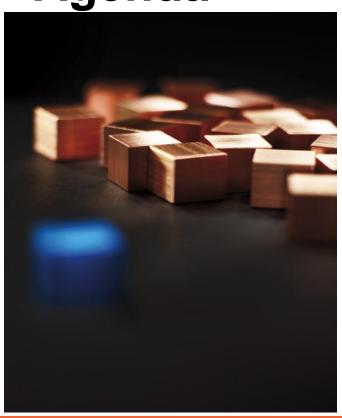


Energy Management

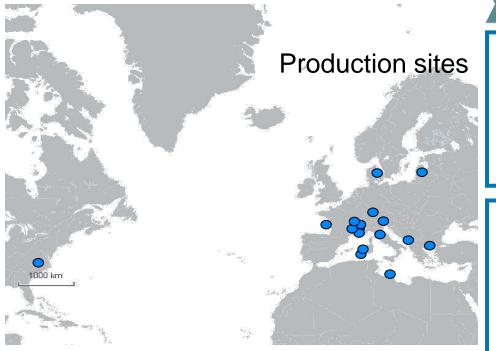
in copper industry using OSIsoft PI System


Aurubis AG Hamburg

Thorsten Stölcken
Energy management representative Aurubis AG Hamburg

Presented by Atanas Rusev

Managing Director, PlantSoft GmbH


Agenda

1. Aurubis

- 2. Energy management at Aurubis Hamburg
- 3. The energy management system (EnMS)

Aurubis has taken its first step outside of Europe with the acquisition of Luvata RPD

