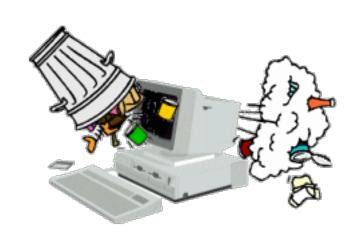


Enterprise Manufacturing Services to Enhance Energy Effectiveness and Sustainability Management

Presented by Ales Soudek – Center of Excellence
OSIsoft, LLC

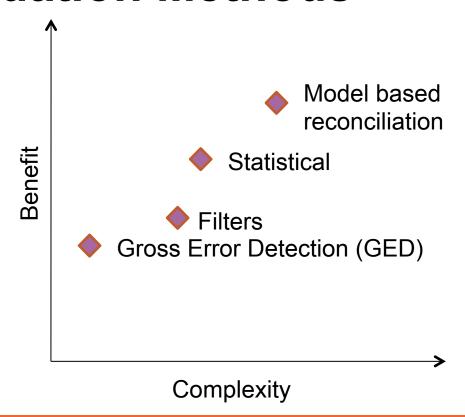
Key Initiatives


- Energy
- Water
- Operational / Equipment Effectiveness
- No Magic Bullet Big Bang
 - Lots of Little Bangs

Good Foundation

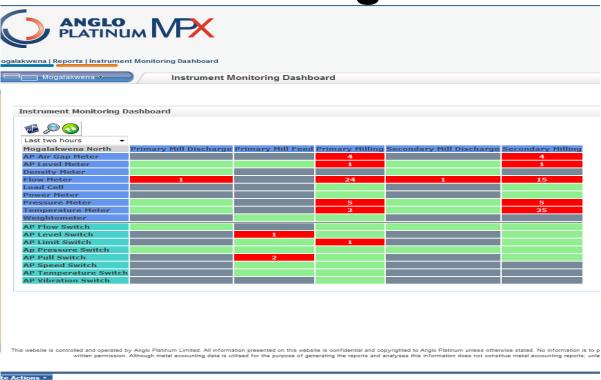
Data Quality

Data Quality Initiative at Anglo Platinum



Enterprise Architecture

- Distributed Architecture
 - Limited Network Bandwidth
- Local Calculations
- Select Data Rolled-up to Central PI System
- Master PI AF Replicated to Sites


Data Validation Methods

Gross Error Detection

		Fault		
Category	Description	state	Analogue	Digital
Good	Good data quality		X	Х
Missing Data	Data point is missing	Yes	X	Χ
Not Running	Equipment or process not running		X	Χ
High	Data point is above the process high limit	Yes	X	
Low	Data point is below process low limit	Yes	X	
Not Updating	Data is not updating	Yes	X	
ROC	High rate of change	Yes	X	
Simulated	Simulated data	Yes	X	Χ
Qbad	Quality bad indicator from the control system	Yes	Χ	Χ

Instrument Monitoring Results

€ @OSIsoftUC | #UC2013

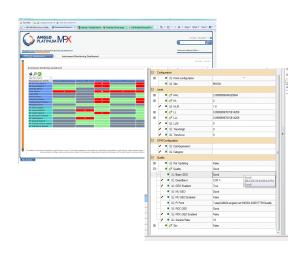
Sa Lo

Anglo Platinum - Data Validation

"Data validation and instrument monitoring results in

- Better data quality
- Supports "One version of the truth"
- Better decisions"

