

Power Transformer Simulation Laboratory for **Proactive** Maintenance

Presented by Luc Vouligny, Ing, Ph.D.

OSIsoft. USERS CONFERENCE 2012

e @OSIsoftUC | #UC2012

Agenda

- About Hydro-Québec & IREQ
- Context of the Research Project
- The Power Transformer Laboratory
- Experimental Results
- Conclusion and Future Work

About Hydro-Québec

- Hydro-Québec is the largest electric utility in Canada
 - 30% of electricity generation
 - Installed capacity of 36,671 MW
 - 98% renewable energy (hydro & wind power)
- Hydro-Québec is the largest power generator in North America
 - 15 interconnections with neighboring markets (> 5,000 MW)
 - Active in the following markets : Ontario, Maritimes, New-England, New-York, PJM and MISO
- Hydro-Québec is among the largest power transmission companies in North America
 - \$17 B in transmission assets
- 4 M Customers
 - Residential (41%), Large-power corp. (31%), Commercial (25%) and Others (3%)

Corporate Structure

OSIsoft. USERS CONFERENCE 2012

(e) @OSIsoftUC | #UC2012

Hydro-Québec TransÉnergie

- Annual investment 2009-2013: \$1B
 - 21,000 miles of power transmission lines
 - Including 7,000 miles of 765 & 735 kV lines
 - First utility worldwide to use 735 kV lines
 - 514 transmission substations
 - 2200 power transformers

Hydro-Quebec's Research Institute (IREQ)

- Largest electrical utility research center in North America
 - 500 scientists, technicians, engineers & specialists
 - \$100 M in innovation projects
- Specifics of the network
 - Generating facilities located up North, far from the load centers
 - Harsh climate
 - Very long transmission lines at high voltage levels
 - Primarily involved in projects related to electricity Generation, Transmission & Distribution
 - Performance & Durability
 - Inspection & Maintenance
 - Inflow Forecasting & Electricity Production
 - Energy Efficiency
 - Land Transportation Electrification

OSIsoft. USERS CONFERENCE 2012

© @OSIsoftUC | #UC2012

Context of the MEET-PM research project

- "Power Transformer State Evaluation Models for Sustainability and Maintenance"
- Transformers are critical components of the network
 - Average age: 31 years old
 - Their life expectancy: 57 years
- Each of these power transformers cost from \$1M to \$6M
- It becomes important to have more actualized information on their health states to avoid costly outage due to their malfunctions
- Hydro-Quebec has started to install on-line monitoring capability
 - 90 power transformers are already linked with a SCADA system and the sensors data are gathered in a PI Server since August 2011

Goal of the research project

- To make use of the on-line diagnostic possibilities to allow for proactive maintenance
 - Maximization of asset life
 - Risk & Cost Reduction of unexpected failure
 - Maintenance and Inspection driven by asset condition

Research project's main goal with proactive maintenance...

OSIsoft. USERS CONFERENCE 2012

€ @OSIsoftUC | #UC2012

Information model overview

OSIsoft. USERS CONFERENCE 2012

€ @OSIsoftUC | #UC2012

Research Project History and Current Objective

- The project started a year ago (March 2011)
- The objective for the first stage of our research projects is to look for different options
- One of the options includes to test and use the OSIsoft PI System to see if it would be **sufficient** to help us implement our proactive maintenance concepts
 - Establish the dynamic state of the equipment taking into account the on-line sensors diagnostic data
 - Establish an expert system for the detection of early signs of state degradation

Power Transformer Laboratory

Simulation of Transformer Behaviour

- The performance of power transformer functions can be analysed with different models:
 - Load current model
 - Insulation model
 - Moisture (humidity) model
 - Cooling efficiency (thermal) model
 - ..

Flynn, B., "Case Studies regarding the integration of monitoring & diagnostic equipment on aging transformers with communications for SCADA and maintenance, DistribuTECH 2008, Jan 22-24, Tampa, FL

- If we have
 - the physical model of a given behaviour
 - the data from the sensors,
 - the characteristics of the asset,
 - its history and its operating conditions
 - then we could be able to correctly identify a degrading function
- To test our settings, we will take the established oil temperature model from the IEC 60076-7 International Standard to test our approach.

Thermal model

- Operational conditions
 - Ambient temperature (θ_a)
 - Initial top-oil temperature gradient ($\Delta \theta_{oi}$)
 - Initial hot-spot-to-top-oil temperature gradient ($\Delta \theta_{hi}$)
 - ...
- Equipment characteristics
 - Winding time constant (T_{ω})
 - ..
- Formula to get the oil temperature (θ_0) value for a given load factor (κ) setting at a given time t: exponential equations formulation of the IEC 60076-7 IS for increasing & decreasing state of the load factor κ

$$\theta_{0}(t) = \theta_{a} + \Delta\theta_{0i} + \left\{ \Delta\theta_{0r} \times \left[\frac{1 + R \times K^{2}}{1 + R} \right]^{x} - \Delta\theta_{0i} \right\} \times f_{1}(t)$$

$$\theta_{0}(t) = \theta_{a} + \Delta\theta_{0r} \times \left[\frac{1 + R \times K^{2}}{1 + R} \right]^{x} + \left\{ \Delta\theta_{0i} - \Delta\theta_{0r} \times \left[\frac{1 + R \times K^{2}}{1 + R} \right]^{x} \right\} \times f_{3}(t)$$

