

Presented by Martin ZECHOVSKÝ

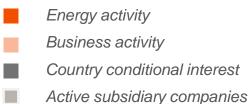
Implementation of PI System in ČEZ

OSIsoft. USERS CONFERENCE 2013

© Copyright 2013 OSIsoft, LLC.

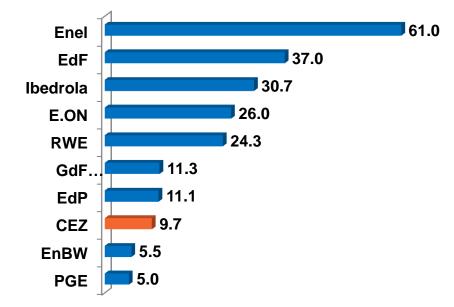
Agenda

- Introducing Czech Power Company CEZ
- Project CUTD


Czech Power Company CEZ

About CEZ Group

- 1992 ČEZ a.s. founded by the National Property Fund
- 2003 Created CEZ Group
- 2005 Foreign expansion started, three distribution companies in Bulgaria
- 2012 Commissioning of the 600 MW wind farm in Constanta Country

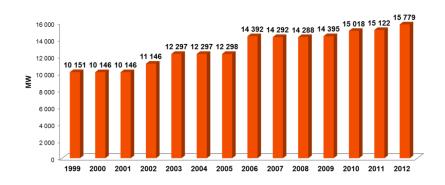

CEZ Group in Europe – 112 companies



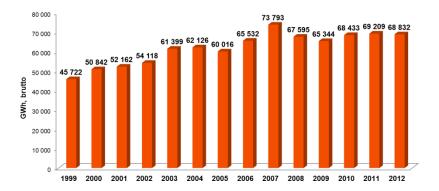
10 larges energy companies in Europe

10 Largest energy companies in Europe **Number of customers in 2011, in millions**

10 Largest energy companies in Europe Market capitalization in € bn as of May 2013



CEZ Power plants in Czech Republic



CEZ in Czech Republic

Installed capacity

Production of electricity

Project CUTD

Project CUTD

- Baseline
- Selecting a solution
- PI System implementation
- Current status and first experience
- Expected benefits and advantages

Baseline Data Storages Control systems Řídici STD/CDS Sbërače Systémy Konzument 1 validace dat 1 PTIS Řídicí Sběrače obsahuje PE Systémy ТΙ Konzument 2 validace dat 2 Řídicí TDS Sběrače Systémy Konzumentn validace datn Řídicí TEDIS Sběrače -Systémy User applications Interfaces

Technical requirements for new solution

- Data collection
- Data processing
- Long term data storage
- Provision of Data
- General requirements for the system
- System Security
- Integration of the surrounding systems
- Connection to centrally manage access roles
- Infrastructure requirements

method of collection, storage, work with data...

calculations, time slices, export data...

identification data structure, data history, creating groups of data...

unified interface, report generation ...

centralized solution respecting standards ČEZ ICT Services, buffering ...

Administration access, logging, auditing, ...

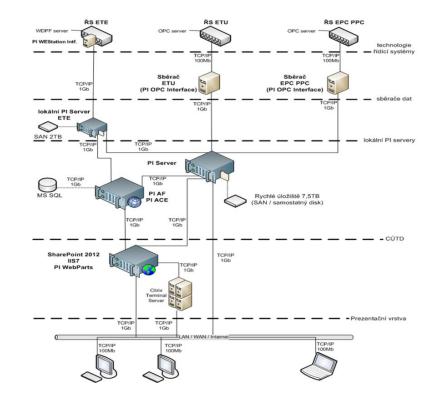
Selecting a solution

Technical requirements

- Detailed technical evaluation
- Ready-to-use product or custom development

- Reference visits

EDP Ibedrola Mondi Štětí Lovochemie Lovosice Portugal Spain Czech Republic Czech Republic



Implementation of the PI environment

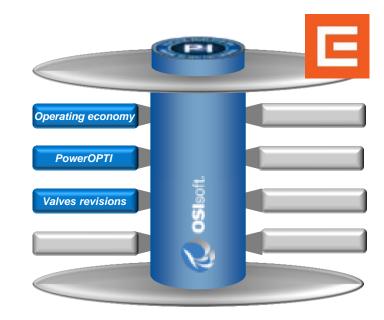
- Phase I Implementation of preparatory work, the creation of the project schedule
- Phase II Implementation of test and production environment for pilot plants
- Phase III Implementation environment for other plants, data migration of all data storages to CÚTD
- Phase IV Support for other projects providing links to applications CUTD
- Phase V Solution acceptance

