

PI System and **Asset Framework** in Wind and **Solar Monitoring**

Presented by Jeremy Hunter, Sr. Technical Specialist

Duke Energy Renewables

Agenda

OUTLINE

- 1. Introduction
- 2. PI System Applications
- 3. Real Time Monitoring
- 4. Using Asset Framework in Wind
- 5. Solar Business Strategy
- 6. Future Developments

About Duke Energy Renewables

- Duke Energy Renewables, part of Duke Energy's Commercial Businesses, is a leader in developing innovative wind and solar energy solutions, helping utilities, electric cooperatives and municipalities deliver affordable, reliable and increasingly clean energy to customers throughout the United States..
 - 1,600 MW wind power
 - 100 MW solar power
- Nearly all of the energy produced by Duke Energy Renewables' wind and solar projects is sold through long-term agreements with utilities, electric cooperatives, businesses and municipalities

About Duke Energy Renewables Cont.

Solar Sites						
		In-Service	Capacity	PV		
Site Name	Location	Date	(AC)	Panels		
Stanton	Orange County,FL	Dec. 2011	6 MW	25,172		
Holiness	Murphy, NC	May 2011	1 MW	4,242		
Martins Creek	Murphy, NC	March 2011	1 MW	4,358		
Murfreesboro	Murfreesboro, NC	Dec. 2011	5 MW	19,960		
Murphy Farm	Murphy, NC	May 2011	1 MW	4,298		
Shelby	Shelby,NC	May 2010	1 MW	4,522		
Taylorsville	Taylorsville, NC	Oct. 2010	1 MW	4,224		
Washington White Post I	Beaufort County, NC	Dec. 2012	12.5 MW	53,000		
Washington White Post II	Beaufort County, NC	Nov. 2013	5 MW	27,450		
Wingate	Murphy, NC	Aug. 2011	1 MW	4,340		
Ajo	Pima County, AZ	Sept. 2011	5 MW	21,168		
Bagdad	Yavapai County, AZ	Dec. 2011	15 MW	71,512		
Black Mountain	Mohave County, AZ	Nov. 2012	10 MW	40,000		
Gato Montes	Tucson, AZ	Dec. 2012	6 MW	48,000		
Highlander I & II	29 Palms, CA	June 2013	21 MW	100,188		
Sunset Reservoir	San Francisco, CA	Dec. 2010	4.5 MW	24,000		
Blue Wing	San Antonio, CA	Nov. 2010	14 MW	214,500		
		Totals:	110 MW	670,934		

		Wi	nd Sites		
Site Name	Location	# Turbines	Turbine Type	Turbine MW	Site Total MW
North Allegheny	Portage, PA	35	Gamesa	2.00 MW	70.00 MW
Campbell Hill	Glenrock, WY	66	GE	1.50 MW	99.00 MW
Kit Carson	Burlington, CO	34	GE	1.50 MW	51.00 MW
Notrees	Goldsmith, TX	95	GE/ Vestas	1.5/ 1.65 MW	158.00 MW
Top of the World	Casper, WY	110	GE/Siemens	1.5 / 2.3 MW	200.00 MW
Sweetwater (Duke) *	Nolan, TX	346	GE, Mit, Siemens	1.5, 1, 2.3	282.50 MW
Los Vientos 1A & 1B	Brownsville, TX	171	Mitsubishi/ Siemens	2.4/2.3 MW	400 MW
Shirley	Denmark, WI	8	Nordex	2.60 MW	20.80 MW
Cimarron II	Cimarron, KS	57	Siemens	2.30 MW	131.10 MW
Ironwood	Spearville, KS	73	Siemens	2.30 MW	170.00 MW
Laurel Hill	Williamsport, PA	30	Siemens	2.30 MW	69.00 MW
Happy Jack	Cheyenne, WY	14	Suzlon	2.10 MW	29.40 MW
Ocotillo	Forsan, TX	28	Suzlon	2.10 MW	58.80 MW
Silver Sage	Cheyenne, WY	20	Suzlon	2.10 MW	42.00 MW
	1	Third Party I	Monitoring Only Site	es	
Grand Meadow	Dexter, MN	67	GE	1.50 MW	100.50 MW
Nobles	Reading, MN	134	GE	1.50 MW	201.00 MW
Lake Winds Energy Park	Ludington, MI	56	Vestas	1.80 MW	100.80 MW
Cedar Ridge	Eden, WI	41	Vestas	1.65 MW	67.65 MW
Spruce Mountair	Woodstock, ME	11	Gamesa	2.00 MW	22.00 MW
* 50/50 Partnership	Totals	1,396			1975.75 MV