Michael Halhead Lead Process Control Engineer

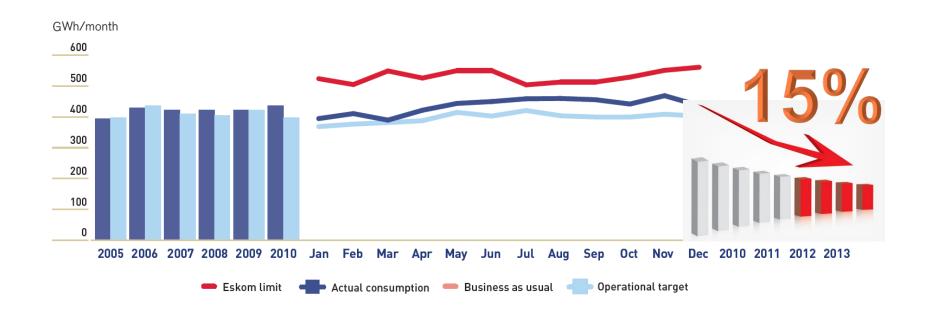


Business Challenge

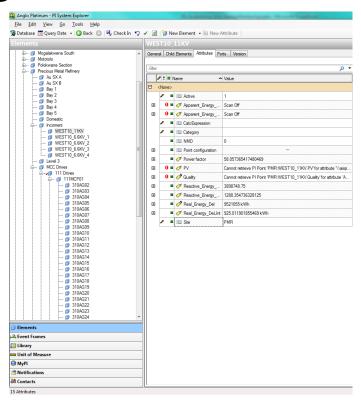
- Bad data quality
- Caused equipment failures
- Large number of instruments
- **Business/Operational** decisions need improvement

Solution

- Use PI AF to organize
- Use PI ACE to calculate
- Custom WebPart to visualize
- Use OLEDB Enterprise for reporting

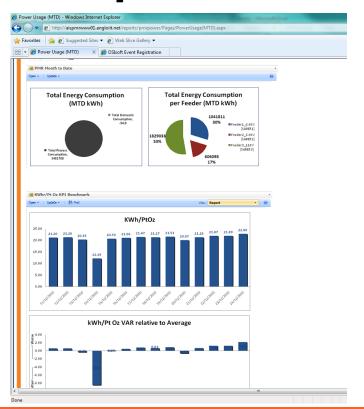


Results and Benefits

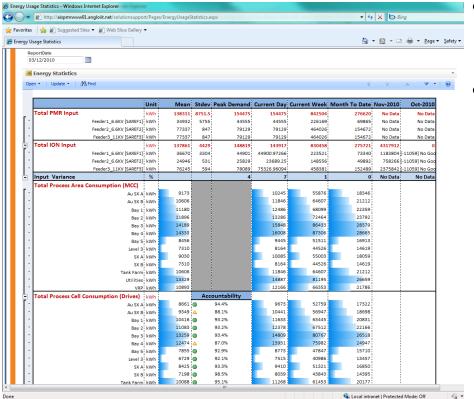

- Better quality information
- Better decisions
- Clear visibility instrument status
- Prevention of equipment failures

Energy Monitoring Initiative at Anglo Platinum

Business Challenge




Organize


- Totalizers, Performance Equations (PEs) and PI ACE.
- Totalizers and PEs configured using PI AF Templates
- The AF-Link facilitates
 ACE

Corporate Visibility

Data Analysis

- Data is rolled up using PI AF
- Show clearly where the power is being used

OSIsoft Software and Services Used

- The following OSIsoft Products were used to provide this solution:
 - PI Server
 - RDBMS Interface
 - ION Data
 - LIMS Data
 - OPC Interface
 - · Real time process data
 - PLACE
 - PLAF
 - Including custom Data References (Rollup DR)
 - PI DataLink and PI DataLink Server
 - PI ProcessBook for displays
 - PI WebParts
 - PI OLEDB Enterprise