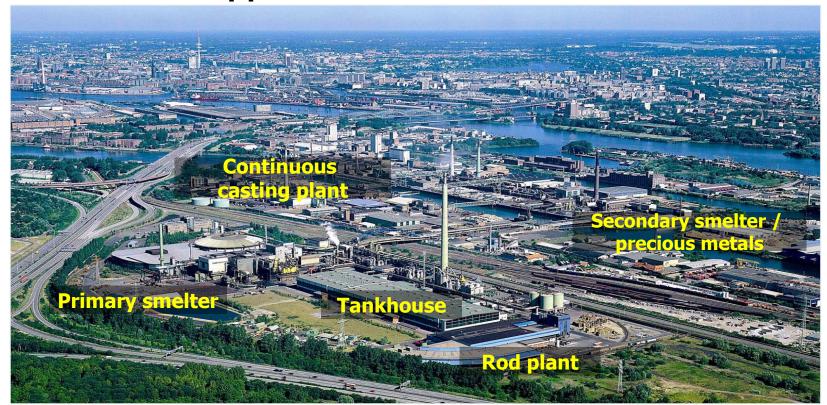
Copper production

Copper processing

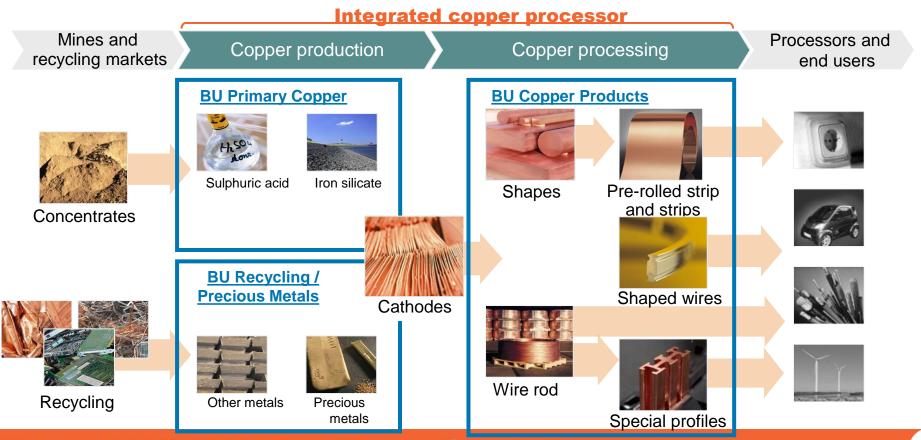
BU Primary Copper

- » Hamburg D
- » Pirdop BG
- » Olen В
- » Röthenbach

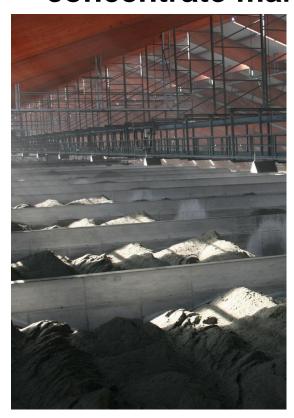
BU Recycling / Precious Metals


- » Lünen
- » Olen
- » Hamburg
- » Fehrbellin

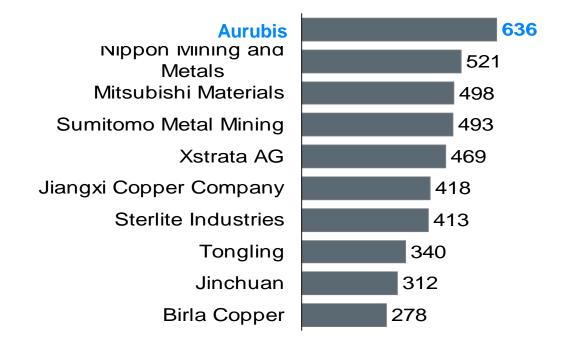
BU Copper Prod	ucts
-----------------------	------


- » Hamburg
- » Olen » Emmerich
- » Avellino
- Stolberg
- » Buffalo USA
- » Pori FIN
- Finspång
- » Zutphen NL
- » Mortara
- » Yverdonles-Bains
 - CH GB
- » Smethwick
- » Dolný Kubín SK

Aurubis has a service and sales network in more than 20 countries (Europe, Asia and North America)


Aurubis main production works in Hamburg - a downtown copper smelter

Aurubis, an integrated copper producer



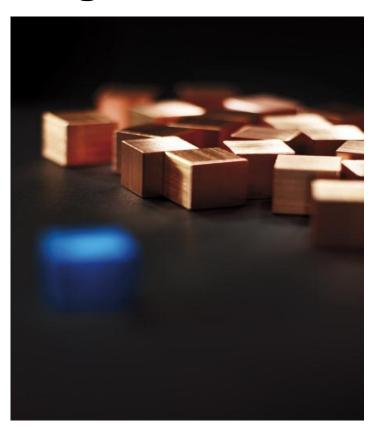
Aurubis is the leading market participant in the free concentrate market

International custom smelter production

(2010; in 1,000 t Cu content; primary / without internal concentrates)

Around 2 million tonnes of copper concentrates are processed in the Group

Discharging copper concentrates in Brunsbüttel



Storage and mixing of copper concentrate for further transportation

Casting of copper anodes in the primary smelter

Agenda

1.Aurubis

2.Energy management at Aurubis Hamburg

3. The energy management system (EnMS)

Energy data

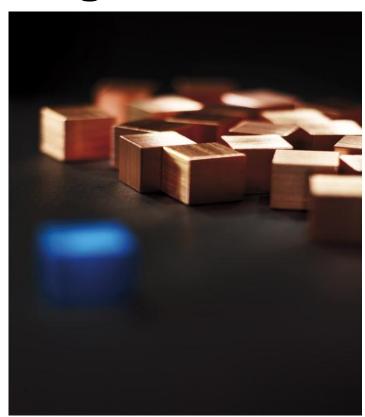
Energy data 2012; plant site Hamburg

•	Electricity	645	Mio. kWh in HH	
•	Oxygen	200	Mio. Nm³	
•	Nat.gas	40	Mio. Nm³	
•	Cooling water	75	Mio. m ³	
•	Dem.water	400.000	m³	
•	Drinking water	200.000	m³	
•	Compressed air	200	Mio. Nm³	
•	Steam			
	60 bar	340.000	t/a	
	20 bar	100.000	t/a	
	3 bar	35.000	t/a	
•	Self produced	10	Mio. kWh,el.	