Solution architecture

- Local PI Servers
 - For the key assets
 - NPP's Temelin and Dukovany
- Central PI Server
 - For the thermal plants and hydro
 - Collects data from NPP's
 - 100.000 tags currently

Current status and first experience

- Connecting of power plants
 - ETU, ETE, CC EPC pilot
 - EPR, EPO, EPC rollout
- Challenges to address
 - Understand what's where
 - Prepare the IT environment to start collecting data
- Testing, tuning


New applications

In progress

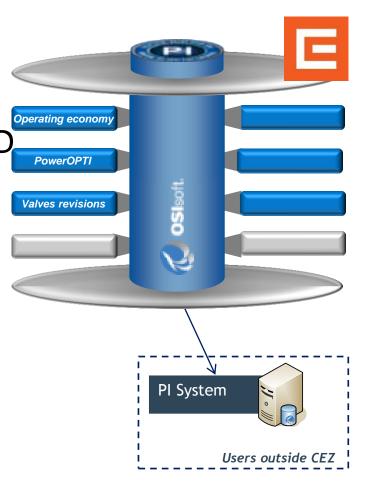
- Operating economy
- PowerOPTI
- Valves revisions

- Upcoming

- Chemical laboratories
- Turbine condition monitoring
- Vibrations

Expected benefits and advantages

Technical advantages


- unification methods of collecting
- unification data sharing
- reducing access request directly to the control systems

Economic benefit

- lower cost for manage applications
- lower infrastructure costs

Future plans

- More applications on top of the CUTD
- More data
 - PI Servers extensions
- Robustness
 - HA
- More users
 - PVS
- Access for equipment vendors

Martin ZECHOVSKÝ

martin.zechovsky@cez.cz

ČEZ, a.s., Power Plant Ledvice www.cez.cz +420 724 880 596

Presented by Petr HOŘENÍ

I & C Energo

PI Implementation & SW Solutions

OSIsoft. USERS CONFERENCE 2013

© Copyright 2013 OSIsoft, LLC.

Agenda

- I & C Energo, OSIsoft partner introduction
- PI implementation in ČEZ
- PI based software solutions
 - Operating Economy operation efficiency evaluation
 - PowerOPTI operation efficiency optimization

I & C Energo - Introduction

I & C Energo (since 1993)

- An engineering and supplier organization providing services in the field of I&C systems, electric systems a information systems for power generation, power distribution and other industries
- Main offices in Czech Republic and Slovakia, projects worldwide

Selected indicators

- Approx. 1300 employees
- 2011 revenues > 100 mil. EUR
- 2011 EBIT > 10 mil. EUR

Main products

- Capital projects
- Service (nuclear, industrial)
- Power Production Optimization

Power Production Optimization Division

OSIsoft Partner since 2011

OUR CUSTOMERS ARE:

- Power plants:
 - Nuclear
 - Coal-fired
 - Combined cycle
 - Renewable energy sources
- Heating plants and heat supply systems
- Industry

WE DELIVER TO OUR CUSTOMERS:

- Process and technology analyses; Advanced data processing; Process modeling and simulation
- Software solutions; Data warehouses; Diagnostics and optimization systems; Special instrumentation
- Information systems; SCADA systems; Control systems
- Software and hardware integration and consolidation
- Complex deliveries

PI Implementation in ČEZ

Should-Be Analysis

- 2011 Comprehensive comparison of
 - Oracle based in-house solution
 - WonderWare historian
 - OSIsoft PI

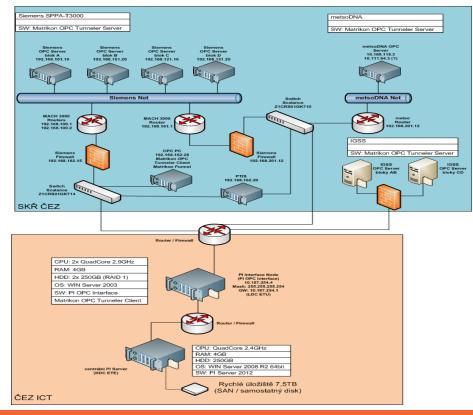
Implementation

- 2012 2013 (presented by Martin Zechovský)
- Mainly OPC, RDBMS and UFL Interfaces
- New WDPF interface (NPP Temelín)

