

PI as a Utility-Scale PV Monitoring **Platform**

Presented by Steve Hanawalt, President

- State of the Market
- Issues and Challenges
- Potential Solutions
- Benefits
- Summary and Q&A

- State of the Market
- Issues and Challenges
- Potential Solutions
- Benefits
- Summary and Q&A

State of the Market

- Turmoil, uncertainty, change....
 - Daily news of failures
 - Price compression accelerating consolidation
 - What is going on?

 2012 – 10-15% growth driven by US, China, India and Latin America

- State of the Market
- Issues and Challenges
- Potential Solutions
- Benefits
- Summary and Q&A

Issues and Challenges in PV

- Utility PV monitoring characterized by
 - Dynamic. Evolving technology/standards/needs
 - Volume. Large quantities of data
 - Remote. Local and remote operations with changing O&M structures
 - Uncertainty. Forecasting and power scheduling
- Needs
 - Flexibility
 - Visibility

- State of the Market
- Issues and Challenges
- Potential Solutions
- Benefits
- Summary and Q&A

Potential Solutions

To meet the monitoring needs of this new and dynamic generation technology...

What should we monitor, and

How should we monitor it?

What Should we Monitor?

Systems and components

Solar PV KPIs

Interfacing with external systems

What Should we Monitor? - Systems and Components

Plant How deep into the array should we monitor? Block 2 Block 1 Block n Potential monitoring points for a 550 MW PV power plant Array 2 Array Array n under construction in CA Container Container Container Inverter 2 Inverter 1 Inverter n Combiner Combiner Combiner 30.000+ 7-level asset hierarchy String 2 String n 700.000+ String 1 Panel 1 9,000,000+ Panel 2 Panel n

String Monitoring – Cost/Benefits

The economic benefit of string monitoring is a function of the price of energy, percentage of strings affected, and cost of labor

What Should we Monitor? - PV KPIs

 Actual Production Expected Variance •PR Efficiency • PI Normalized array yield Equivalent availability Availability · Capacity factor O&M costs **Economics** Fixed Variable Commercial availability

To monitor and extract value from the assets what data should you monitor?

What Should we Monitor? – PV KPIs

Portfolio with drill-down to site

©OSIsof

What Should we Monitor? – External Systems

How Should we Monitor it?

Local and remote

Data independence

How Should we Monitor it? - Local and Remote

Utility PV Monitoring – Local or Remote?

@ the Plant

- Equipment status
- Forced outages
 - Inverter trips
 - String outages
- Performance shortfalls
 - String monitoring
 - Combiner current

@ Headquarters

- Forced outages
 - Inverters
 - Feeder breakers
 - Main breaker(s)
- Performance shortfalls
 - Array yield
 - Inverter efficiency
 - Recoverable degradation
- Power scheduling
 - Available capacity
 - Weather data
 - Short-term power forecasting

PV Monitoring Platform – Maintaining Data Independence

- State of the Market
- Issues and Challenges
- Opportunities and Potential Solutions
- Benefits
- Summary and Q&A

Benefits of Monitoring

17% production variance between a well-run PV plant and one that is not:

- Low availability
- High degradation
- Performance shortfalls
- O&M costs excursions

Estimated ROI for 100 MW portfolio: 366%

Other benefits:

- Minimize imbalance penalties
- Lower fleet production costs
 - Seamless transition and interface with 3rd party service providers

- State of the Market
- Issues and Challenges
- Opportunities and Potential Solutions
- Benefits
- Summary and Q&A

Summary and Q&A

- Rumors of the death of solar are greatly exaggerated...
- Owners must have real-time visibility of their asset's performance
- "Trust, but verify..."
- Pl's performance, scalability, and universal presence make it a good portfolio monitoring platform

Steve Hanawalt

steve.hanawalt@powerfactorscorp.com

510.325.2951

THANK

Brought to you by OSIsoft.

Solar PV KPIs - Terms and Definitions

- Equivalent Availability Factor (EAF) the proportion of hours in the period that a unit is available to generate at full capacity
- Commercial Availability Factor (CAF) the proportion of potential revenue that the unit captures during the period
- Performance Index (PI) the proportion of the potential energy production that the unit captures during the period
- Performance Ratio (PR) the DC-to-AC conversion efficiency of the system
- Capacity Factor (CF) the proportion of hours in the period that a unit generated at its nameplate rating