

–  LEMNOS, implementing multi-vendor router security 
interoperability 

–  Multi-vendor 61850, demonstrating integration of data from 
multiple vendor relays 

–  Transformer Performance, focusing on standards integration & 
visualization for the Control Center 

3 



SGS Lab Spans 3 Geographic Locations 

730 mi 

200 mi 

630 mi 

Lenox 
(Substation) 

Charlotte 
(Substation) 

Knoxville 
(Substation & 
HQ) 
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Architecture of the Lab 
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Equipment View 
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EPRI Transformer Performance Project 
•  Demonstration project to bring transformer performance information to the 

Control Center 

•  Initial phase will be completed in 2011 – expanding activity in 2012 to 
include additional information 

•  Combination of EPRI general funding and sponsorship by AEP, Southern, 
FirstEnergy & CenterPoint  

•  Driven by: 
–  desire to get meaningful asset performance information into the hands of Operations & other utility 

staff 
–  desire to demonstrate how industry standards (61850 and CIM) play key role in deployment and 

maintainability 
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EPRI Transformer Performance Project 

•  Data from a variety of sources 
–  classic EMS power system telemetry (MW, MVar, Amps) 
–  newer temperature and dissolved gas telemetry 
–  routine DGA sample test results 
–  leading edge field transformer health monitoring device 

•  Visualization environment that supports geo-based 
displays, a rich graphing environment and 
deployment on tablet devices…  
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EPRI Transformer Performance Project 

•  Real value is in the infrastructure 
–  61850 substation device information 
–  translated into CIM SCADA messages 
–  consumed by historian 
–  presented in visualization tool via CIM model based 

access to historic real-time data 
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Key Benefit of IEC 61850 Data Model 

IEC61850 makes the Power System context visible and 
reduces long-term operating cost 

I need to find the MW loading on Transformer 
123 -MMXU1$MX$PhV$PhsA$cVal$mag$f 

 

I need to find the MW loading on Transformer 123 - 
Is it in register 1154 or 5411? 

Typical Legacy Protocol Data Model – DNP3 

IEC 61850 Protocol Data Model 

DeviceDevice

Apply 
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Operations / Enterprise 
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EPRI Transformer Health Project 
Visualization Sample 
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EPRI Transformer Health Project 
Visualization Sample 
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EPRI Transformer Performance Project 
CIM Model in Model History Database is Key 
•  Model contains 

–  Equipment (Transformers) 
–  Network topology 
–  Substations 
–  Links to historic real-time data 
–  DGA sample test data 

•  Allows model-driven visualization tool access to historic real-time 
data 

•  Visualization tool retrieval based on industry-standard model -> 
reusability  
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Operations / Enterprise 
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Synchrophasor Research 
 
Model Extensions 



Group Participation: 
•  Who has PMUs being installed or installed? 

 
•  Who has more than one PDC in the deployment 

architecture chain? 
 

•  Who intends to use PMU information for automatic 
control decisions? 
 

•  Who knows about IEC 61850-90-5? 
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What is the impact of PDCs and Control 

•  What latency is introduced? 
 

•  What is the deployment considerations for 
security? 
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PMU and PDC Typical Exchange Architectures 

E C 

Regional 

PMU 

Utilities 

North  
America 

Substation 1 

Substation  
PDC (SPDC) 

At least 4 tiers of PDCs 
 
•  National 
•  Regional 
•  Utility 
•  Substation 
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Primary Purpose of PDCs 
•  PMUs have a limited number of consumers that can be supported* 

 
  Most non-multicast stream PMUs are limited to 4 consuming 
  applications. 
 

•  Provide Time-Alignment of multiple PMU streams for applications. 
 

•  Minimizing the number of streams that need to be consumed by the 
N+1 tier. 
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How PDC’s perform time alignment 
Time 

 - PMU Reporting (1/Report Rate) 

∆T 

 - Time Alignment Delay (∆Amax) 

PDC Reporting will 
Jitter 

1/Report Rate > ∆Amax + ∆P 
General Guidance 

 - PDC Processing Delay (∆P) 
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Need to avoid data “loss” 

Time alignments and mechanisms need to be determined on a application by 
application basis (2 prevalent buffering/reporting algorithms): 
 
•  ∆A is small (slightly greater than reporting rate). 

 
•  ∆A is large (1 second typical). 
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Hierarchy and PDC impact on Operational Performance 

Substation 

Utility 

Regional 

National 

∆A(msec) ∆P(msec) Reporting Rate 

5 10 60-70 ( 14 – 16 msec) 

14 + 5 10 30-35 ( 28 – 29 msec) 

28 + 5 10 20-23 ( 43 – 50 msec) 

43 + 5 10 16-17 ( 58 – 60 msec) 

( ∆A small ) 
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Need to understand network utilization 

•  Re-­‐emission	
  Time	
  (∆E)	
  is	
  small	
  (e.g.	
  
approaching	
  0)	
  

–  Limited	
  by	
  Bandwidth	
  of	
  media	
  
–  Decreases	
  “average”	
  latency	
  
–  May	
  have	
  un-­‐anDcipated	
  results	
  

to	
  receiving	
  applicaDons	
  

•  ∆E	
  is	
  1	
  second	
  (e.g.	
  same	
  as	
  ∆B)	
  
–  Assume	
  that	
  reporDng	
  rate	
  is	
  

equally	
  distributed.	
  
–  More	
  likely	
  to	
  be	
  tolerated	
  by	
  

receiving	
  applicaDons	
  

∆E for 30 reports/second 

∆E (T1) for 30 reports/second 
for 256 bytes/report is  
approximately: 30 msec 
 
What would this do to  
visualization? 

What if ∆A is large? 
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Operations include control (e.g. Remedial Actions Schemes 
and Others) 
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Testing and  
understanding  
is key: 

26 

(Current thought 
  process for research 
  test architecture). 
 
Being extended to have 
multiple PMU/PDC 
vendors. 



Control issues: Events vs Streams 
•  Consider reporting a digital state in a synchrophasor stream 30 

times/second. 
 
–  This means that the transmission of a change of digital state is delayed by at 

least 30 msec. XX actually AT MOST 30 MS + PROCESSING TIME  

•  The implication of this is that this stream reporting rate is not useful 
for high-speed control/critical applications (e.g. RAS). In order to use 
streams for control, faster report rates are required if events are not 
implemented. 
  

•  Indicates the need for event driven messaging for digitals as well as 
streaming analogs.  
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Next steps after C37.118 Testing 
•  Evaluation of IEC 61850-90-5. 

 
•  Harmonization of synchrophasor measurements 

with CIM and 61850 model. 
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Comparison of C37.118.2, 61850,  and 61850-90-5 

Required  
for 

Control 

Required  
for 

Control 
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What 90-5 Looks like 
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How Synchrophasors integrate with CIM and 61850 
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Security and appliance impact? 

32 

Courtesy of Pacific Gas and Electric 



Combining CIM, 61850, and Comms 
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Impact on OSIsoft users 
•  New interface to support 90-5 for secure 

synchrophasor exchange. 
 

•  Modeling in AF for CIM+ other information. 
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Synchrophasor, CIM, and 61850: in AF 
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Standardized 
Names 



CIM, 61850, and Comms if AF 
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Once in AF, can use the rest of OSIsoft 
Tooling for visualization and analysis 

37 



Brought to you by 