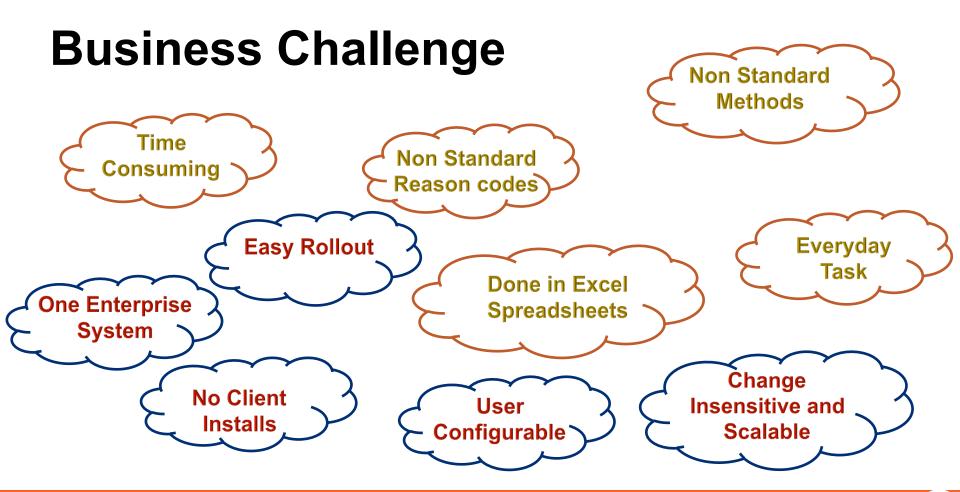

Anglo Platinum - Energy Monitoring

"Implementing high level metrics and analyses linked to production clearly shows were the power is used allowing focused energy reduction initiatives. A roll out to the concentrators is in the planning stages. Due to the scale of the concentrator operations the potential benefits are enormous."

Thobile Mukuna Process Engineer

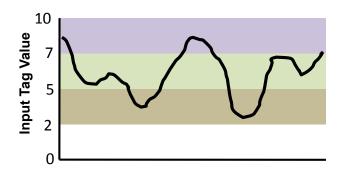
Business Challenge

- Large electricity consumption 450 GWh/month
- Target 15% reduction in electricity consumption 2008 to 2014
- Company-wide integrated approach to energy saving is required


Solution

- Use PI AF granularity and roll-up
- Visibility power use at every level
 - PI WebParts and SharePoint, Silverlight
- High level metrics KPIs
- Provided ability for users to drill down to every level of granularity

Results and Benefits


- Enterprise visibility of all electrical consumption
- Significant time reduction for analysis
- Easy construction of BI cubes
- Just making the data visible resulted in a 1% reduction in electrical power use.

Condition Based Maintenance Initiative at Anglo Platinum

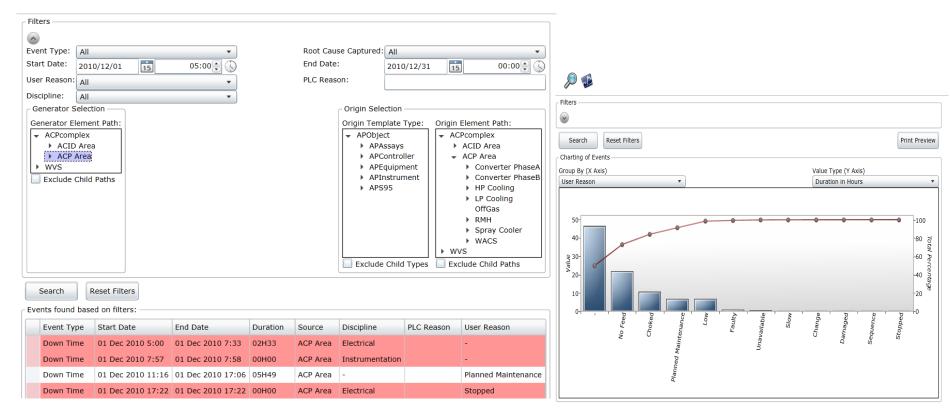
Solution – Process Diary

Operational States

Example: Use any or all of the conditions below;

Create Event When > 7

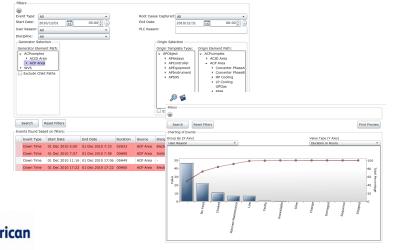
Create Event When < 5


Create Event When between 5 and 7

Create Event When not between 5 and 7

Create Event When = "Digital State"

with template A with template B with template C with template D with template E


Solution – Based on Event Frames

Anglo Platinum – Process Diary

"Started out with condition based maintenance in mind. The resulting "Process Diary" can be used for Downtime, Slowtime, KPI's, basically anything that can be configured."