External delivery of energy in 2012: 1160 GWh

Electricity for environmental protection. 1/3 for environmental protection

Energy Department


39 employees

8 white collar 31 blue collar

3 employees in energy management

Agenda

1.Aurubis

2. Energy management at Aurubis Hamburg

3.The Energy Management system (EnMS)

Why energy management systems (EnMS) according to DIN EN ISO 50001?

Energy becomes more and more a very important issue for companies:

- energy costs are rising, especially additional costs
- delivery of energy becomes more complicated
- environmental protection is needed
- sustainability is in the focus
- reliable data in detail are needed, e.g. for ETS (CO₂-trading)

An Energy Management System according to DIN EN ISO 50001 provides <u>a</u> systematic way to detect ways to increase energy efficiency and lower energy costs. The certificate documents this for the public and authorities.

The PI system is a very good tool to support this and such is needed. It is not the Energy Management System.

And:

Only realized energy efficiency projects or changes in behaviour <u>saves</u> energy!

Aspects considered for development of an EnMS according to DIN EN ISO 50001, part 1

An EnMS is a management system that <u>needs a strong support by the management:</u>

- => The company has to have a commitment for efficient energy usage and energy targets.
- => Sufficient employees and money has to be provided.
- => A responsible energy management representative has to be named, this person directly reports to the management.
- => All production units, the purchasing dep., the engineering dep. etc. have to be included.
- => Energy performance indicators have to be build and checked.
- => Processes should be transparent and documented.
- => Energy optimazation projects have to be implemented.
- => The system has to be certified by a external certifier like TÜV, Norske Veritas, ...

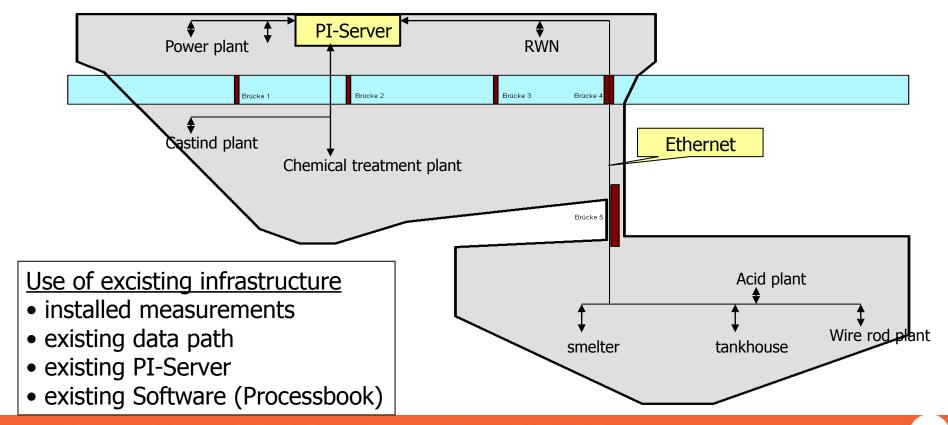
For this the PI-system can not help.

Aspects considered for development of an EnMS according to DIN EN ISO 50001, part 2

Here the PI-system can help perfectly:

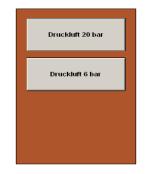
- => Energy flows should be transparent.
- => Energy flows have to be analysed.
- => Possibilities for energy optimization identified; implemented projects controlled.
- => A data storage system has to be installed.
 - All data have to be comprehensible; data validation is very important.
- => Incorrect measurements have to be detected and replaced.
- => Energy reports have be made regulary, also yearly a management review.

