

Implementation of the PI System to support Predictive Maintenance Diagnostics Across Oil & Gas Assets in Italy

Presented by Cristina Bottani

Marco Piantanida

Agenda

- Introduction
- Business Challenge
- The Predictive Monitoring Process
- Role of the PI System
- Applications, Results & Benefits
- Next Steps
- Conclusions

Introduction: Eni – Global and Diversified

our mission

We are a major integrated energy company, committed to growth in the activities of finding, producing, transporting, transforming and marketing oil and gas. Eni men and women have a passion for challenges, continuous improvement, excellence and particularly value people, the environment and integrity.

The PI System in Italy – 5 Plants and Associated Fields

Business Challenge - The Val d'Agri Field

- Field is operated by Eni Spa
- Discovery well: MA1 in 1988 (Monte Alpi 1)
- Early production phase started in 1993 with MA2
- A total of 33 producer wells were drilled to date
 - 30 of them are currently tied in

Business Challenge - Wells and Pipelines

COVA = Oil Center ("Centro Olio Val d'Agri")

Business Challenge - Val d'Agri – Facility

- The Oil Center in Viggiano (Val d'Agri) has a target nominal capacity of 104 K barrels/day
- In 2012, the overall oil production was 95 K barrel/day from 26 wells, representing 30% of overall Eni's in Italy

Business Challenge - Equipment

Main Characteristics of the Plant

- 4 Oil Trains (water, oil & gas separation, oil stabilization)
- Gas Treatment (compression, dehydration, sweetening, advanced treatment of sulfur)
- Power Generation and Utilities

Main rotating equipment

- Power Generation: 3 Gas Turbines (fully instrumented)
 - One spare Turbine is kept offline, on rotation
- Compression Unit: 7 low pressure + 6 high pressure reciprocating compressors (not comprehensively instrumented)
 - One spare low P Compressor and one spare high P Compressor are kept offline, on rotation

Main Challenges & Current Maintenance Process

The Predictive Monitoring Concept

 Early detection (from several weeks to several months ahead of failure) of equipment problems

More time to plan and react

Predictive Monitoring Challenges

- Level of instrumentation of the equipment is often non-optimal
 - Mathematical methods based on First Principle models could be unable to perform due to the lack of key sensors
- Availability of high fidelity historical data was an issue
 - Often limited to few weeks
 - Complemented with offline measurements sampled sporadically (vibrations, boroscope inspections, infrared thermography, lube oil analysis, etc)
 - Data driven methods requiring a comprehensive set of high fidelity historical data would not work
 - The implementation of the PI System allowed to overcome this problem

The PI System in Italy – 5 Plants Instrumentation

Trecate

4 Reciprocating Compressors

Moore ICI DCS InTouch Wonderware

60 tags

Cervia-K

2 Turbo Compressors

ABB Advant 500 DCS IMS Stations

210 tags

Crotone & Hera Lacinia

2 Turbo Compressors 5 Reciprocating Compressors

> RTAP Unix DCS SDI eXPert SCADA 630 tags

Fano

2 Turbo Compressors
Moore APACS DCS
450 tags

Val d'Agri

13 Reciprocating Compressors
3 Gas Turbines

ABB Advant OCS Master 300 DCS
ABB 800xA Aspect/Connectivity Server

1650 tags

Overall Architecture – An Integration Infrastructure

Perspective on the PI System....

Power of PI System infrastructure

- Flexibility and richness of connectors of the PI System
 - Even very old DCS systems (dating back to 1991) have been interfaced

HQ Architecture - "More Eyes on PI"

Two Roles of the PI System

 Feed a specialized Predictive Analytics Package (Smart Signal)

- Direct diagnosis tools when dealing with failures that are rapidly developing on the equipment
 - Cannot be detected by the predictive analytics package
 - Can be investigated with PI Process Book and PI Coresight

Feeding a specialized Predictive Analytics Package – Operation Concept

Feeding a specialized Predictive Analytics Package – Operation Concept

Predictive Monitoring Software: IT Architecture

On premise installation of the software.