Business Challenge

- Have 37 sites across 13 states
- Multiple OEMs, SCADA and HMI Systems
- OEMs have different tag structures and interfaces
- Need to use a common interface to view and report

Renewable Energy Monitoring Center

- The REMC helps maximize profits for Duke Energy and its contracted site owners by providing world class 24/7 monitoring services through professional communication, consistent processes, reliable reporting, ethical conduct and dedication to safety
- Located in Charlotte, NC
- In operation Since June 2009

PI Applications Used

OSIsoft Products Used

- PI ProcessBook
- PI Datalink
- PI Asset Framework(AF)
- PI Coresight
- PI Notifications
- PLACE

- Utilize Duke Energy PI Team
 - In house group of 10 PI System Experts
- OSIsoft CoE
 - Help to stay updated on new software and ways to improve our operations

PI System Benefits

- Visual Uniformity
- Unmodified records of data
- Clear Visual Alerts for operators
- Custom Built Displays
- Real Time Troubleshooting
- Remote Detection at issues unmanned sites
- Efficient Reporting Process

Real Time Monitoring: PI ProcessBook-Wind

Multiple OEM SCADA Systems

Common Alarm Display using Processbook

Real Time Monitoring: PI ProcessBook-Wind

Real Time Nominations

Wind Fleet Production

Wind Power Forecasting

Forecast Model Improvements

- PI system aided improvements in wind forecast model
- Forecast model obtains real time MET data from PI system
- 1/20/2012: Tag created for 1-min avg m/s of all wind farm WTG nacelles. Integrated into forecast model
- Improved wind forecast projection in both DA & RT by 23%

Online Forecasting Tool

- Streams real-time PI data from MET stations
- □ Calculates site power based on RT availability and power curve equation
- □ Provides operator interface for accurate power forecast nominations

Utilizing AF in Wind

- Able to display wind farms in templates
- Allows quick access to commonly monitored tags
- Provides a uniform tag naming convention across multiple turbine types

HappyJack Controls

PI Notifications

- Provide email alerts to REMC operators during emergency events
 - Equipment communications issues (functional)
 - Substation outages (in development)
 - Solar inverter faults (in development)
- Bring alarms to operator
- Maintain strict tolerance on critical alarms response

Solar Monitoring

Challenges

- Rapid operational turnover of newly constructed sites
- 2. Multiple SCADA types & equipment manufacturers
- 3. Screen-space is valuable and limited
- 4. Sites are unmanned, reliable remote monitoring is critical

Solution

Standardize solar monitoring with the PI system

- Collect site data on solar specific PI server
- Create PI tags for operational variables
- Customize performance calculations & metrics
- Design standard monitoring visuals
- Develop alerts for inverter faults & underperformance

Real Time Monitoring: PI ProcessBook-Solar

Solar Overview

Solar Trends and Inverter Status

Real Time Monitoring: Pi ProcessBook-Solar

Issues detected at solar sites in PI system:

- Blown fuses
- 2. Inverter grid faults
- Communications failures
- 4. Storm damage to panels
- Tracker motor errors

If the issue persisted would have cost \$500 a day in lost generation

Renewable Energy Monitoring System

"This [OSI PI System] delivered a highly functional monitoring center interface and saved us the expense of having to use 3rd party programmers."

Greg Wolf
President DE Renewables

| Total Wind Generation | South Region | South Regi

Business Challenge

 Need an in-house monitoring scheme for the rapidly growing wind and solar fleet that is uniform, dynamic, and effective.

Solution

✓ Developed overview screens that integrate realtime performance data with a common interface

Results and Benefits

- Provides operators with site status at a quick glance
- Precedent for future developments in fleet monitoring

Future Developments

Pl Cloud Connect

- Regularly get data requests from Vendors for analytical support
- Be able to publish data and vendors can subscribe and pull data from the cloud when needed
- Save time and resources
- No additional infrastructure needed

PI Future Data

- Ability to model wind forecast in PI
- Predicting equipment impacts due to wind or temperature forecasts, able to adjust schedules to minimize monetary loss

Jeremy Hunter

jeremy.hunter@duke-energy.com

Sr. Technical Specialist

Duke Energy Renewables