=> See how it is made =>



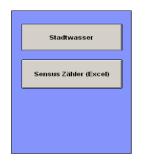
IT infrastructure for EnMS at Hamburg plant site

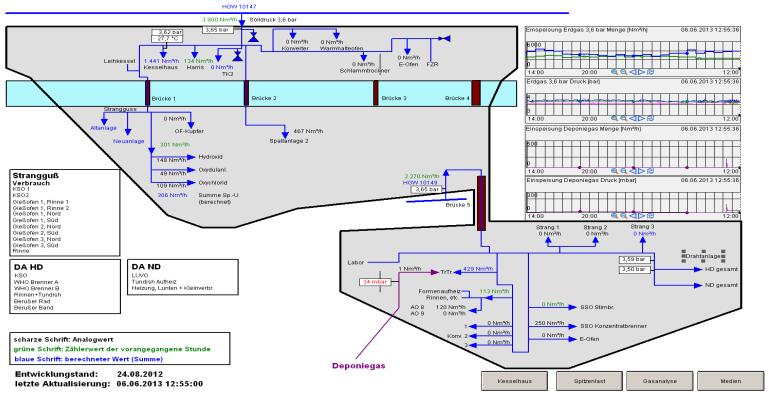
All over 30 different energy types are in the EnMS start mask


EMS Hamburg

Energiemanagement

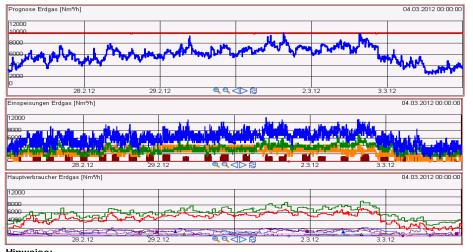






Entwicklungstand: 03.05.2011

letzte Aktualisierung: 10.05.2011 17:22:00


Flow of nat.gas is monitored

Erdgas 3,6 bar Deponiegas

Maximum consumption of nat.gas has to be checked

Hinweise:

- Die Berechnung ist jeweils für eine Zeitstunde (Minute 0 bis 59)
- Mit jeder neuen Stunde wird der Alarm aufgehoben. Verbraucher können wieder freigegeben werden, falls der Wert der Hochrechnung dieses zuläßt.
- Kosten einer Überschreitung um 1.000 Nm³/h: 65.000 €

Erdgaseinspeisung:

kontinuierliche Hochrechnung: Grenzwert: Intervallzeit (60 Minuten):

2.846 Nm3 9.800 Nm3 46 min

Bei Grenzwertüberschreitung nach 30 Minuten:

folgende Verbraucher telefonisch zum Reduzieren der Leistung auffordern:

Anlage	Bezug aktuell	Telefonnumme
Kessel 4 auf Öl AO Polgas Spaltanlage Harrisanlage	0 Nm³/h 4 Nm³/h 601 Nm³/h 277 Nm³/h	3811 17-3166 17-3658
5. AO Brenner6. Trockentrommel7. Konverter Aufheizbr.	278 Nm³/h 397 Nm³/h 1 Nm³/h	3811 3847 3845

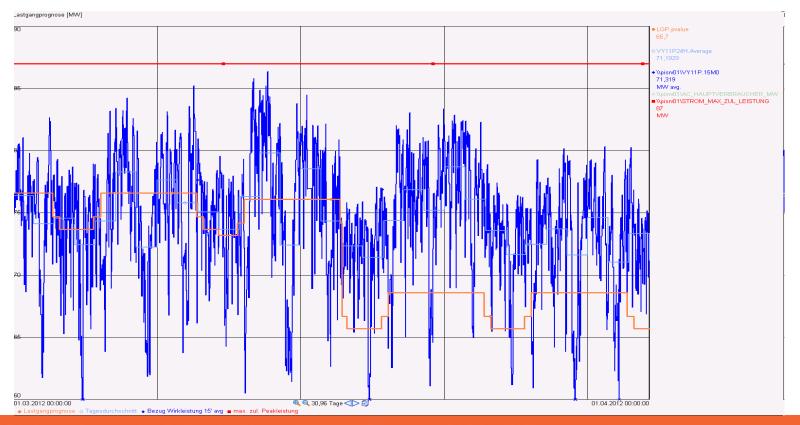
Bei Grenzwertüberschreitung nach weiteren 15 Minuten:

- die Turbine wird automatisch gestoppt
- der Druck im 3 bar-Netz wird auf 0,5 bar(ü) gesenkt => die Leistung der Kessel 3+4 fährt zurück