Access of Smart Signal analysts through Internet / VPN

Direct Investigation for Rapidly Developing Events

 Development of a PI AF hierarchy consistent with the Predictive Monitoring package

Development of PI Process Book files linked to PI AF

PI Coresight linked to PI AF

Development of a PI AF hierarchy Consistent with the Predictive Monitoring package

- Diagnostics Rules within Smart Signal are targeting different subsystems of the rotating equipment
 - e.g. the firing of the "Combustion Cold Spot" Rule will open the graphs of the "Combustion" → "GG Exhaust Gas Path" section of the Smart Signal GUI

Development of a PI AF hierarchy consistent with the Predictive Monitoring package

Development of a PI AF hierarchy consistent with the Predictive Monitoring package

PI AF & PI ProcessBook Hierarchy Representation

Analysis in PI ProcessBook

Linked to PI AF through Element Relative displays

Analysis in PI Coresight

Predictive Monitoring Results

- Approximately 1 new notification every week (on average)
- One out of 3 notifications has been actionable: the site has taken action to fix or mitigate the root cause of the problem
- A variety of equipment problems has been detected

Successful Catch: Broken Compressor Discharge Valve

Date of Notification: Oct 7, 2011

Equipment: [... omissis ...] **Type**: Equipment/Mechanical

Description: We have seen an increase in the discharge

temperature from 142 to 153 C.

Resolution: Action was taken during shutdown and a

broken valve was replaced.

Insight: Discharge Temperature helps detect valve

issues. Individual temperatures at each cylinder can help

further localize the bad valve.

Successful Catch: Lubrication Problem and prevention of potential wear

Date of Notification: Jul 12, 2012

Equipment: [... omissis ...] **Type**: Equipment/Electrical

Description: The temperature of bearings 1 and 2 has been increasing up to ~69 C with model prediction at ~58

C.

Resolution: An electrical problem had shut down a cooling fan at the lube oil cooler. Connection was repaired.

Insight: Early detection of problem prevents unnecessary wear on the equipment.

Understand of the dynamics of the failure and help prevent the occurrence of similar cases in the future

Benefits

- The following benefits were achieved:
 - Prevented damage on electrical motor windings on 3 compressors 150 K euro
- The following benefits are expected:
 - Increased production due to reduction of unexpected equipment downtime with consequent unplanned production losses
 - The future prevention of a case like the shutdown of the Gas Turbines would avoid a 15,000 barrel of lost production
 - Reduced operating expenditure due to unscheduled downtime and minimized equipment damage
 - 1.1% 2.4% increase the availability of the equipment
 - Optimization of maintenance operation
 - Expected saving in the range 250 400 K euro per year

Future Plans and Next Steps

- Other assets are being integrated (Nigeria, Alaska, Congo, Pakistan)
 - PI Web Parts, PI AF

- Centre of Excellence on ESP Pumps Worldwide
 - PI Web Parts, PI AF, PI Coresight, mobile devices

Summary

The implementation of the PI System allowed to support Predictive Diagnostics of rotating equipment across a number of assets in Italy

Business Challenge

- Diverse instrumentation and control environment
- Lack of high fidelity historical data
- Rotating Equipment is subject to a variety of issues due to the variable operating conditions of an Oil & Gas plant
- Need for proactive analytics

Solution

- PI System integration infrastructure
- Retention of high fidelity historical data
- Integration and alignment of asset hierarchy with predictive monitoring package
- Use of PI System analytics, notification & visualization capabilities

Results and Benefits

- Better visibility on the activities of OEM technicians in the plant
- 16+ actionable diagnostics with avoided equipment damage
- Increased overall equipment availability
- Reduced maintenance costs
- Culture of continuous improvement

Conclusions

- The PI System allowed to effectively introduce the Predictive Monitoring concept across several Oil & Gas plants within Eni
 - Flexibility to cope with very old DCS ad SCADA systems
 - Capability to feed data to specialized Predictive Analytics packages
 - Richness of graphical tools to perform direct analysis of data (PI Process Book, PI Coresight)

Cristina Bottani

cristina.bottani@eni.com

Technical leader TS Services for Operations eni e&p

Marco Piantanida

marco.piantanida@eni.com

Technical leader TS Services for Development eni e&p

Please don't forget to.....

Complete the Online Survey for this session

Eventmobi.com/emeauc13

Share what you saw with friends on Twitter, Facebook or Linkedin!

#UC2013