Integration

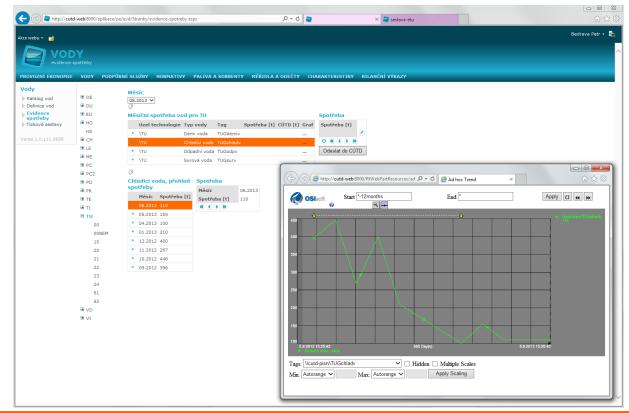
- More than 20 applications to be connected or based on PI System
- SQL and WebServices interfaces to PI and AF
- SharePoint applications using PI WebParts

Operating Economy



Operation efficiency evaluation

- First PI based application in ČEZ
- Raw operation data from I&C systems
- Supplementary data (coal quality, water consumption, etc.) entered or imported through SharePoint application
- Data aggregated into 10 minutes values using PI Totalizer
- Energy balancing in calculation module using customized equation tree
- 10 minutes (NPP) or 1 day balanced data returned to PI
- Energy balance .xls reports using PI Datalink available in web browser using SharePoint Excel Services



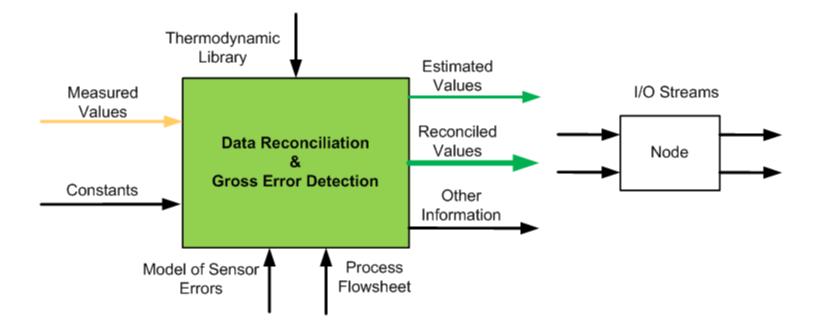
Operating Economy – I&C Data Collection

Operating Economy – Web Client Application

Operating Economy – Energy Balance Report

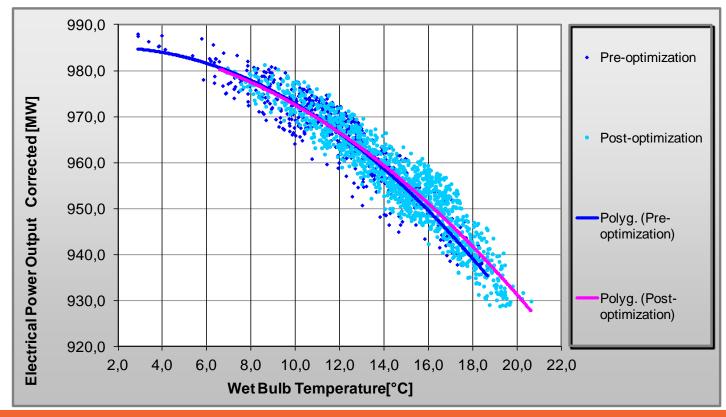
- 🐋									Bedrava Petr
	NČNÍ	VÝKAZY							
NÍ EKONOMIE		PŮRNÉ SLUŽBY NORMATIVY PALIVA A			DAKTEDISTIKY	BTLANČNÍ VÝ	A7Y		
í výkazy	1001 100					DILMICHT TH			
e ETU	ETU								
eero	Soubor	🔣 Otevřít v aplikaci Excel 🛛 🔛 Data 👻 👫 Najít							
	A	ВС	D	E	F	G	Н	I	1
	1		ę	STROJO	VNA				ČEZ, a.s. 🔼
	2	2 Červenec 2013						Elektrárna Tušimice	
	3			70.014					
	4 pořad	í název	m.j.	TG 21 A	TG 22 B	TG 23 C	TG 24 D	∑TG	∑ rok
	6 1	admisní pára	MPa	17.32	17.28	16.72	16.41		
	7 2		°C	569	570		574		i
	8 3		GJ/t	3,4795	3,4819		3,5023		
	9 4		t	375 209	310 239	373 030	274 921	1 333 399	79 496 120
	10 5		GJ	1 305 560	1 080 200	1 300 430	962 870	4 649 060	277 221 885
	11 6	přihřátá pára	MPa	3.15	3.20	3.10	3.06	1010 000	LITELTOOD
	12 7	printata para	°C	576	577	576	582		i
	13 8		GJ/t	3,6265	3,6288	3,6279	3,6426		
	14 9		t	344 412	285 414	349 478	259 670	1 238 974	73 938 329
	15 10		GJ	1 249 010	1 035 700	1 267 870	945 863	4 498 443	203 605 506
	16 11	celkem přivedeno	t	719 620	595 653	722 509	534 591	2 572 373	153 434 449
	17 12		GJ	2 554 570	2 115 900	2 568 300	1 908 730	9 147 500	480 827 118
	18 13	pára odběrová	GJ	10 764	3 550	0	0		1 022 830
	19 14	pára ucpávková	t	3 640	3 009	3 618	2 667	12 934	771 113
	20 15	skut spotřeba tepla v TG	GJ	1 080 080	918 800	1 088 970	807 478	3 895 328	
	21 16	skut.spotřeba tepla v TG - roční	GJ	62 762 383	52 406 530	65 526 767	52 813 630		233 509 310
	22 17	výroba el.svorková	MVVh	135 704	110 857	131 834	100 955	479 350	
	23 18	výroba el.svorková - roční	MWh	8 005 469	6 748 517	7 973 217	6 602 192		29 329 395
	24 19	nadekonomická výroba	MWh	180	180	180	180		720
	25 20	měrná spotřeba TG	GJ/MWh	7,9591	8,2882	8,2602	7,9984	32,5058	
	26 21	měrná spotřeba TG - roční	GJ/MWh	7,8399	7,7656	8,2184	7,9994		31,8233
	27 22	měrná spotřeba TG	t/MWh	5,3029	5,3732	5,4804	5,2953	21,4518	
	28 23	měrná spotřeba TG - roční	t/MWh	5,1560	4,9860	5,4643	5,2925		20,8988
	29 24 30 25	emisní pára	°C	34,97	40,29		34,73	36,42	35,47 🗸
	30 25	vstup	20	24.38	24.31	24.41	23.04	24.26	23.18