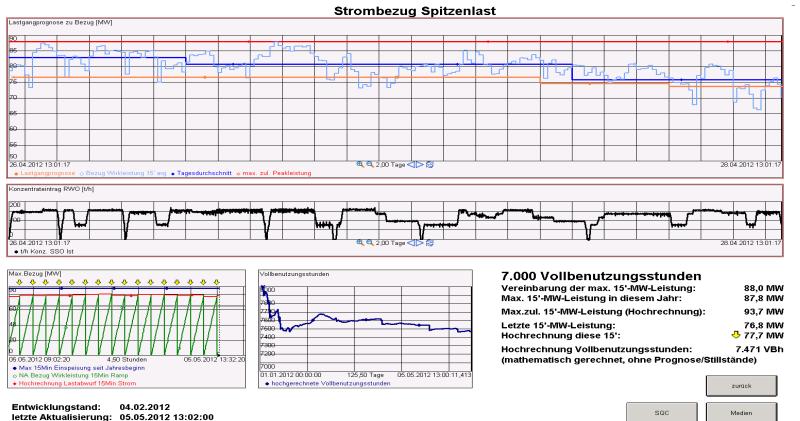
Dampfbezug folgender Verbraucher reduzieren:

Anlage	Bezug aktuell	
1. DTT	15,0 t/h	
2. MCT	3,9 t/h	
3. 20/3 bar Red.Br.5	0,0 t/h	

Erdgaseinspeiseleistung:

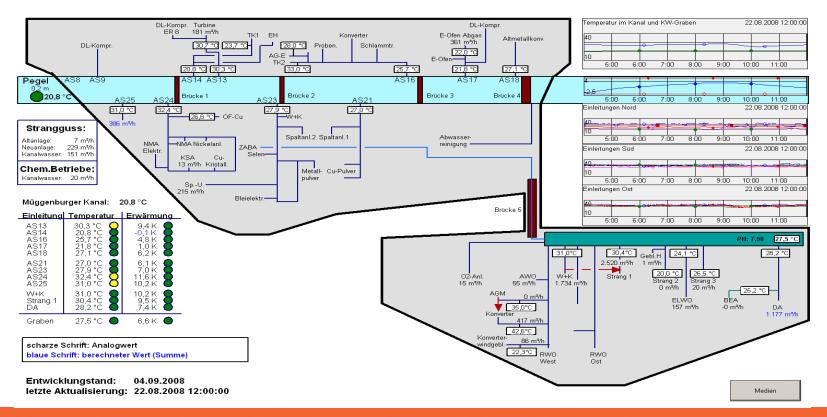


Entwicklungstand: 03.04.2012 letzte Aktualisierung: 05.05.2012 12:46:00 max. zul. Einspeiseleistung: max. Einspeiseleistung in diesem Jahr: letzte 60'-MW-Leistung:

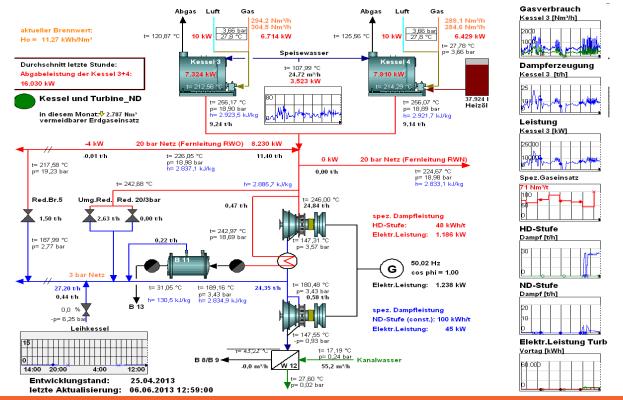

115 MW 113.8 MW 41.4 MW avg.

Medien

electricity – prognosis from SQL-DB vs. consumption monitored in PI



Monitoring of electricity grid



Check of cooling water temperatures

Kühlwassereinleitungen

Detailed presentations are necessary for energy optimization

PI-NotifyMe

In case of defined situations, PI-NotifyMe sends

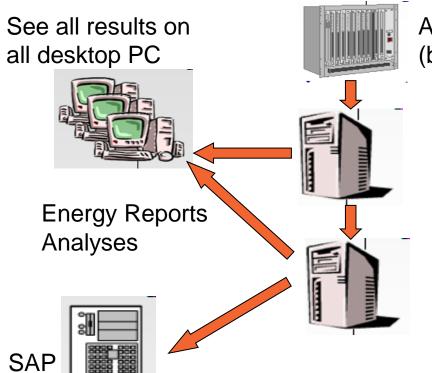
- E-Mails
- SMS

```
Betreff: Warnung - Stromlastabwurf RWN möglich
```

Von: notifyEMS

An: t.stoelcken, f.behn, u.goethe, h.broehan, a.bartsch, l.ehemann, i.bauer, t.preiss

Datum: 16.05.2012 18:32

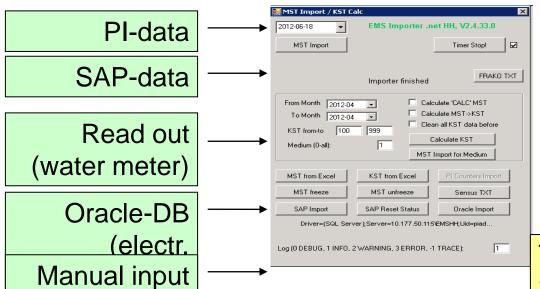

Aktuelle Hochrechnung: 87,37 MW

Grenzwert: 88 MW

Diese Nachricht wurde automatisch von PI-NotifyMe erstellt.

This application was made by Plantsoft.

Data Security, Analyses, Energy reports


All meterings in PLC and via OPC (by using a buffer) to PI Server

All metering data stored in PI Server; Specific calculations (PE, ACE, AF)

The EMS-Server is used for energy accounting, related to SAP cost accounting positions, and archived the results in a SQL-Database; SAP interface via XML

No direct access from EnMS to PLC/DCS

Intelligent combination of PI and SQL-DB

The Importer

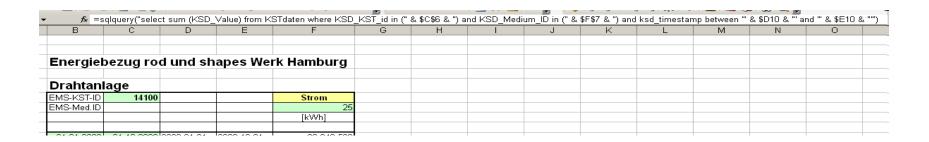
is the all-in-one Gateway, developed by PlantSoft

All data written in SQL-DB

Monthly data for

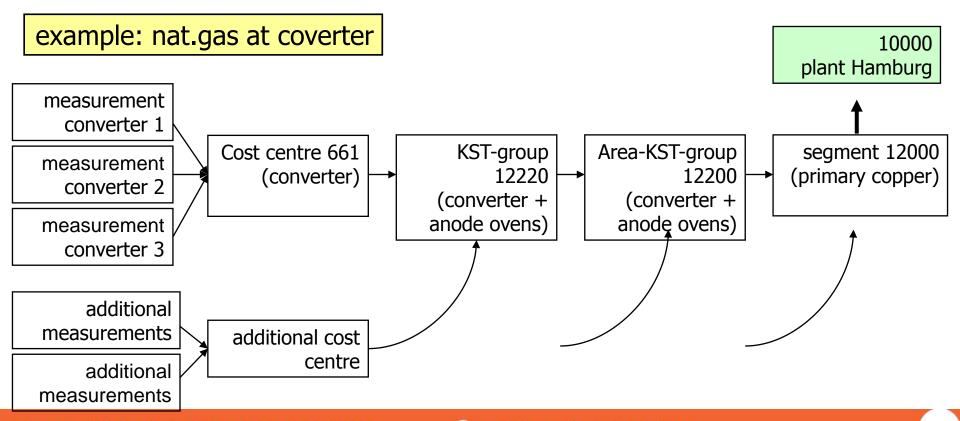
- measurement
- cost center
- cost center group

