


# Continuous Reliability Enhancement for Wind (CREW) Database

Wind Turbine Reliability Benchmark

Presented by Valerie Peters, Reliability Analyst valerie.peters@sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND Report 2012-2668 C





### **Outline**

- Background: Sandia & CREW
- CREW Benchmark
  - Results
  - Data Challenges & Solutions
  - Data Value
- Closing



### **Sandia National Laboratories**

### "Exceptional Service in the National Interest"









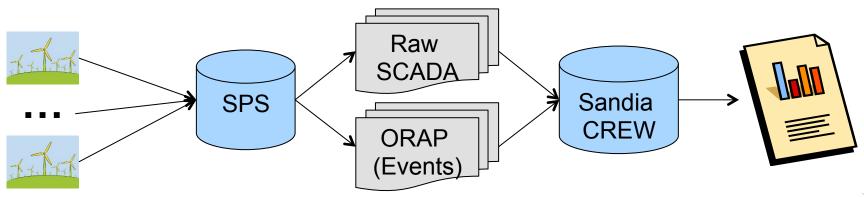
#### **Wind Energy Technologies**

Funded by Department of Energy (DOE) Energy Efficiency & Renewable Energy (EERE)

### Wind Technology

- Materials and Manufacturing
- Structural, Aerodynamic, and Full System Modeling
- Sensors and Structural Health Monitoring
- Advanced Blade Concepts
- Lab Field Testing and Data Acquisition

### System Reliability


- Industry Data Collection
- Improve reliability of the existing technology and future designs
- Blade Reliability Collaborative

### System Integration & Outreach

- Wind/RADAR Interaction
- Integration Assessment
- SNL Wind Energy Test Facility

# **CREW Benchmark Approach**

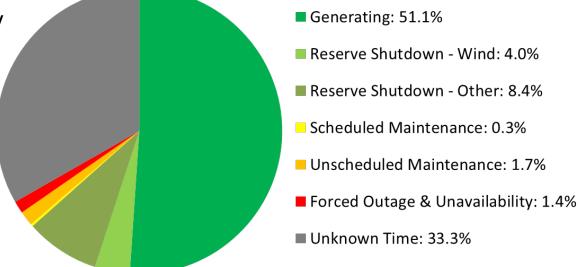
- Establish national reliability database
  - Benchmark U.S. wind turbine operations and maintenance (O&M) experience
- Provide regular public-domain reporting
  - Aggregate fleet reliability data metrics; enable comparison of a plant against the benchmark
  - Provide specific failure sources and frequencies
- Data from individual participants is proprietary



SPS: Strategic Power Systems; ORAP: Operational Reliability Analysis Program; SCADA: Supervisory Control & Data Acquisition ORAP






## **Availability Time Accounting**

SCADA and data transfer challenges lead to "Unknown Time"

- Availability analysis needs to highlight the common communication and IT

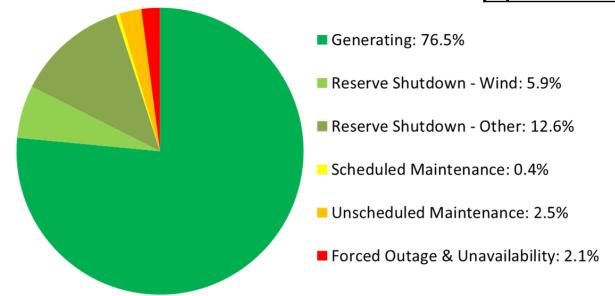
issues resulting in missing data\*

 CREW team is actively identifying these industry-wide issues & addressing them where possible



\*Substantial portion of Unknown Time is attributable to pilot program & associated beta testing

Event & SCADA Data Source: ORAP ® for Wind



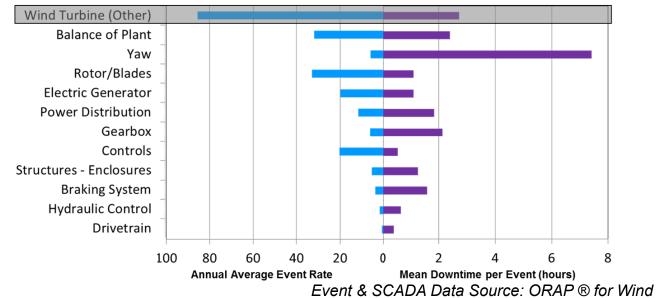



# **Availability Time Accounting**

 Pie Chart approach allows comparisons with many different definitions of "Availability"

| Utilization                     |       |
|---------------------------------|-------|
| (aka Generating Factor)         | 76.5% |
| <b>Operational Availability</b> | 95.0% |