100% -



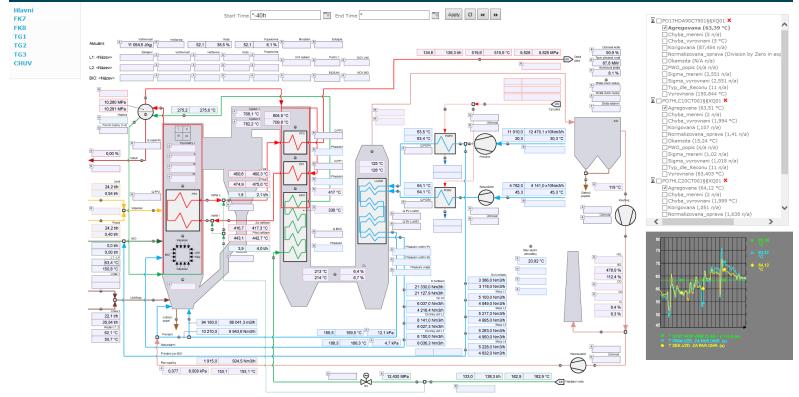
PowerOpti – Main Functions and Benefits

- PowerOpti monitoring, diagnosis and optimization of the performance of power plants and heating plants
 - Based on power plant thermodynamic model
 - Increase in the precision, accuracy and reliability of measurements (gross error detection and data reconciliation)
 - Obtaining a real picture of the actual condition of the equipment and the technological process
 - Timely detection of equipment faults and malfunctions in the technological process
 - Equipment diagnosis and degradation detection
 - Technological process optimization


PowerOpti – Data Reconciliation

PowerOpti – Reactor Power Output Refinement Safety Limit Safety Margin **Original Standard** Deviation **Reduced Standard** Deviation Increased Limitation of **Parametr Value** Performace **Original Limitation** Increasing of Parameter Value

PowerOpti – Cooling Circuit Optimization


PowerOpti – PI Based Application

- PowerOpti RunTime
 - PI Reader, SnapShot Totalizer
 - Reconciliation job executing
 - PI Writer
- PowerOpti TechStudio
 - Plant thermodynamic model configuration
 - Reconciliation job setup
 - Test calculations
 - Recalculation
- RECON
 - Plant thermodynamic model development
 - Reconciliation library
- PowerOpti WebClient
 - Plant schema with raw, reconciled and estimated data using PI Graphic WebPart
 - Easy comparison of selected values using PI Trend WebPart

PowerOpti – WebClient Using PI WebParts

Petr Hoření

I & C Energo a.s. Power Production Optimization Division Vaculíkova 1a 638 00 Brno Czech Republic

phoreni@ic-energo.eu

+420 602 546 822

Please don't forget to.....

Complete the Online Survey for this session

Eventmobi.com/emeauc13

Share what you saw with friends on Twitter, Facebook or Linkedin!

#UC2013