These data are essential for

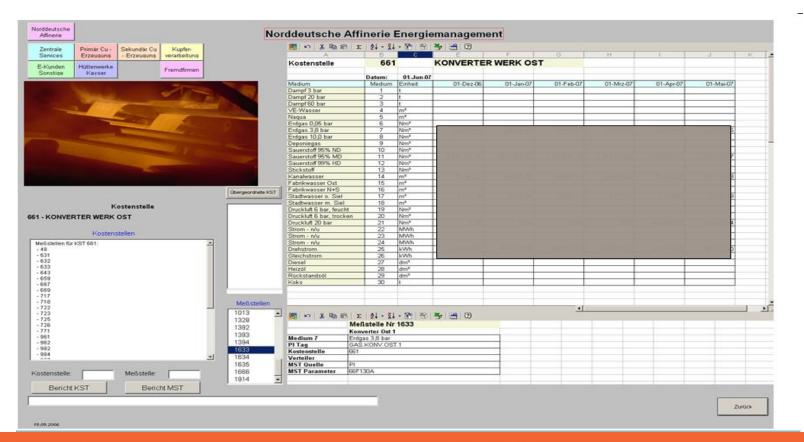

- Monthly calculations and balances
- Energy optimazation projects
- emission trading system ETS)

Example for SQL-templates

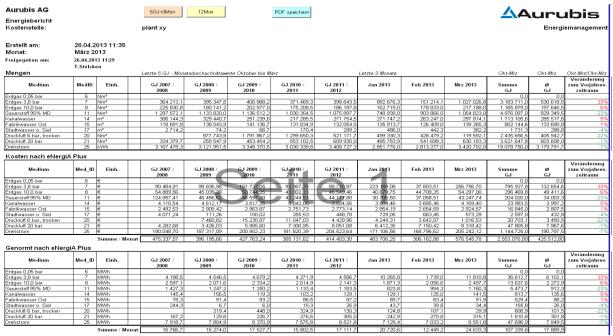
	· · · · ·		
Aurubis AG			
Energiemanagement			urubis
Kostenstellenabfrage	Erstellt am	18.06.2012	Energiemanagement
5			, ,
Kostenstelle	9000	Medium	27
Von	01.01.2011	Eigenerzeugung Strom	
Bis	01.12.2011		
2.0	01.12.2011		
	Übergeordnete		
Beschreibung	KST		
Energiewirtschaft	-1		
Erzeugung und Bezug	-'		
Summe:	8.794.956,20	527.697,37	21.987.391
Durchschnitt:	732.913.02	43.974.78	1.832.283
Buronoonnii	7021010,02	10.071,70	HOSEILOS
Datum	Menge [kWh]	Kosten [€]	eNergiA [kWh]
Januar 2011	862,793,08	51.767.58	2.156.983
Februar 2011	739.726,43	44.383,59	1.849.316
März 2011	430.420,18	25.825,21	1.076.050
April 2011	597.024,38	35.821,46	1.492.561
Mai 2011	656.616,72	39.397,00	1.641.542
Juni 2011	951.013,92	57.060,84	2.377.535
Juli 2011	712.867,82	42.772,07	1.782.170
August 2011	772.756,10	46.365,37	1.931.890
September 2011	683.659,94	41.019,60	1.709.150
Oktober 2011	674.533,54	40.472,01	1.686.334
November 2011	815.638,56	48.938,31	2.039.096
14040111201 2011			