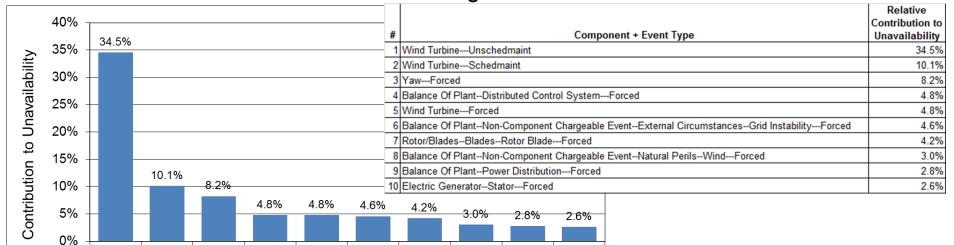

Event & SCADA Data Source: ORAP ® for Wind





### **Event Frequency vs. Downtime**

- Balance of Plant, Rotor/Blades have most frequent events
  - Aside from "Wind Turbine (Other)"
- Lengthy, but infrequent, Yaw events have largest mean downtime








# **Top Unavailability Contributors Component + Event Type**

- Dominated by general events
  - Wind Turbine (Other): 3 of top 5; just under 50% of unavailability
  - Work Orders are critical for filling in these blanks about true root cause



Event & SCADA Data Source: ORAP ® for Wind ORAP

3

5

6

2



# **Data Challenges & Solutions**

### Capturing adequate detail

- Solution: Electronic WORK ORDERS!
  Capitalize on technician knowledge
  - Computerized Maintenance Management System (CMMS)



Image Source: http://resortdata.com

 Solution: Encourage turbine and SCADA manufacturers to continue expanding detail in SCADA system and associated fault codes

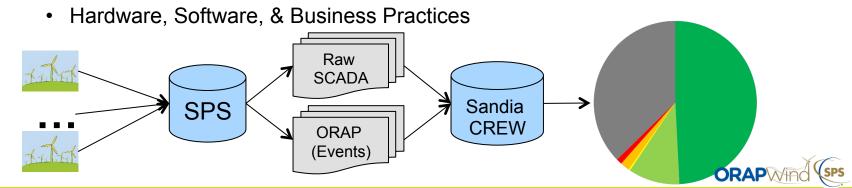


# **Data Challenges & Solutions**

### Data Volume

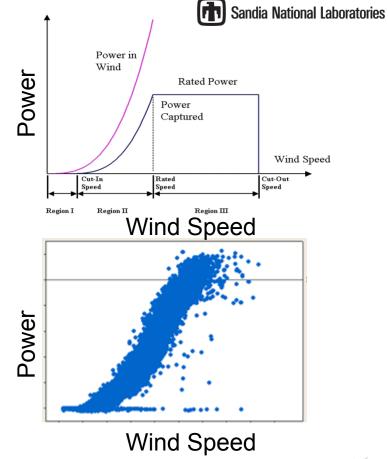
- Solution: Invest in architecture (a little) ahead of time
  - Hardware, software, DESIGN
  - Analysis plan
    - Goals, data needs, analysis/reporting approach
- Solution: Work at multiple levels of detail
  - Raw data (as fast as possible)
  - Summaries (1 minute, 10 minute, daily)
  - Events (detail on downtimes)




Image Source: http://courses.essex.ac.uk/ce/ce802/



# **Data Challenges & Solutions**


### Fully accounting for all time

- When sharing data across various enterprises, there can be a lot of links & opportunities to miss data
- Solution: Admit some data will be missing, incomplete, or illogical
  - Address how to handle this in analysis plan
- Solution: Develop more robust data transfer pathways



### **CREW Data Value**

- High Resolution SCADA Data ("Raw" data)
  - Gathered every 2-6 seconds
  - Value: Identify unexpected patterns; quantify how common they are
- Summarized SCADA Data
  - Statistical summaries of SCADA data
  - Value: Easier to employ for quick analysis
- **Events** 
  - Quick summaries of non-operating time
  - Value: Identify common downtime drivers & summarize overall turbine performance



Event & SCADA Data Source: ORAP ® for Wind





## **Benchmark Report**

- Full benchmark: <a href="mailto:energy.sandia.gov/?page\_id=6682">energy.sandia.gov/?page\_id=6682</a>
  - Archive of Wind Turbine Reliability publications <u>energy.sandia.gov/?</u>
    page id=3057#WPR
- Fall 2012 benchmark: increased depth & breadth
  - Longer time periods, more plants, more variety
  - Larger section of fleet
    - More and varied operating data will help accurately represent U.S. fleet
    - All U.S. wind plant owners, operators, and OEMs are invited to participate
    - Please contact:

Alistair Ogilvie, CREW Project Lead Sandia National Laboratories <a href="mailto:aogilvi@sandia.gov">aogilvi@sandia.gov</a> (505) 844-0919

Jim Thomas, Project Manager Strategic Power Systems, Inc. <a href="mailto:Jim.Thomas@spsinc.com">Jim.Thomas@spsinc.com</a> (864) 679-1422





# THANK

Brought to you by OSIsoft.