Michael Halhead Lead Process Control Engineer

Business Challenge

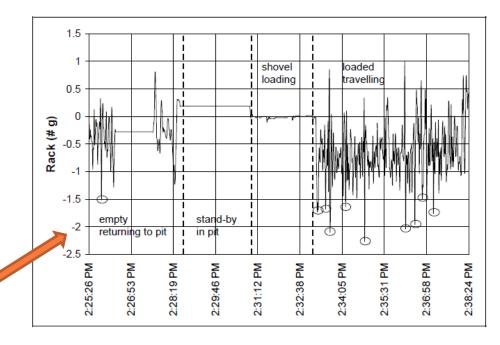
- Non-standard methods
- Time consuming
- Replace Excel solution
- Provide Enterprise easily configurable solution

Solution

- PI Event Frames and PI AF
- PI ACE to create events
- Custom Silverlight screens using PI AF controls

Results and Benefits

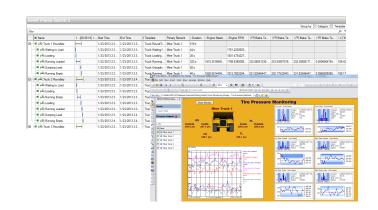
- Time savings
- Enterprise-wide standardization
- Flexibility not just CBM
- Compare years of data
- User configurable


Asset Monitoring Initiative at Syncrude

Business Challenge

- Prolong Life of Mobile Assets
- Data Shadows
- Need Real-time Events
- Fit into Existing Application
- Low Maintenance
- Scalability

Business Challenge

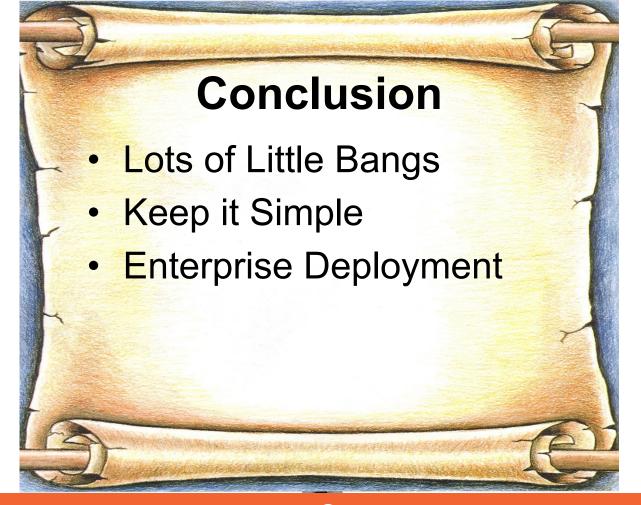

Test Case#	Area	Complexity	Test Case Name	
001	General Monitoring	Minor	Out of Range	
002		Minor	MDSP Offline	
003	Power Train Management	Minor	Torque Convertor Overheating	
004	Lubrication Management	Minor	Auto-lubrication Frequency	
005	Engine Management	Minor	Throttle Position Condition	
006		Minor	Turbo Failure	
007		Minor	Injector Failure	
800		Minor	Engine Oil Dilution	
009		Minor	Coolant Temp Delta	
010	Steering/Braking Management	Minor	Service Brake Applied at Speed	
011		Minor	Brake Overheating	
012		Major	Steering Pumps Cycle	
013		Major	Braking Pumps Cycle	
014	Frame Management	Minor	Improper Strut Charge	
015		Minor	Deflation	
016		Minor	Airborne	
017		Minor	Side Load	
018		Minor	Front Load	
019		Major	Max Rack	
020		Major	Max Pitch	
021		Major	Max Roll	
022		Minor	Abusive Dumping	
023		Minor	Abusive Loading	

Syncrude Canada – Mobile Asset Monitoring

Syncrude chose the PI System and an Enterprise Agreement as an integral part of their tar sands mining and refining operation.

Derek Hatchey PC&A Applications Team

Business Challenge


- Large number of trucks and other mobile equipment
- Existing system allows analysis of events days later
- Data shadows maybe up to 72 hours
- Prolong life of assets

Proposed Solution

- Data from onboard systems to PI Archive via the UFL interface
- Truck templates in PI AF & PI ACE to trigger calculations
- Event Frame Interface to generate Events
- PI OLEDB Enterprise to populate Events to existing Oracle database

Potential Benefits

- Data shadows are handled by PI ACE and Event Frame interface
- Real-time generation of events and analysis
- Ability to make decisions in realtime

Ales Soudek

asoudek@osisoft.com

Center of Excellence Engineer OSIsoft, LLC

"A wise man never tries to warm himself in front of a painting of a fire" – Czech proverb