Using Microsoft Excel

The SQL-Query

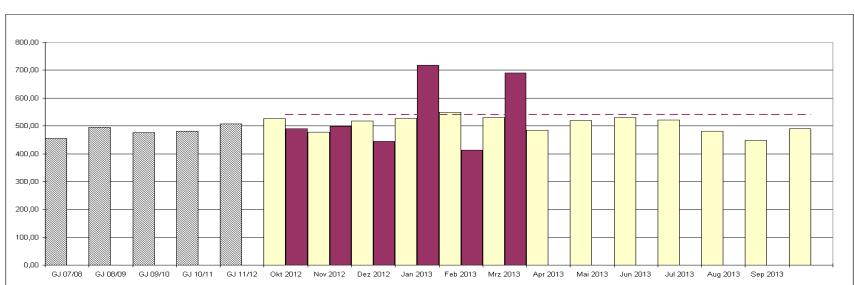


Using Microsoft Excel and the add-in sqlquery (product of Plantsoft), SQL-queries can be made easily, referring to cells in Excel.


Compression of measured energy data to total sum at Aurubis site in Hamburg

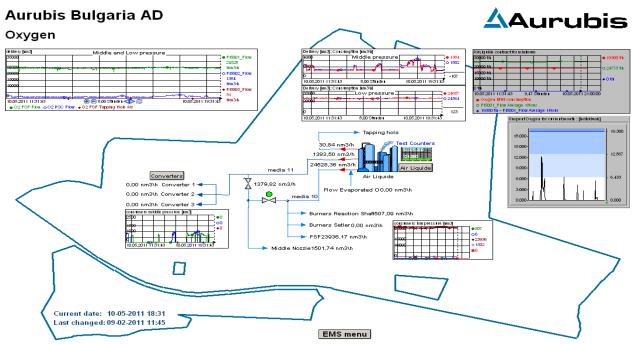
Compression of Measurements to Costs positions in SAP

The energy report (part 1)


The energy report is made with a template in Excel and filled dynamically.

Datasource: SQL-database

The energy report (part 2)



Spezifischer Energiebedarf normiert

Fehlbuchungen von Erdgas auf KST 665 im SAP seit Dez.12. Sind im SAP korrigiert worden.

Expansion of EnMS to different sites (Pirdop Bulgaria, Stolberg, Lünen, Straß,...)

The EMS is used companywide via Internet by using a keycode

EnMS Aurubis Hamburg Costs and Benefits

Costs for Aurubis plant site Hamburg

Costs 1 Mio.€, mostly for metering devices; existing PI System for the production has been extended. Total metering devices: app. 2.000

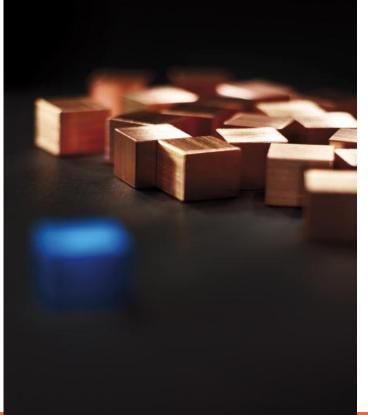
The EMS Hamburg is tested and certificated by the German TÜV according DIN EN ISO 50001.

This is a prerequisite for EEG (renewable energy law) tax exemption in Germany. Only this saves some Mio.€/a.

Moreover we detected saving potential of some Mio.€/a. (But to realise the saving, the projects have to be implemented!)

Summary

An EnMS system provides the possibility to increase energy efficiency systematically. In some countries a certified system is necessary to lower the additional energy costs. Without having all data in a reliable database, it is nearly impossible to deliver all data we are asked for (e.g. ETS).


The PI system is a perfect basis for real time data, analysis of data and display.

In combination with the "importer" and other application made by Plantsoft we built the perfect software solution for our needs. This was also the statement by the certifier of TÜV.

Outlook:

We are going to continue the connection of more Aurubis group plant sites in cooperation with Plantsoft and OSIsoft.

End of presentation

- 1.Aurubis
- 2.Energy management at Aurubis Hamburg
- 3.The Energy Management system (EnMS)

Atanas Rusev

a.rusev@plantsoft.net

Managing Director

PlantSoft

Please don't forget to.....

Complete the Online Survey for this session

Eventmobi.com/emeauc13

Share what you saw with friends on Twitter, Facebook or Linkedin!

#UC2013