The acquisition system

OSIsoft. USERS CONFERENCE 2012

€ @OSIsoftUC | #UC2012

Why Microsoft StreamInsight

- Enables complex event processing (CEP), specifically suited for data streams
- Many maintenance situations such as degrading state recognition depend on temporal as well as causal relationships between events, which can be expressed in a CEP system
- StreamInsight is well integrated with PI ACE

 Input/Output adaptors with PI System for StreamInsight
- Used for acquisition, estimation & detection

€ @OSIsoftUC | #UC2012

Defective & degrading state detection system

Defective & degrading state detection

- PI/StreamInsight input adapter is used to get the data from the PI points referring to the different signals (measured & estimated)
- A StreamInsight LINQ expression is used to notice an excessive divergence between the measured and the calculated events

```
var query = from dataMesuree in donneeMesuree
    join dataCalculee in donneeCalculee on dataMesuree.Path.Substring(0, 5) equals
dataCalculee.Path.Substring(0, 5)
    select new PIDataSingle()
    {
        Path = alarmDifference,
        Status = (abs(dataMesuree.Value - dataCalculee.Value) > TempVar ? 0 : -1),
        Value = (abs(dataMesuree.Value - dataCalculee.Value) > TempVar ? "danger" : "normal")
    };
```

Simulation result sample

OSIsoft. USERS CONFERENCE 2012

(e) @OSIsoftUC | #UC2012

Power Transformer Simulation Laboratory for Proactive Maintenance

« Now that we have on-line monitoring possibilities for maintenance purposes on power transformers, our simulation laboratory will allow us to elaborate and test many possibilities of proactive maintenance models & technics before implementing them in the field. »

Luc Vouligny, IREQ

Business Challenge

- Maximization of asset life
- Risk & Cost Reduction of unexpected failure
- Maintenance and Inspection driven by asset condition

Solution

- Simulation laboratory - Simulation of degrading state assets measurements
- Detection techniques using PI ACE & StreamInsight

Results and Benefits

Enables us to implement and test new degrading state detection algorithms from simulation data and physical models for proactive maintenance

OSIsoft. USERS CONFERENCE 2012

(e) @OSIsoftUC | #UC2012

Conclusion and Future Work

- First year with the OSIsoft PI System; very satisfied so far with the capacity of the system and the support we received (TechSupport & Training)
- Everything has been accomplished with a VCampus PI System
- Once tested, the idea is to progressively implement our detection algorithms in the enterprise maintenance system
- New models for degrading situation recognition will be considered and added to the detector
- A PI-to-PI link between our research facilities and the PI System used for on-line monitoring of the enterprise will be established in a near future
- This will allow us to use historical data when no physical models are available

Luc Vouligny

vouligny.luc@ireq.ca

http://www.hydroquebec.com/innovation

Patrick Picher, the MEET-PM Project Leader

picher.patrick@ireq.ca

Many people have participated so far on the establishment of this laboratory and I would like to thank them all, especially:

Fouad Liq, Gilmer Prada-Velasque, Jonathan Simard, Clément Étienne; university students I supervised

Mathieu Viau, Luc Cauchon, Arnaud Zinflou & Alexandre Bouffard, coworkers of my department.

e @OSIsoftUC | #UC2012

Appendix

- Transformer simulation user interface
- CIM model
- AF transformer model

<u>8</u>									
file transfo1									
Info transfo1									
transformator									
Gradient de temperature(gr)	14.5	Puissance exp. des pertes totales(x)	0.8						
Facteur de point-chaud(H)	1.4	Puissance exp. du courant(y)	1.3						
Constante du modele thermique(k11)	0.5	Const du temps d'huile moyenne(t.o)	150.0						
Constante du modele thermique(k21)	3.0	Const du temps d'enroulement(t.w)	7.0						
Constante du modele thermique(k22)	2.0	Echauffement de l'huile au sommet	38.3						
Pertes en charge/Pertes à vide(R)	35.0								
Fonctionnement Facteur de charge : Image: Constraint of the second seco									
Type : Sans perturbation									

(e) @OSIsoftUC | #UC2012

🝳 \\MEET-PM\Test_Transfo - PI System	1 Explorer					
<u>File E</u> dit <u>V</u> iew <u>G</u> o <u>T</u> ools <u>H</u> elp						
😭 Database 📑 Query Date 🕞 🚱 Bac	ck 💿 🖳 Check In 🧠 🖌 🛃 Refresh 👘 N	Jew Element 🕞 🐮 New Attribute	e			🔎 Search 👻
Elements	transfo1					
Elements 	General Child Elements Attributes Ports Vers	sion] <u>N</u> ame:	r:	facteur_de_charge	Group by: 🗖 Category 🗖 Templat
transfo2			Configurat	tion Item:	1	
⊞…		0	Categories	e L		6
PART1.STATION2		25	Default UC	т г эм: Га	None>	
E		38.3	Value Typ	e: D	ouble	
		0	Value:	-ر ان		·
		14.5	Data <u>R</u> efe	rence: P	l Point	
		14.5			Cotting	
		0.5	MEET.P	M\transfo1_	<u>J</u> etting facteur de charge	JS
		2	, NUCLIN	in adharon.	lacted_ac_enarge	
	■ ■ k 22	2				
		- 1000				
		150				
		7				
Elements		25.600000381469727				
Perent Frames	 temperature huile 	25.812610626220703				
🟭 Library	 	25.811811447143555				
munit of Measure	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	25.811811447143555				
Му РІ		0.8				
Notifications		1.3				
🚨 Contacts						
19 Attributes						